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Microexpression can manifest the real mood of humans, which has been widely concerned in clinical diagnosis and depression
analysis. To solve the problem of missing discriminative spatiotemporal features in a small data set caused by the short duration
and subtle movement changes of microexpression, we present a dual-stream spatiotemporal attention network (DSTAN) that
integrates dual-stream spatiotemporal network and attention mechanism to capture the deformation features and spatiotemporal
features of microexpression in the case of small samples. +e Spatiotemporal networks in DSTAN are based on two lightweight
networks, namely, the spatiotemporal appearance network (STAN) learning the appearance features from the microexpression
sequences and the spatiotemporal motion network (STMN) learning the motion features from optical flow sequences. To focus on
the discriminative motion areas of microexpression, we construct a novel attention mechanism for the spatial model of STAN and
STMN, including a multiscale kernel spatial attention mechanism and global dual-pool channel attention mechanism. To obtain
the importance of each frame in themicroexpression sequence, we design a temporal attentionmechanism for the temporal model
of STAN and STMN to form spatiotemporal appearance network-attention (STAN-A) and spatiotemporal motion network-
attention (STMN-A), which can adaptively perform dynamic feature refinement. Finally, the feature concatenate-SVMmethod is
used to integrate STAN-A and STMN-A to a novel network, DSTAN. +e extensive experiments on three small spontaneous
microexpression data sets of SMIC, CASME, and CASME II demonstrate the proposed DSTAN can effectively cope with the
recognition of microexpressions.

1. Introduction

Microexpression is a kind of spontaneous facial expression
that can reveal the real emotion that people try to hide. +e
duration of microexpression is short, only lasting 1/25 s∼1/
5 s [1]. And the muscle movement caused by micro-
expression only appears in a small area of the face, which
limits the performance of recognizing microexpression to a
certain extent. In recent years, a large number of automatic
recognition methods have emerged, which greatly improve
the application feasibility of microexpression. At present,
microexpression recognition has a wide application prospect

in the police interrogation, clinical diagnosis, depression
analysis, and other fields [2–5].

In the microexpression recognition procedures, feature
extraction is the critical step and researchers strive to seek
the reprehensive methods. LBP-TOP (local binary pattern
with three orthogonal planes) [6] is a typical texture feature-
based method for microexpression recognition and taken as
the baseline of handcraft methods. Due to its shortcomings
of sensitivity and sparse sampling, there are many improved
methods, such as LBP-SIP (local binary pattern with six
intersection points) [7], STLBP-IP (spatial-temporal local
binary pattern with integral projection) [8], STCLQP
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(spatial-temporal completed local quantized patterns) [9],
and LCBP (local cube binary pattern) [10], to enhance the
robustness of the features.

Furthermore, the optical flow-based methods exploit the
changes of the pixels in the time domain and the correlations
between the sequence frames to mine the correspondence in
adjacent frames. +e classical approaches include MDMO
(main directional mean optical flow feature) [11], which can
identify microexpression by locating the main direction of
the face block and calculating the average optical flow of the
face block. MDMO is characterized by simple calculation
and small feature dimensions, but it is easy to miss the low-
level manifold structure. Based on MDMO, researchers have
proposed various improved methods, such as FDM (Facial
Dynamics Map) [12], Sparse MDMO [13], and Bi-WOOF
(Bi-Weighted Oriented Optical Flow) [14], to extract the
motion features of microexpression more effectively.

Although the texture-based and motion-based methods
solved the recognition problems to a certain extent, the
features got by these handcraft methods need artificial de-
sign and it is difficult to automatically extract discriminative
information using these methods. Latterly, deep learning
approaches, such as CNNs (convolutional neural networks)
and LSTM (long short-term memory), have shown their
powerful abilities in many fields. +ese methods avoid the
tedious handcraft feature design and can automatically
capture the subtle changes of microexpressions. Kim et al.
[15] adopted the two-step model CNN-LSTM to recognize
microexpressions. +ey utilize CNNs to extract the spatial
features of a frame and then put the features into LSTM to
learn the temporal information of the microexpression se-
quence. Li et al. [16] proposed 3D-FCNN to extract the deep
spatiotemporal features to identify the microexpression.
Khor et al. [17] presented the method of ELRCN-TE.

