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Abstract: Complex material parameters that can represent the losses of giant magnetostrictive mate-
rials (GMMs) are the key parameters for high-power transducer design and performance analysis.
Since the GMMs work under pre-stress conditions and their performance is highly sensitive to
pre-stress, the complex parameters of a GMM are preferably characterized in a specific pre-stress
condition. In this study, an optimized characterization method for GMMs is proposed using three
complex material parameters. Firstly, a lumped parameter model is improved for a longitudinal
transducer by incorporating three material losses. Then, the structural damping and contact damping
are experimentally measured and applied to confine the parametric variance ranges. Using the
improved lumped parameter model, the real parts of the three key material parameters are character-
ized by fitting the experimental impedance data while the imaginary parts are separately extracted
by the phase data. The global sensitivity analysis that accounts for the interaction effects of the
multiple parameter variances shows that the proposed method outperforms the classical method as
the sensitivities of all the six key parameters to both impedance and phase fitness functions are all
high, which implies that the extracted material complex parameters are credible. In addition, the
stability and credibility of the proposed parameter characterization is further corroborated by the
results of ten random characterizations.

Keywords: giant magnetostrictive material; complex parameters; losses; transducer; lumped
parameter model; particle swarm optimization (PSO) algorithm

1. Introduction

Giant magnetostrictive materials (GMM) such as Terfenol-D are important smart
materials for underwater acoustic transducers [1,2]. When modeling and designing high-
power underwater transducers, knowledge of the complex parameters of characteristic
materials is needed to predict the performance and iteratively optimize the design [3,4].
One of the challenges faced by transducer designers is a lack of accurate and reliable
characteristic data regarding the properties of GMMs [5]. Particularly, energy losses in
smart materials remarkably affect the important characteristics of a high-power transducer,
such as the electrical impedance or the amount of heat generated. Accurately characterizing
the losses of smart materials is very demanding [6–8].

The parameter characterization methods of magnetostrictive materials can be mainly
divided into two categories, namely, direct measurement methods and impedance analysis
methods [9]. A direct measurement method refers to the method of extracting material
parameters from measured hysteresis loops and magnetostrictive curves [10]. This method
suits the evaluation of material quality, and the measurement involves only the local
position of the material specimen; however, achieving sufficient accuracy for the measured
parameters requires instruments with high accuracy, which is normally expensive and
introduces measurement noise.
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In the field of piezoelectric materials, impedance analysis methods have become the
most effective methods to characterize the complex parameters of equivalent characteristic
materials [11]. Using complex material parameters, the losses can also be characterized.
This is normally achieved by intelligent algorithms to minimize the difference between the
harmonic response data measured by the impedance analyzer and the simulated data in
order to characterize the material parameters. The IEEE Standard on Piezoelectricity uses
a lumped parameter model to describe the impedance properties in a one-dimensional
mode and calculates the real parameters of the material by measuring the impedance
curve, but this method cannot directly describe the material losses because it does not
use complex material parameters [12]. In fact, Sherrit et al. have proved that a lumped
parameter impedance model with complex material parameters is effective, efficient, and
can fit impedance data with high accuracy and be used to calculate the complex parameters
of materials [13]. Wild et al. [14,15] developed a 1D equivalent circuit or 3D FEM and
the impedance curve measured to characterize the complex parameters under the radial
vibration mode of the piezoelectric material. Sun et al. [16] successfully extracted the
parameters of the high-loss piezoelectric composite material. Moreover, these studies show
that the extraction of the imaginary parts (losses) of the complex parameters are more
challenging than the real parts. Jonsson et al. [17] extracted the full parameter matrix of
the material by a finite element model; however, this powerful characterization method is
time-consuming.

The characterization of GMMs is more challenging compared to that of piezoelectric
materials. One of the key issues is that the performance of GMMs is very sensitive to
prestress and magnetic bias [10]. A recent study of electrical bias and pre-stress effects on
the loss factors has provided a better understanding of the microscopic loss mechanism in
piezoelectric materials and can facilitate a better finite element analysis on device design-
ing [18]. This is also true for GMMs. It is necessary to introduce a mechanical structure to
apply pre-stress to the material and extract material complex parameters under different
pre-stress conditions. In addition, GMMs have an eddy current effect that varies with
frequency, so they have a more complicated loss mechanism than piezoelectric materials.
Dapino et al. [19] adopted the theory of an electroacoustics model based on small-signal
excitation and analyzed the dynamic magneto-mechanical characteristic parameters of
Terfenol-D under different working conditions by measuring the impedance curve and
output displacement of a longitudinal vibrating transducer. Luke et al. [20] refer to the
method proposed by Dapino to characterize Galfenol under specific working conditions;
however, this method relies on the measured output displacement. In addition, this ignores
the losses. Greenough et al. [21,22] established a plane wave model of a longitudinal GMM
transducer using complex parameters to represent losses in the material, and extracting key
parameters by use of a simulated annealing (SA) algorithm to identify the experimental
impedance measurement results under the free-stand state. After that, Greenough [23]
further extracted material parameters under different prestress by the same method; how-
ever, the influence of the mechanical structure on the parameter characterization is not
mentioned. The extracted imaginary parts of complex parameters sometimes turned to
positive values under small signal excitations, implying an abnormal dissipation factors
tangent [24].