+ey fused the original sequence, optical flow sequence,
and optical strain sequence of microexpression and adopted
VGG-LSTM to extract the spatiotemporal features of
microexpression. Xia et al. [18] designed STRCN by fusing
the appearance and geometry features to extend the con-
nectivity of convolutional networks in the time domain.
However, these methods do not consider the complemen-
tarity of high-level, low-level networks and the contribution
of various image pixels to recognize microexpressions.

Since the attention mechanism has been successfully
applied to many tasks, Chu et al. [19] combined CNN and
multicontext attention to form an end-to-end framework for
human pose estimation. Zhang et al. [20] used progressive
attention to guide RNN for detecting salient objects. Due to
the subtlety and short duration of microexpression, Yang
et al. [21] proposed MERTA by utilizing three attention
mechanisms to construct feature maps. Nevertheless, these
attention-based methods mostly handle multilevel features
without distinction, ignoring the differences between high-
level and low-level network features and the intensity dif-
ference between the microexpression frames.

Inspired by these works, this paper constructs a dual-
stream spatiotemporal network, DSTAN, by using STAN-A
(STAN with attention mechanism) to extract appearance
features and STMN-A (STMNwith attentionmechanism) to

get motion features of microexpression sequences, respec-
tively. Considering the small size of the microexpression
data set and the low motion intensity of microexpression,
this paper designs two lightweight networks, STAN and
STMN, to extract subtle microexpression features. Besides,
to focus on the key regions of microexpression, we introduce
two attention mechanisms to the spatial model of STAN and
STMN: the multiscale kernel spatial attention mechanism is
applied to get the detailed low-level features, and the global
dual-pool channel attention mechanism is applied to obtain
the high-level features. Given the importance of different
frames, the temporal attention mechanism is employed in
the temporal model of STAN and STMN, so that the model
can learn more representative features. Finally, the feature
concatenate-SVM method is used to integrate the dual-
stream networks STAN-A and STMN-A, which integrate the
two spatiotemporal networks STAN and STMN and at-
tention mechanisms to realize the task of microexpression
recognition.

2. Proposed Method

+e overall framework of DSTAN is shown in Figure 1.
STAN-A extracts spatiotemporal appearance features from
the original microexpression sequence, and STMN-A ex-
tracts the spatiotemporal motion features from the optical
flow sequence to describe the subtle motion changes of the
microexpression. STAN and STMN are two networks that
extract appearance features and motion features of micro-
expression, respectively. +e multiscale kernel spatial at-
tention and global dual-pool channel attention are
introduced into the spatial model of STAN and STMN to
extract the refined spatial features of the microexpression.
+en, the spatial features are input into the temporal model
of STAN and STMN to get the spatiotemporal features of the
microexpression. Finally, the STAN with attention (STAN-
A) and the STMN with attention (STMN-A) are integrated
by feature concatenate-SVM to obtain the predicted cate-
gory of the microexpression.

2.1. ImagePreprocessing. First, we carry on face detection for
each frame and locate the feature points. Based on these
key points, the face region is blocked. To remove the
impacts of head movements on recognition, we conduct
facial alignment on the images to eliminate the differences
of faces and sequences in the expressionless state. Fur-
thermore, the aligned frames are normalized in the spatial
domain, that is, to maintain the size of the frame uni-
formity. Generally, the length of the microexpression
sequence is different, but the deep learning network
usually needs a fixed length of the input dimension in the
training stage. +erefore, it is necessary to normalize the
microexpression sequence in the time domain. We use
the TIM (temporal interpolation model) [22] to handle the
original sequence to a fixed number of frames, and the
sequence with a fixed length is taken as the input of STAN-
A. +e optical flow information between two adjacent
frames is calculated from the original sequence, and the
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obtained fixed-length optical flow sequence is set as the
input of STMN-A.