A particle swarm optimization (PSO) algorithm is an efficient parameter identification
algorithm, and its effect has been verified in the parameter characterization of electric
impedance model [16,25]. Sun et al. [16] used PSO, SA, and Gauss–Newton algorithms to
characterize the complex parameters of piezoelectric materials with the thickness vibration
mode and showed that the Gauss–Newton algorithm relies heavily on the selection of
initial values. Further, the identification results have relatively large and unstable relative
errors. The SA algorithm is more dependent on the annealing parameters and annealing
time strategy. In contrast, the PSO algorithm can search in a larger parameter range, and
quickly converge to the optimal solution when compared to the SA and Gauss–Newton
algorithms, so it is more reliable for the characterization of unknown material parameters.
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Consequently, an optimized complex parameters extraction routine for GMMs is
proposed in this paper while considering three material losses, i.e., hysteresis losses, elas-
tic losses, and piezomagnetic coupling losses under the longitude vibration mode. The
purpose of this study is to investigate a method that can stably characterize the complex
parameters of GMMs under different pre-stress conditions. The key improvement is to
measure and calculate the structural damping and contact damping of the parameter
characterization device and apply the data to confine the parametric variance range of
material losses. The proposed method is based on a lumped parameter model containing
the three losses and uses a PSO algorithm to minimize the root mean square error (RMSE)
between the experimental impedance data and simulation data to extract the real parts
of the material parameters, and then by minimizing the RMSE between the experimental
phase data and the simulation data to extract the imaginary parts. The global sensitivity
analysis demonstrates the importance of using the phase data and measuring structural
damping and contact damping for parameter characterization. Comparing with the tradi-
tional method, the sensitivity of the three losses has been greatly improved. Finally, the
complex parameters were randomly characterized ten times, which further confirmed the
stability of the method.

2. Characterization Methodology
2.1. Complex Parameters of GMM

According to the loss mechanism of a GMM [26], there are three types of losses under
actual working conditions, namely, hysteresis losses, elastic losses, and piezomagnetic
coupling losses. Similar to piezoelectric materials, the small losses (dissipation factor
tangent�0.1) of a GMM can also be regarded as disturbances and may be introduced into
phenomenological equations as “complex physical constants”, which is mathematically
equivalent to the role of “dissipation functions” [27]. Consequently, we introduced the
complex parameters of relative permeability µσ∗

33 , elastic compliance SH∗
33 , and piezomag-

netic constant d∗33 into the linear piezomagnetic constitutive equation of GMM to yield
delay-time-related small losses. The complex parameters of longitudinal vibration mode
are shown in Equation (1). 

µσ∗
33 = µ′33 + jµ′′33

SH∗
33 = S′33 + jS′′33

d∗33 = d′33 + jd′′33

(1)

2.2. The Longitudinal Transducer

The structural diagram of a longitudinal GMM transducer is shown in Figure 1.
During the operation, the transducer is installed on a shock absorber table to simulate an
infinite base mass and the base was actually a seismic mass. A GMM rod with a diameter
of 20 mm and a length of 100 mm was used as the driving material. To reduce the eddy
current, the rod was cut to 9 slots and the slots were filled with liquid epoxy resin. A photo
of the rod is shown in Figure 2.

A 940-turn AC solenoid provided an excitation magnetic field for the rod. A 1540-turn
DC solenoid was used to provide a DC bias magnetic field for the rod. Generally speaking,
the bias magnetic field provided by the DC solenoid is more uniform along the rod axis than
the bias magnetic field provided by the permanent magnet, which is crucial for the material
parameter characterization. The closed magnetic circuit of the transducer consisted of a
cylindrical magnetic column at both ends of the rod, an outer cylinder, a housing base and
an upper end cover. A closed magnetic circuit can minimize the leakage flux and make
the magnetic flux in the bar more uniform. The magnetic columns, housing base, and the
upper cover were made of soft iron after a slitting treatment, and the outer cylinder was
wound by a 0.35 mm silicon steel sheet whose eddy losses are trivial. Spring washers were
used to pre-stress the rod. A ring pressure sensor was used to measure the prestress of the
transducer.
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2.3. The Lumped Parameter Model for the Transducer

The lumped parameter model for the transducer is shown in Figure 3. E represents the
input voltage of the transducer, I represents the input current, Ze is the blocked electrical
impedance, Zt is the mechanical impedance, V is the output speed, F is the output force on
the displacement plunger, and Tem and Tme stand for the transduction terms “electrical
due to mechanical” and “mechanical due to electrical”, respectively. The variables are
all variables in the frequency domain. The related linear conversion equation has the
following form:

E = Ze I + TemV (2)

F = Tme I + ZtV (3)
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The transducer’s electrical impedance frequency response function Z is given as
follows:

Z =
E
I
= Ze −

TemTme

Zt
(4)

A GMM under an alternating magnetic field would generate eddy current losses.
According to [28], the cut-off frequency f c of the GMM rod is 30 kHz, which is much greater
than the working frequency f. In this case, the eddy current factors can be described as
per [29]:  χr = 1− 1

48

(
f
fc

)2
+ 19

30720

(
f
fc

)4
+ . . .

χi =
1
8

(
f
fc

)
− 11

3072

(
f
fc

)3
+ 473

4343680

(
f
fc

)5
+ . . .

(5)

The equivalent permeability, which includes the eddy current losses, can be expressed
as follows:

µσ∗
33 = µ′33(χr + jχi) + jµ′′33 (6)

The k∗33 magneto-mechanical coupling is defined as follows:

k∗33 =
√
(d2

33)
∗/µσ∗

33 SH∗
33 (7)

In Figure 3, the blocked electrical impedance Ze is expressed as follows:

Ze = R0 + jωL∗G (8)

where L∗G = (Rg1 + jωLg)/jω represents the equivalent inductance include hysteresis and
eddy current losses of electrical part, Rg1 = −ω(χi + µ

′′
33/µ′33)Lb and Lg = χrLb.