2.2. STMN. +e spatial model of STMN is designed as a
shallow network. Firstly, we use a kernel of 3×3 to conduct the
convolution operations on the input optical flow sequence to
extract local features. To avoid losing the edge information,
zero padding is performed before convolution operation, and
batch normalization [23] is used after convolution to accel-
erate the training speed of the model. We utilize ReLU as an
activation function to enhance the nonlinear expression
ability of the network. Each convolution layer is connected
with a maximum pooling layer, and downsampling is per-
formed under the condition of a 2× 2 neighborhood and 2-
step size.+e local microexpression features are obtained after
five times of convolution and pooling operation. +en, we
adopt the GAP (global average pooling) to integrate these
features and obtain the spatial features.

+e temporal model of STMN is to obtain dynamic in-
formation between frames.+e spatial feature vector describing
themotion information of themicroexpression obtained by the
spatial model is input into the single-layer LSTM to learn the
correlation between frames and obtain the feature vector vi of
each microexpression sequence. +en, the feature vectors are
aggregated through a temporal average pooling operation to
obtain the spatiotemporal feature f of the whole sequence:

f �
1
t

􏽘

t

i�1
vi, (1)

where i� 1,2, . . ., t, and t represents the number of frames.
Finally, the fully connected layer is applied to map the
feature space to the label space through linear transfor-
mation, and softmax is used to map the output to (0, 1) to
obtain the category of microexpression.

2.3. STAN. Considering that the features in different levels
are complementary, we design the spatial model for STAN
fusing high-level and low-level features, and the model can

learn both deep semantic and low texture features, as the
LHFN (low high feature fusion network) module in Figure 1
shows. In CNNs, different convolution layers learn different
features; the third convolution layers can learn the low-level
texture features [24], which play an important role in rec-
ognizing microexpression, so we fuse it with the last layer,
which can learn the high-level semantic features to realize
the high-level and low-level networks. +e implementation
of LHFN is based on the convolution calculation with a
convolution kernel of 1× 1 on the high-level feature map
and low-level feature map to introduce more nonlinear
relations.+en, we apply the GAP layer to obtain global low-
level texture features and high-level semantic features. Fi-
nally, the high-level and low-level features are fused by a
feature concatenate mode to obtain the spatial features
describing the appearance information of each frame. +e
temporal model of STAN is the same as the temporal
structure of STMN.

2.4. Attention Mechanism for Spatial Model. +e existing
microexpression recognition approaches handle the con-
tribution of each pixel in the image or frame equally.
However, the microexpression mainly appears in specific
parts of the face, such as eyes, eyebrows, and mouth.
According to the feature differences of the low-level and
high-level networks, we introduce a novel attention
mechanism to the spatial domain model, which is composed
of a multiscale kernel spatial attention mechanism and a
global dual-pool channel attention mechanism.

We introduce the multiscale kernel spatial attention to
the low-level network and the global dual-pool channel
attention to the high-level network to make the network
focus on these significant motion areas.

2.4.1. Multiscale Kernel Spatial Attention Mechanism.
+e low-level network extracts the texture, edge, contour,
and other low-level visual features of microexpression, and
this information has almost no difference in different
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Figure 1: An illustration of the proposed DSTAN.
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channels. +erefore, we apply the multiscale kernel spatial
attention to the low-level network to effectively distinguish
each pixel in the spatial domain. +e implementation
process is shown in Figure 2, and the calculating processes
are as follows:

Given the low-level feature map Fl ∈ RC×H×W, C is the
number of feature channels, andH andW are the height and
width of the feature map, respectively. +e first step is to
conduct convolution operations Convn×n

m on feature map Fl
by the convolution kernel n of 1× 1, 3× 3, and 5× 5 to
extract multiscale feature, and the spatial feature matrix of
different scales S1 ∈ R1×H×W, S2 ∈ R1×H×W, and S3 ∈ R1×H×W

are obtained:

S1 � Conv1×1
1 F

l
􏼐 􏼑,

S2 � Conv3×3
2 F

l
􏼐 􏼑,

S3 � Conv5×5
3 F

l
􏼐 􏼑.