Lb = (1 − (k∗33)
2)µ′33N2 A/l represents an approximation of the inductance of a

wound wire solenoid when the transducer is in a blocked state. N and R0 represent the
number of turns and the DC impedance of the AC excitation solenoid, respectively. A and l
represent the cross-section and the length of the rod, respectively.

The mechanical impedance Zt is expressed as follows:

Zt = jωMt + (Kspr + K∗G)/jω + Rd + Rf (9)

where Mt refers to the equivalent mass of transducer, Kspr represent the equivalent stiff-
nesses of the pre-stress spring washers, K∗G = jω(Rg2 + 1/jωKg) represents the stiffness of
the GMM, include elastic losses Rg2 = A/(ωlS′′33) and Kg = A/lS′33, and Rd and Rf refer to
the damping of the displacement plunger and the contact damping of the contact surfaces,
respectively.

The transduction coefficient between the electrical and mechanical parts of the trans-
ducer is given as follows:

Tem = −Tme =
NA(d′33 + jd′′33)

(S′33 + jS′′33)l
(10)

In summary, the electrical impedance equation of transducer Z can be obtained based
on the improved parameter model by putting Equations (8)–(10) into Equation (4):

Z = R0 + jω
{[

µσ∗
33

(
1 + (k∗33)

2(
K∗G

jωZm
− 1)

)]
N2 A

l

}
(11)

The equation of phase P can also be expressed as follows:

P = arctan(
img(Z)
real(Z)

)
180
π

(12)
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where real(Z) and img(Z) represent the real and imaginary parts of electrical impedance
Z, respectively. To estimate the effective magneto-mechanical coupling coefficient k∗eff of
the rods, which is affected by mechanical stiffness and flux linkage, can be calculated as
per [30]: (

k2
eff)
∗
=

k2
M
(
k2

33)
∗K∗G

K∗G + Kmps(1−
(
k2

33)
∗
)

(13)

In Equation (12), kM represents the leakage flux of the transducer and setting its value
as k2

m = 0.9205 as per [31].

2.4. The Proposed Optimization Method

The essence of parameter identification is the process of using an intelligent optimiza-
tion algorithm to find the minimum value of an objective function. In this paper, PSO is
used to iterate repeatedly to find the complex material parameters in the improved lump
parameter model to fit the experimental curves.

The operative process of the PSO is shown in Figure 4. Firstly, the positions and
velocities of the particles are initialized, i.e., give each particle a random initial position and
velocity and then calculate the fitness function value of each particle according to the fitness
function Equation (14) or (15). Then, the fitness function value corresponding to the current
position of each particle and the historical best position is compared, the individual optimal
value of the particle is updated, and the global optimal value is obtained. Subsequently,
the positions and velocities of the particles are updated, and then the fitness function value
is calculated. Finally, it is judged whether the termination condition is satisfied, and if the
termination condition is satisfied, the identification result is outputted. If the conditions
are not met, then the process continues to iterate.
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In this research, three different methods of material parameter extraction based on
PSO were investigated. A flow chart of all three methods is shown in Figure 5. Method
1 represents the classic method [23] without knowledge of the structural damping and
contact damping and calculates the fitness function exclusively based on the impedance
modulus curve. In Method 1, the six unknown parameters to be identified in the impedance
equations were set as: ∂ = [ µ′33 µ

′′
33 S′33 S′′33 d′33 d′′33]

T. Equation (11) is used to generate the
simulated electric impedances and it is expressed as Ẑ(i, ∂). The experimentally measured
impedance modulus values are expressed as Z(i). The RMSE of the difference between
Ẑ(i, ∂) and the Z(i) is taken as the objective function E1(∂), which is shown in Equation (14).
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The six values identified by the PSO are used as the final result of material parameter
extraction of the Method 1.

Fz(i) = E1(∂) =

√√√√1
I

I

∑
i
(Z(i)− Ẑ(i, ∂))

2 (14)Micromachines 2021, 12, x FOR PEER REVIEW 8 of 21 
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In Method 2, the structural damping and contact damping are still unknown. Different
from Method 1, the fitness function value of Method 2 is calculated based on the phase angle
data, and the imaginary parts of the complex parameters are extracted by PSO instead. The
real parts of the complex parameters are still determined by Method 1. The three unknown
parameters to be identified in the impedance equations are set as δ = [ µ

′′
33 S′′33 d′′33]

T.
Equation (12) is used to generate the simulated phase and it is expressed as P̂(i, δ). The
experiment measured phase are expressed as P(i). The RMSE of the difference between
P̂(i, δ) and the P(i) is taken as the objective function E2(δ), which is shown in Equation
(15).

Fp(i) = E2(δ) =

√√√√1
I

I

∑
i
(P(i)− P̂(i, ∂))

2 (15)

In Equations (14) and (15), I represents the total number of sampling points and
i represents the i-th sampling point.

In Method 3, the structural damping and contact damping of the transducer are
measured, calculated, and entered as known values into the parameter identification
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process. The settings for both the unknown parameters and fitness function, as well as the
algorithm iteration process, are the same as in Method 2.

3. Experimental Measurement
3.1. The Measurement of the Displacement Plunger’s Structural Damping

The damping ratios of stainless steel 304 bars were measured through standard modal
testing and then calculated by the structural damping of the displacement plunger [32,33].
A standard cylindrical sample with a diameter of 50 mm and a length of 1500 mm was
prepared. At this size, the natural frequency for the first longitudinal vibration of the sample
can be close to the working frequency of the transducer. The test equipment is shown
in Figure 6. The piezoelectric accelerometers, as well as the real-time data measurement
and analysis instrument DH5922D and its analysis software, were sourced from Donghua
Testing Technology Co., Ltd (Taizhou, China). The sample bar was hung with a soft elastic
rope and the suspension point was located on the modal node of the sample. A levelling
instrument was used to check whether the rod was level. A force hammer was used to
apply a force on one end of the bar, and four piezoelectric accelerometers were installed on
the other end to measure the resulting acceleration.
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The schematic block diagrams of the standard modal experiment are shown in Figure 7.
A 5 kN test hammer was used to act on the tested 304 stainless steel bar to vibrate the
sample, and the vibration signal was picked up by the piezoelectric accelerometer and
converted into an electrical signal. The charge amplifier amplifies the electrical signal, filters
it, and then performs analog/digital (A/D) signal conversion, which is implemented in the
instrument DH5922D. The time domain signal is subjected to fast Fourier transform (FFT),
and then the frequency response function (FRF) is calculated, and, finally, the damping
ratio ξd is obtained by parameter identification.
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Figure 7. Schematic block diagrams of standard modal test.

Figure 8 shows the real and imaginary parts of the FRF of the sample. It can be seen
that the first longitudinal resonance frequency ω1 of the sample is 1600 Hz. Using the
widely used poly-reference least squares complex frequency domain method (PolyMax)
for modal parameter identification, the damping ratio ξd at the natural frequency of the
first-order longitudinal vibration of the material was extracted to be 0.294%, and, according
to the JCHM standard [34,35], the standard uncertainty is 0.019%. It is known that the
mass of the displacement plunger (shown in Figure 3) is Md = 0.722 kg, so the structural
damping of the displacement plunger is Rd = 2ξdMdω1 = 6.79 N/(m/s) and the standard
uncertainty is 0.4390 N/(m/s).
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3.2. The Contact Damping Calculation

In transducers, contact damping has a great impact on the performance [32,36]. Ac-
cording to [32], these losses account for 45% of the total mechanical losses in a typical
piezoelectric transducer. Consequently, it is necessary to calculate the contact damping of
the contact surfaces within the transducer. There are three main contact surfaces, namely,
the contact surface of the giant magnetostrictive rod and the magnetic column (G-M sur-
face), the magnetic column and the displacement plunger (M-D surface), and the magnetic
column and the housing base (M-H surface).

3.2.1. Morphology of the Rough Surfaces

The surfaces of the giant magnetostrictive rod (GMR), magnetic column (iron), and
displacement plunger (304 stainless steel) were polished with 240-mesh, 600-mesh, and
800-mesh sandpaper in order. Then, a Bruker’s Contour Elite 3D microscope was used
to measure the rough surface morphology (Figure 9). In order to ensure the accuracy
of the results, six different points (size of each point of 2538.46 µm × 1903.84 µm) were
selected for the surface topography characterization and the roughness parameters of the
six positions were averaged.
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The measurement data and the standard uncertainty of measurement are displayed in
Table 1. For a three-dimensional rough surface, Rq represent the RMSE of roughness.

Table 1. Measurement parameters Rq and standard uncertainty of rough surfaces.

1 2 3 4 5 6 Ave. Standard Uncertainty

Rq (µm) of the GMR 0.577 0.490 0.539 0.706 0.910 0.744 0.661 0.012
Rq (µm) of the magnetic column 0.345 0.307 0.333 0.394 0.368 0.338 0.347 0.011

Rq (µm) of the displacement plunger 0.315 0.378 0.338 0.308 0.303 0.297 0.323 0.011

According to [37,38], the fractal dimension D and the fractal roughness parameter G
of the rough surface profile can be calculated by Formulae (16)–(18),

Ds =
1.548
R0.041

q
(16)

D = Ds + 1 (17)

G =
2(Ds−1)

√
R2

q sin[
π(2Ds − 3)

2
]Γ(2Ds − 3)/L(2−Ds)

m (18)

where Γ(x) is Euler’s gamma function, Lm is the length of the specimen for the surface
profile. The calculation results are shown in Table 2.
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Table 2. Measurement parameters of the rough surfaces.

Rough Surfaces
of the GMR

Rough Surfaces of the Magnetic
Column and Housing Base

Rough Surfaces of the
Displacement Plunger

D 2.5747 2.6167 2.6214
G (m) 2.2525 × 10−10 2.8175 × 10−10 2.8890 × 10−10

3.2.2. Calculation of the Contact Damping

According to Hertz contact theory, the contact between two rough surfaces can be
modeled as a contact between a rigid plane and an equivalent rough surface [39]. Mandel-
brot et al. used the W-M function to apply fractal geometry theory to the contact analysis
between two rough surfaces, and established a new fractal contact model (M-B model).
So far, many scholars have conducted extensive research on the contact problem of rough
surfaces based on the fractal model [40–42].

In this study, the contact damping in the transducer was calculated based on the
fractal model. It is known that the fractal dimension and the fractal roughness parameter
of two rough surfaces are Dx and Gx, where x = 1 and 2, respectively. When two rough
surfaces contact, the equivalent fractal dimension Deq and the equivalent fractal roughness
parameter Geq of the contact surfaces are defined as follows: Deq = max (D1, D2) and

Geq =
2(Deq−1)

√
G2(D1−1)

1 + G2(D2−1)
2 .

The detailed calculation process is presented in Appendix A and the results and
standard uncertainty for a pre-stress of 10 Mpa are shown in Table 3. As the contact
damping calculation equation is nonlinear, it is more appropriate to use a Monte Carlo
method (MCM) of JCGM [34] to evaluate the uncertainty. The evaluation results are shown
in Table 3, where the size of the Monte Carlo test sample is M1 = 106.