(2)

+en, we fuse S1, S2, and S3 by concatenate mode and
conduct convolution operation by the convolution kernel of
1× 1 to obtain spatial features. Afterward, we obtain the
weight SA ∈ R1×H×W of spatial attention by normalizing as
below:

SA � σ Conv1×1
4 S1, S2, S3( 􏼁􏼐 􏼑. (3)

Finally, we multiply SAwith Fl and get the refined spatial
attention feature map FS ∈ RC×H×W:

FS � SA⊗F
l
, (4)

where ⊗ denotes the matrix multiplied by elements, and σ is
the sigmoid function.

2.4.2. Global Dual-Pooling Channel Attention Mechanism.
A high-level network extracts high-level semantic feature
information, and different feature channels have different
responses to different semantic features [25]. Max-pool-
ing can preserve more texture information, average
pooling can retain more local information, and utilizing
maximum pooling and average pooling at the same time
can greatly improve the network’s presentation capabil-
ities [26]. Consequently, we present the global dual-
pooling channel attention mechanism to the high-level
network, which combines the max-pooling operation with
average pooling operation effectively. +is kind of at-
tention mechanism automatically obtains the contribu-
tion of each feature channel. +rough this attention
mechanism, the effective features are enhanced while the
features of little matter are suppressed. +e global dual-
pooling channel attention mechanism is shown in
Figure 3.

+e calculation process is as follows: given the input
high-level feature graph Fh ∈ RC×H×W, C is the number of
feature channels, and H andW are the height and width of
the feature map, respectively. Firstly, we conduct GAP and
GMP (global max-pooling) operation on Fh to aggregate
the spatial information of the feature map and obtain the

global average pooling feature vector FGMP
C ∈ R

C×1×1 and
global max-pooling feature vector FGAP

C ∈ R
C×1×1. +en,

we use two consecutive full-connection layers FC1 and
FC2 to fine-tune the parameters adaptively to learn the
dependence and correlation of different channels. To
reduce the model complexity, we set the number of units
in FC1 as C/r, where r is the compression ratio, and the
number of units in FC2 as C. +rough a full-connection
layer, we can get two-channel feature vectors C1 ∈∈RC×1×1

and C2 ∈∈RC×1×1:

C1 � FC2 δ FC1 GAP F
h

􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑

� w2 δ w1 F
GAP
C􏼐 􏼑 + b1􏼐 􏼑􏼐 􏼑 + b2,

C2 � FC2 δ FC1 GMP F
h

􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑

� w2 δ w1 F
GMP
C􏼐 􏼑 + b1􏼐 􏼑􏼐 􏼑 + b2.

(5)

Next, we merge C1 and C2 through element summation.
+e weight CA ∈∈RC×1×1 of channel attention can be got by
normalizing as below:
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Figure 2: Multiscale kernel spatial attention mechanism.
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CA � σ C1 ⊕C2( 􏼁. (6)

Finally, we obtain the refined feature map FC ∈ RC×H×W

of channel attention by multiplying CA and Fh:

FC � CA⊗F
h
, (7)

where δ denotes the ReLU activation function, σ denotes the
sigmoid function, ⊗ indicates that vectors are added, w1 and
w2 are the weight of FC1 and FC2, and b1 and b2 are the
offsets, respectively.

2.5. Attention Mechanism for Temporal Model. +is paper
introduces another attention mechanism into the temporal
model so that the model can learn automatically and dis-
tinguish the important frames in the microexpression se-
quence. +e attention mechanism for the temporal model is
shown in Figure 4.+e feature vector of each frame obtained
by the spatial model is input into the model, and an attention
weight representing the importance of the frame is calcu-
lated. Specifically, for the spatial feature vector Si

′ corre-
sponding to the i-th frame, we use the sigmoid function to
obtain the attention weight ri for each frame and then
perform a weighted operation on the obtained attention
weight to get the feature vector Si

′ of each frame.

Si
′ � Siri, (8)

where i� 1, 2, . . ., t, and t represents the number of frames.
+e weighted spatial feature vector of each frame Si

′ is input
into the temporal models of STAN and STMN, respectively,
to obtain the refined spatiotemporal appearance features and
spatiotemporal motion features of a sequence.

2.6.Model Integration. We integrate STAN-A and STMN-A
by the feature concatenate-SVM method. Firstly, the SVC
(support vector classification) is initialized with a linear
kernel function to define the classifier. +en, the linear
multivariate classifier is trained by the microexpression data
in the training set, as shown in Equation (9):

X: f pi, qi( 􏼁, Y
����

����⟶ SVM, (9)

where pi and qi are the outputs of STAN-A and STMN-A,
respectively, and f (pi, qi) is the cascaded results, X denotes
the features of the classifier, and Y represents the feature
label.

3. Results and Discussion

3.1. Data Sets. To evaluate the performance of the proposed
framework, we conduct experiments on three spontaneous
microexpression data sets: SMIC (Spontaneous Micro-Ex-
pression Database) [27] CASME(Chinese Academy of Sci-
ences Micro-Expression) [28], and CASME II [29]. SMIC
contains three categories of microexpressions: positive (51),
negative (70), and surprise (43), and a total of 164 samples
from 16 subjects. In CASME, 172 samples of 19 subjects’
microexpression sequences are collected and divided into 4
categories, that is, tense (70), expression (38), distinct (44),

and surprise (20). +ere are 246 samples of 26 subjects on
CASME II. +ere are divided into 5 categories: happiness
(32), surprise (25), expression (27), distinct (63), and
others (99).

3.2. Parameter Setting and Evaluation Criterion. We use the
TIM model to normalize the length of the sequence to 9
frames, and the size of each frame is set to 224× 224. In the
global dual-pooling channel attention, the compression ratio
r is set as 16. We adopt the cross-entropy loss function and
Adam optimizer to train the model and set the batch size
as 32.

To get a stable and reliable model, we conduct experi-
ments on three microexpression data sets to evaluate the
performance of the algorithm by using the LOSOCV, that is,
all samples of a subject are taken as testing sets, and the rest
are used as training sets.

We utilize accuracy, F1-score, precision, and recall as the
evaluation criterion to evaluate the proposed model. Ac-
curacy is the ratio of the correct predicting sample number
to the total sample number:

Accuracy �
TP + TN

TP + FP + TN + FN
. (10)

F1-Score is the harmonic average of accuracy. F1-Score,
Precision, and Recall can be calculated as follows [30]:

F1 − Score � 2 ×
Precision × Recall
Precision + Recall

,

Precision �
TP

TP + FP
,

Recall �
TP

TP + FN
,

(11)

where TP (true positive) indicates the number of samples
that positive is predicted as positive; FP (false positive)
indicates the number of samples that negative is predicted as
positive; TN (true negative) is the number of samples that
negative is predicted as negative; and FN (false negative) is
the number of samples that positive is predicted as negative.

3.3. Experimental Analysis. In this section, ablation exper-
iments and performance verification are performed on the
proposed DSTAN framework, and comparative experiments
are conducted with state-of-the-arts.

3.3.1. Comparison of Single Network with Dual-Stream
Network. To verify the effectiveness of the dual-stream
network, we compare the single-stream networks STAN-A
and STMN-Awith the dual-stream network DSTAN. Table 1
shows the comparison results on three data sets. It can be
seen that the performance of the dual-stream network
DSTAN is better than that of STAN-A and STMN-A on
three data sets. Specifically, compared with STAN-A and
STMN-A, the accuracy of DSTAN is increased by 9.15% and
12.2% and F1-score is increased by 10.64% and 12.84% on
SMIC. On CASME, the accuracy of DSTAN is increased by
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11.05% and 12.79% and F1-score is increased by 12.47% and
13.97%. On CASME II, the accuracy of DSTAN is increased
by 15.04% and 11.38% and F1-score is increased by 16.91%
and 12.18%. +e results show that the dual-stream network
DSTAN outperforms the single-stream network, which can
verify that DSTAN can make the model learn more dis-
criminative features and improve the overall recognition
performance.

Furthermore, we compare the recognition performance
of each emotion on three data sets, as shown in Figure 5. On
SMIC, as shown in Figure 5(a), STAN-A gets a higher
recognition rate for “positive” but a poor result for
“surprise”.