Table 3. Parameters (estimated value ± standard uncertainty) of contact surfaces with a pre-stress of
10 Mpa.

Contact Damping (N/(m/s)) Deq Geq (m)

G-M surface 36.5693 ± 0.1558 2.6167 ± 0.0011 4.3788 × 10−10 ± 9.6892 × 10−12

M-D surface 287.9776 ± 2.8382 2.6214 ± 0.0009 3.6296 × 10−10 ± 2.8896 × 10−13

M-H surface 24.6834 ± 0.0324 2.6167 ± 0.0011 3.4991 × 10−10 ± 2.4283 × 10−13

Sum 349.2303 ± 3.0274 / /

3.3. The Measurement of Impedance/Phase

The impedance/phase measurement device is shown in Figure 10. The base of the
longitudinal vibration transducer was fixed on a shock absorbing table with screws to
simulate the vibration state of being clamped at one end. An impedance analyzer was used
to measure the impedance and phase data of the longitudinal transducer and a ring pressure
sensor was used to measure the value of the pre-stress applied to the magnetostrictive rod.
A programmable DC power supply was used to provide 2 A DC current for the purpose of
magnetic bias.
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3.4. Estimated Standard Uncertainty and Expanded Uncertainty of Measurement

In summary, both the estimated standard uncertainty and expanded uncertainty U99
of the measurements are shown in Table 4, where P represents the confidence probability
and K represents the confidence factor. The uncertainty closes to a uniform distribution,
where when P is 99%, the corresponding K is 2.58.

Table 4. Estimated uncertainty of measurements.

Measurement of Structural
Damping

Measurement of Contacting
Damping

Measurement of Impedance
and Phase

Standard Uncertainty
(P = 68.27%, K = 1) 0.4390 N/(m/s) 3.0264 N/(m/s) 0.00046 Ω/0.0058 deg

Expanded Uncertainty
(P = 99%, K = 2.58) 1.1326 N/(m/s) 7.8081 N/(m/s) 0.00118 Ω/0.0149 deg

4. Experimental Results
4.1. Sensitivities Analysis

The quality of parameter identification was first evaluated by global sensitivity analy-
sis. The goal of global sensitivity analysis is to determine the importance of parameters
with interaction effects between multiple parameter variances. This means that if the fitness
function value is more sensitive to one parameter, this identified parameter is closer to its
true value. Usually, without knowing the actual parameters, sensitivity analysis allows
rational choices under uncertain conditions [43,44].

Scatterplots (Figures 11 and 12) were used to analyse the global sensitivity while
considering the interactions between the variance of the six parameters. The abscissa
represents the parameter variances of each iteration by PSO and the ordinate represents the
fitness function values obtained in each iteration. The parameter values were divided by
the average number for normalization. The red inverted triangles are used to indicate the
local minimum. The sharpness of the basin in the scatterplots reflects the sensitivity of the
fitness function to the complex parameters. The sharpness can be quantified by ∆F, where
∆F is the width of the basin when the fitness function value is equal to 1.5. With a smaller
∆F, a higher sensitivity of the fitness function to a specific parameter is demonstrated [14].



Micromachines 2021, 12, 1416 13 of 20Micromachines 2021, 12, x FOR PEER REVIEW 14 of 21 
 

 

   
(a) ΔF1 = 0.032 (b) ΔF1 = 0.023 (c) ΔF1 = 0.061 

   
(d) ΔF1 = 0.434 (e) ΔF1 = 0.462 (f) ΔF1 = 0.592 

Figure 11. Sensitivities of six parameters in Method 1. ΔF1 is used to quantify the global sensitivity, which has been defined. 

4.1.1. Sensitivities of the Method 1 
The global sensitivity of each parameter in Method 1 is shown in Figure 11. It is ap-

parent from Figure 11a–c that the fitness function is highly sensitive to µ33
’ , S33

’ , and d33
’ ; 

however, the fitness function is far less sensitive to µ33
’’ , S33

’’ , and d33
’’ , (Figure 11d–f). The 

basins of the scatterplots are almost planar, and the ΔF1 values corresponding to each of 
the three imaginary parts are about 10 times those of the corresponding real part, indicat-
ing that the losses extracted by Method 1 are unreliable. 

4.1.2. Sensitivities of the Method 2 and 3 
The sensitivities of each parameter in Methods 2 and 3 are shown in Figure 12. 

   
(a) ΔF2 = 0.065; ΔF3 = 0.049 (b) ΔF2 = 0.856; ΔF3 = 0.085 (c) ΔF2 = 0.30; ΔF3 = 0.029 

Figure 12. Sensitivities of three imaginary parts in Method 2 (the gray spots) and Method 3 (the blue spots). ΔF2 and ΔF3 
are used to quantify the sensitivity of each parameter in Methods 2 and 3, respectively. 

For Method 2 (the gray spots), the fitness function value was highly sensitive to µ33
’’ , 

but the sensitivities to S33
’’  and d33

’’  were very low, indicating that these two losses cannot 

Figure 11. Sensitivities of six parameters in Method 1. ∆F1 is used to quantify the global sensitivity, which has been defined.

Micromachines 2021, 12, x FOR PEER REVIEW 14 of 21 
 

 

   
(a) ΔF1 = 0.032 (b) ΔF1 = 0.023 (c) ΔF1 = 0.061 

   
(d) ΔF1 = 0.434 (e) ΔF1 = 0.462 (f) ΔF1 = 0.592 

Figure 11. Sensitivities of six parameters in Method 1. ΔF1 is used to quantify the global sensitivity, which has been defined. 