However, STMN-A has a good performance for “sur-
prise” and low accuracy for “positive”. On CASME, as shown
in Figure 5(b), STAN-A has a good performance on “dis-
gust”, but it behaves poorly on “repression” and “surprise”.
STMN-A has a good performance on these two emotions,
but the “disgust” recognition result is lower. On CASME II,
as can be seen from Figure 5(c), STAN-A and STMN-A are
also complementary. Especially, the performance of STMN-
A is lower than that of STAN-A in recognizing “disgust”, but
DSTAN gets an ideal recognition result. Overall, STAN-A
and STMN-A promote and complement each other in the
recognition of emotions and DSTAN can get the best
performance.

3.3.2. Performance Verification of Different Modules. +e
proposed DSTAN combines high-level and low-level
feature fusion modules (LHFN), spatial attention mod-
ules, and temporal attention modules based on the dual-
stream network. To verify the effectiveness of different
modules, ablation experiments are performed on the
CASME II data set.

+e basic model only contains the network, that is, the
DSTAN removes the LHFN module, two spatial attention
modules, and the temporal attention module. We compare
the basic model with the models that are added LHFN
module (basic model + LHFN), spatial attention modules
(basic model + LHFN+ SA), and temporal attention module
(basic model + LHFN+ SA+TA). Table 2 shows the com-
parison result. It can be seen that by adding three modules to
the basic model, the recognition result has been further
improved. By adding the LHFN module, accuracy is in-
creased by 1.62% and F1-score is increased by 1.67%. By
adding the spatial attention modules, accuracy is increased
by 4.07% and F1-score is increased by 3.64%. After adding
the temporal attention module, accuracy is increased by
4.06% and F1-score is increased by 3.81%. +e basic
model + LHFN+ SA+TA model (DSTAN) obtains the best
recognition result and robustness. +erefore, these modules
can improve the performance of recognizing micro-
expressions, which verifies the effectiveness of the modules.
+e LHFNmodule enables the model to learn discriminative
semantic information of the microexpression sequence. +e
spatial attention module and temporal attention module can
make the model learn more detailed and effective features.

3.3.3. DSTAN Performance Analysis. We evaluate the
DSTAN by using each subject as a testing set on three data
sets. +e experimental results are shown in Figure 6. +e
abscissa is the coding number of the subject, and the or-
dinate is the recognition accuracy of the subject. On SMIC,
as shown in Figure 6(a), the DSTAN has good recognition
results for most subjects, but the accuracy of the 3rd and the
4th subject is poor due to the action units of “negative” are
similar to “surprise”, which makes them easy to be confused.
On CASME, as shown in Figure 6(b), the accuracy rates on
all of the 9 subjects are 100%, but the recognition result of
the 1st subject is lower, it is because that “repression” is easily
confused with “disgust” and “surprise”. As shown in
Figure 6(c) on CASME II, the accuracy rate of the 16th
subject is lower because there is a small number of this
subject, only 4 sequences.

We calculated the confusionmatrix of DSTAN on SMIC,
CASME, and CASME II, as shown in Figure 7. On SMIC, as
shown in Figure 7(a), the DSTAN performs well on iden-
tifying negative, positive, and superior emotions because the

Table 1: Comparison of single-stream with dual-stream network
(F1 : F1-score).

Method
SMIC CASME CASME II

Accuracy F1 Accuracy F1 Accuracy F1
STAN-A 0.683 0.672 0.669 0.627 0.602 0.559
STMN-A 0.652 0.649 0.651 0.612 0.638 0.607
DSTAN 0.774 0.778 0.779 0.752 0.752 0.728
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Figure 4: Attention mechanism for the temporal model.
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distribution of samples on this data set is relatively uniform.
On CASME, as shown in Figure 7(b), the DSTAN gets a
higher result for “tense”, “repression”, and “disgust”, but it is
not good at recognizing “surprise” due to its small range of
muscle motion. On CASME II, as shown in Figure 7(c), the
DSTAN performs poorly in emotions “surprise” and “re-
pression”. It is because “surprise,” “repression”, and “others”
are easy to be confused as a result of the number of “others”
has the largest data and the data set is unbalanced. +e
experimental results show that for the microexpression

recognition task, the total number of samples of each
emotion, the difference number of emotions, and themotion
amplitude of microexpression are the important factors.

3.3.4. Integration Mode Validation. Since most of the ap-
proaches adopt the weighted sum model to integrate, we
compare it with the feature concatenate-SVM method.

+e DSTAN with weighted sum integration mode is
labeled as DSTAN-Average, and the DSTAN integrated by
feature concatenate-SVM is marked as DSTAN-SVM.
Table 3 shows the comparison results on three micro-
expression data sets. +e evaluation index Precision repre-
sents the discrimination ability of the model for negative
samples, and Recall represents the recognition ability of the
model for positive samples. As can be seen from Table 3, the
performance of DSTAN-SVM is better than that of DSTAN-
Average to a certain extent. On SMIC, CASME, and CASME
II, the Precision of DSTAN-SVM is 3.29%, 2.94%, and 2.69%
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Figure 5: Comparison of a single network with dual-stream network: (a) SMIE, (b) CASME, and (c) CASME II.

Table 2: +e influence of different modules on the network.

Method
CASME II

Accuracy F1-score
Basic model 0.655 0.637
Basic model + LHFN 0.671 0.654
Basic model + LHFN+ SA 0.711 0.690
Basic model + LHFN+ SA+TA (DSTAN) 0.752 0.728
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higher than that of DSTAN-Average, and Recall is increased
by 4.46%, 2.39%, and 6.21%, respectively, which indicates that
DSTAN-SVM has the discrimination ability for positive and
negative samples. +e accuracy of DSTAN-SVM is improved
by 4.27%, 3.49%, and 4.47% compared with that of DSTAN-
Average, and the F1-score is improved by 3.89%, 2.67%, and
4.68%, respectively, which indicates that DSTAN-SVM has
better recognition performance and robustness.

3.3.5. Comparison with State-of-the-Arts. +e recognition
performance of DSTAN is compared with some state-of-the-
arts. +e experimental results of the three data sets are

shown in Table 4. LBP-TOP, LBP-SIP, STLBP-IP, STCLQP,
and LCBP are texture feature-based methods. FDM,
MDMO, Sparse MDMO, and Bi-WOOF are optical flow-
based methods. 3D-FCNN, ELRCN-TE, STRCN, and
MERTA are depth learning-based methods.

As can be seen from Table 4, on SMIC, the accuracy of
DSTAN is 77.44%, which is 6.14% higher than the best
method STRCN, and F1-Score is increased to 0.7783, which
is 7.42% higher than Sparse MDMO. On CASME, the ac-
curacy of DSTAN reaches 77.91%, which is 3.08% higher
than Sparse MDMO, and F1-Score is 0.7516, which is 0.18%
higher than Sparse MDMO. On CASME II, the Accuracy of
DSTAN reaches 75.20%, which is 5.1% higher than the
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Figure 6: +e performance of DSTAN for each subject: (a) SMIE, (b) CASME, and (c) CASME II.
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baseline method LCBP, and F1-Score is increased to 0.7283,
which is 2.83% higher than LCBP. Experimental results
show that the proposed DSTAN has better recognition
performance than state-of-the-arts.

4. Conclusion

In this paper, we have presented a novel architecture for
dynamic facial microexpression recognition combining deep
and handcraft features, which can recognize the micro-
expressions with higher accuracy. Both the deep learning
method and the handcraft method are fused to identify the
microexpressions by learning features not only the tiny skin
change but also the semantic properties from sequences.+e
approach successfully exploits spatial and temporal features
of microexpression simultaneously. Particularly, the feature
framework has been established to identify the dynamic
microexpressions successfully by extracting robust features
from data. In the end, we conduct extensive validation
experiments to demonstrate the proposed method. +e
excessive experimental results showed that with an accuracy
of 75.51% on SMIC, an accuracy of 81.26% on CASME_B,
and an accuracy of 76.14% on CASME 2 in terms of the 5-
class microexpression recognition, our framework can
surpass other methods.

In the future, we aim to evaluate our approach on ad-
ditional microexpression data sets.We also consider training
our approach on cross-data-set experiments and explore the
effective method to improve the recognition performance of
microexpressions on action units.
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