4.1.1. Sensitivities of the Method 1 
The global sensitivity of each parameter in Method 1 is shown in Figure 11. It is ap-

parent from Figure 11a–c that the fitness function is highly sensitive to µ33
’ , S33

’ , and d33
’ ; 

however, the fitness function is far less sensitive to µ33
’’ , S33

’’ , and d33
’’ , (Figure 11d–f). The 

basins of the scatterplots are almost planar, and the ΔF1 values corresponding to each of 
the three imaginary parts are about 10 times those of the corresponding real part, indicat-
ing that the losses extracted by Method 1 are unreliable. 

4.1.2. Sensitivities of the Method 2 and 3 
The sensitivities of each parameter in Methods 2 and 3 are shown in Figure 12. 

   
(a) ΔF2 = 0.065; ΔF3 = 0.049 (b) ΔF2 = 0.856; ΔF3 = 0.085 (c) ΔF2 = 0.30; ΔF3 = 0.029 

Figure 12. Sensitivities of three imaginary parts in Method 2 (the gray spots) and Method 3 (the blue spots). ΔF2 and ΔF3 
are used to quantify the sensitivity of each parameter in Methods 2 and 3, respectively. 

For Method 2 (the gray spots), the fitness function value was highly sensitive to µ33
’’ , 

but the sensitivities to S33
’’  and d33

’’  were very low, indicating that these two losses cannot 

Figure 12. Sensitivities of three imaginary parts in Method 2 (the gray spots) and Method 3 (the blue spots). ∆F2 and ∆F3

are used to quantify the sensitivity of each parameter in Methods 2 and 3, respectively.

4.1.1. Sensitivities of the Method 1

The global sensitivity of each parameter in Method 1 is shown in Figure 11. It is
apparent from Figure 11a–c that the fitness function is highly sensitive to µ′33, S′33, and d′33;
however, the fitness function is far less sensitive to µ

′′
33, S′′33, and d′′33, (Figure 11d–f). The

basins of the scatterplots are almost planar, and the ∆F1 values corresponding to each of the
three imaginary parts are about 10 times those of the corresponding real part, indicating
that the losses extracted by Method 1 are unreliable.

4.1.2. Sensitivities of the Method 2 and 3

The sensitivities of each parameter in Methods 2 and 3 are shown in Figure 12.
For Method 2 (the gray spots), the fitness function value was highly sensitive to µ

′′
33,

but the sensitivities to S′′33 and d′′33 were very low, indicating that these two losses cannot be
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identified by Method 2. In Method 3 (the blue spots), the sensitivities of S′′33 and d′′33 were
greatly improved (Figure 12b,c) and the ∆F3 values of each parameter were about ten times
smaller than ∆F2. This is because after calculating the structural damping and contact
damping of the transducer, the searching range used by the PSO algorithm in Method 3 is
greatly reduced when compared with the search range in Method 2, so the fitness function
is greatly improved for the sensitivity to elastic losses and piezomagnetic coupling losses.
In summary, Method 3 can extract more reliable material losses.

4.1.3. Uncertainty of Damping and Sensitivity Analysis

The influence of the uncertainty of structural damping and contact damping on the sen-
sitivity of parameter identification was evaluated. It can be seen from Table 4 that the struc-
tural damping of the displacement plunger features an interval of 6.79 ± 1.1326 N/(m/s)
with a probability of 99%, and the contact damping of the rough surface features an interval
of 324.5469 ± 7.8081 N/(m/s) with a probability of 99%. Consequently, it is necessary to
evaluate the influence of the uncertainty of structural damping and contact damping on
the sensitivity of parameter identification. In this study, it is proposed to input the upper
and lower limits of the confidence interval of damping into Method 3 in order to analyze
the parameter sensitivity. The statistics for ∆F are shown in Table 5.

Table 5. The value of ∆F when the damping is in the confidence interval (P = 99%).

µ”
33 S”

33 d”
33

Damping is the mean of the confidence interval 0.049 0.085 0.029
Damping is the upper limit of the confidence interval 0.051 0.084 0.031
Damping is the lower limit of the confidence interval 0.048 0.082 0.027

From Table 5, the uncertainty of damping has almost no effect on the sensitivity of the
imaginary parts of the material complex parameters.

4.2. Comparison between Simulation and Experiments

Figure 13a is the comparison of the experimental impedance modulus data and the
simulation data of the transducer (Figure 1) at 10 Mpa, and Figure 13b is the comparison
of the experimental phase data and the simulation data. Table 6 shows the RMSE and
determination coefficient (R2) between the experimental data and simulation data.
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Table 6. The RMSE and R2 between the experimental data and simulation data.

Method 1 Method 2 Method 3

RMSE of impedance modulus data 1.8589 3.2979 1.3377
RMSE of phase data 6.2623 2.5243 1.6748

R2 of impedance modulus data 0.9963 0.9887 0.9981
R2 of phase data 0.4573 0.9170 0.9746

Method 1 is based on the impedance modulus data for parameter extraction. When
using the parameters extracted by Method 1, the obtained simulated impedance modulus
is highly consistent with the experimental curve (Figure 13a). The value of the RMSE is
1.8589 and R2 is 0.9963, which indicates that the similarity between the simulation data and
the experimental data is 99.63%; however, the phase angle curve simulation is significantly
deviated from the measured data, and the RMSE and R2 values are 6.2623 and 0.4573,
respectively. This shows that if Method 1 is used, even if the fitness function reaches a
minimum via PSO, the extracted losses might be abnormal.

Method 2 is based on the phase data for parameter extraction. When using the
parameters extracted by Method 2 for simulation, the simulated phase curve is consistent
with the experimental curve (Figure 13b), and the value of the RMSE is 2.5243 and R2

reaches 0.9170; however, it can be seen from Figure 13a that the simulated impedance
minimum point and impedance maximum point data have great differences from the
experimental data, where the RMSE is 3.2979, which is about two times that of Method 1
(1.8589) and Method 3 (1.3377). The losses of the material cannot be reliably characterized
with this approach.

When the parameters extracted by Method 3 were used for simulation, the simulated
results of both impedance modulus and phase were very consistent with the experimental
data, and the R2 values were 0.9981 and 0.9746, respectively. This successfully verified the
effectiveness of Method 3.

4.3. Stability and Uncertainty

A PSO algorithm is a stochastic population-based optimization algorithm, and the
initial values of parameters are randomly selected within the search range. As such,
stability is also one of the important performances to measure the quality of parameter
identification [45]. For Methods 1–3, ten random parameter extractions were performed
and the results were compared. The coefficient of variation was used to quantify the
relative uniformity, which is defined as cv = (σ/µ)× 100%. σ represents the standard
deviation and µ represents the average of this set of data. The smaller the coefficient of
variation, the better the stability of the parameter identification results. The results of the
ten-time parameter extraction by Methods 1–3 are shown in Figure 14.
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The settings of the PSO algorithm were kept consistent in the three methods. The size
of the particle swarm was 12, the learning factor was c1 = c2 = 2, and the inertia weightω
was 0.5. Table 7 summarizes the search range of the six parameters, the means (x), and
absolute values of the coefficient of variation (|cv|) for the ten-time identification results.

Table 7. Extraction results and the coefficients of variation for six parameters.

Parameter Search Range
Method 1 Method 2 Method 3

x |cv|% x |cv|% x |cv|%

µ′33 [2, 3] 2.814 1.460 × 10−3 \ \ \ \
S′33 [1 × 10−12, 1 × 10−10] 2.547 × 10−11 5.013 × 10−4 \ \ \ \
d′33 [5 × 10−10, 5 × 10−9] 1.587 × 10−9 3.420 × 10−3 \ \ \ \
µ
′′
33 [−0.3, 0.3] −0.143 0.224 −0.040 0.507 −0.137 0.008

S′′33 [−1 × 10−12, 1 × 10−12] −2.861 × 10−13 1.653 −7.170 × 10−15 33.818 −2.178 × 10−13 0.052
d′′33 [−9 × 10−11, 9 × 10−11] −5.581 × 10−11 0.343 −2.435 × 10−11 1.205 −5.588 × 10−11 0.055

The results show that the repeatability of the real parts extracted by Methods 1–3 is
satisfactory. In Methods 1 and 2, the coefficients of variation for the imaginary parts are
large, which indicates very poor repeatability. This is because Methods 1 and 2 do not
consider the structural damping and contact damping of the transducer, which leads to a
large search range for the three parameters of µ

′′
33, S′′33, and d′′33. The fitness function has

low sensitivity to them. As such, the identification results of PSO algorithm have strong
randomness and low repeatability.

As shown in Figure 14, the three losses extracted by Method 3 are very stable.
Figure 14a shows the poor stability of the hysteresis losses extracted by Methods 1 and 2.
Figure 14b,c shows that the elastic losses and piezomagnetic coupling losses extracted
by Methods 1 and 2 switch between positive and negative values, which was similarly
observed in [21–23]; however, there is no case where the imaginary parts turn positive
under small signal excitation [24]. It is worth noting that the losses extracted by Method 3
stay negative and the coefficient of variation is very low, indicating that the material losses
stably reached true values.

The uncertainty is used to characterize the dispersion of the results. The smaller the
relative uncertainty, the higher the credibility of the parameter extraction results. According
to the MCM and the uncertainty synthesis method in [35], the relative uncertainty of the
parameters extracted by Method 3 was evaluated and the results are shown in Table 8. The
parameters output by the MCM are close to a normal distribution, where, when P is 99%,
the corresponding K is 3.

Table 8. Relative uncertainties of material complex parameters extracted by Method 3.

µ
′
33 S

′
33 d

′
33 µ”

33 S”
33 d

′
33

Relative standard uncertainty
(P = 68.27%, K = 1) 0.046% 0.016% 0.110% 1.405% 2.342% 4.009%

Relative expanded uncertainty
(P = 99%, K = 3) 0.138% 0.048% 0.330% 4.215% 7.026% 12.037%

5. Conclusions

In this paper, a novel optimization method to characterize the complex parameters of
GMMs under pre-stress has been presented. By measuring and calculating the structural
damping and contact damping, the ranges of parameter variance can be well confined.
Then, the real parts of the three complex parameters are characterized by the impedance
modulus data while the imaginary parts are characterized by the phase data. The PSO
algorithm is adopted to minimize the fitness function values.

The global sensitivity analysis shows that the proposed method remarkably improves
the sensitivity of three losses to the fitness function compared with the conventional
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method, which strongly implies the success of true value extraction. The uncertainty values
of the six complex parameters µ′33, S′33, d′33, µ

′′
33, S′′33 and d′′33 are 0.138%, 0.048%, 0.330%,

4.215%, 7.026%, and 12.037%, respectively. The coefficients of determination for R2 between
the experimental data and simulation data were 99.81% (impedance data) and 97.46%
(phase data).

Additionally, the ten-time random parameter characterization results show that the
proposed method has high repeatability and produces parameters that feature greater relia-
bility. The comparison between the simulated impedance/phase data and the experimental
shows that the simulation of the proposed lump parameter circuit model using the param-
eters extracted by the proposed method can simultaneously reproduce the impedance and
phase data with high fidelity. In the future, more experimental measurements and complex
parameter characterizations under different working conditions can be carried out with
our proposed method, which can provide key data support for the research and design of
giant magnetostrictive transducers.
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Figure A1. (a) is the sketch of rough surfaces in contact and (b) is the equivalent surface model.

Figure A1a shows a sketch of the rough surfaces in contact under the action of the
total normal load F, and Figure A1b is the equivalent surface model according the Hertz
theory [41]. The peak of the asperity can be equivalent to a sphere with a radius of
curvature R which is can be calculated on equation (r2)2 = 2Rβ. The contact deformation of
the asperity is β. The r2 represents the equivalent micro-contact cross-sectional radius, and
r1 represents the micro-contact radius. The relationship between r2 and r1 is r2 = r1/

√
2.

In the Figure A1b, the contact deformation is given as follows:

β = 2Geq
Deq−2(ln γ)

1
2 (2r2)

3−Deq (A1)

The radius of curvature R is given as follows:

R =
a′(Deq−1)/2

2(5−Deq)π(Deq−1)/2G(Deq−2)(ln γ)1/2 (A2)
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The total normal load F can be written as follows:

F =
H(D−1)a

′(Deq−1)/2
l

3−D ψ(3−D)/2a
′(3−Deq)/2
2c

+
HG2(Deq−1)ψ(3−Deq)/2a′

(Deq−1)/2
l

2(2.26−0.88Deq)

(
a′
(2.26−0.88Deq)
1c −a′

(2.26−0.88Deq)
2c

)
+ 2(11−2D)/2

3π(4−D)/2 ·
Deq−1
5−2D eq(ln γ)1/2Geq

(Deq−2)Eψ(3−Deq)/2a′
(Deq−1)/2
l

·
(

a′
(5−2Deq)/2
l − a′

(5−2Deq)/2
1c

)
(A3)

where the Deq is the three-dimensional fractal dimension of the contact surfaces, Geq is
the fractal roughness parameter of the contact surfaces, and γ represents the dimension
parameter of the spectral density.

The total normal damping Rn of contact surface is given as follows:

Rn =
Wp

We

√
MKn (A4)

where M is the mass of the structure, Kn is the total contact stiffness, and We and Wp
represent the plastic strain energy and the elastic strain, respectively.

Kn can be given as follows:

Kn = a′
(Deq−1)

2
l [

2
√

2E(4−Deq)(Deq−1)ψ
(3−Deq)

2 (a
′
(2−Deq)

2
l −a

′
(2−Deq)

2
1c )

3
√

π(3−Deq)(2−Deq)

+
HG2π

(3−Deq)
2 (Deq−1)ψ

(3−Deq)
2 (1.76−0.38Deq)(a

′(0.76−0.38Deq)
1c −a

′(0.76−0.38Deq)
2c )

24−DG(D−2)
eq (lnγ)

1
2 (3−Deq)(0.76−0.38Deq)

]

(A5)

a′l denotes the maximum of truncated area of a surface and is approximately equal to
the actual contact area Ar, which can be denoted as follows:

Ar =
Deq−1

2(3−Deq)
ψ(3−Deq)/2a′

(Deq−1)/2
l ×

(
a
′(3−Deq)/2
l − a′

(3−Deq)/2
1c

)
+

(Deq−1)
2HG1(2.7−1.1Deq)

ψ(3−Deq)/2a′
(Deq−1)/2
l

(
a′
(2.7−1.1Deq)
1c − a′

(2.7−1.1Deq)
2c

)
+

Deq−1
3−Deq

ψ(3−Deq)/2a
′(Deq−1)/2
l a′

(3−Deq)/2
c

(A6)

The expand coefficient Ψ can be obtained by the transcendental equation
ψ(3−Deq)/2−(1+ψ(1−Deq)/2)

−(3−Deq)/(Deq−1)

(3−Deq)/(Deq−1) = 1.
E is the equivalent elastic modulus of two contacting rough surfaces and can be

calculated by Equation (A3).

E = (
1− ν2

1
E1

+
1− ν2

2
E2

)

−1

(A7)

where E1, E2, v1, and v2 represent the elastic modulus and Poisson’s ratio of the two rough
surfaces, respectively.

a′1c is the critical truncated area of the single asperity which can be given as

a′1c = [
211−2Deq G2(D−2)

eq (ln γ)E2

π(4−Deq)(kH)2 ]

1
Deq−2

(A8)

In the formula, H is the hardness of the soft material and k is the hardness coefficient
that is related to the Poisson’s ratio ν, and it can be calculated as k = 0.454 + 0.41ν.
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a′2c is the critical truncated area of the single asperity, which can be given as:

a′2c =
a′1c

76.41/(Deq−2)
(A9)

HG2 is the corresponding coefficient which can be given as:

HG2 =
2(4.18−0.76Deq)(kH)0.24E0.76

3π(1.52−0.38Deq)
G0.76(Deq−2)

eq (ln γ)0.38 (A10)

We can be given as:

We =
2

(19−4Deq)
2 EG2(Deq−2)

eq (ln γ)(3− Deq)(Deq − 1)ψ
(3−Deq)

2 a
′ (Deq−1)

2
l (a

′ (8−3Deq)
2

l − a
′ (8−3Deq)

2
1c )

3π
(7−2Deq)

2 (7− 2Deq)(8− 3Deq)
(A11)

Wp can be given as:

Wp =
2(3−Deq)HG

(Deq−2)

eq (ln γ)
1
2 (Deq − 1)ψ

(3−Deq)
2 a′

(Deq−1)
2

l a′
(3−Deq)

2
2c

(5− Deq)π
(3−Deq)

2

(A12)
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