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A model describing the primary relations between the cardiac muscle and coronary circulation might be useful for interpreting
coronary hemodynamics in case multiple types of coronary circulatory disease are present. The main contribution of the present
study is the coupling of a microstructure-based heart contraction model with a 1D wave propagation model. The 1D representation
of the vessels enables patient-specificmodeling of the arteries and/or can serve as boundary conditions for detailed 3Dmodels, while
the heartmodel enables the simulation of cardiac disease, with physiology-based parameter changes.Here, the different components
of the model are explained and the ability of the model to describe coronary hemodynamics in health and disease is evaluated.
Two disease types are modeled: coronary epicardial stenoses and left ventricular hypertrophy with an aortic valve stenosis. In all
simulations (healthy and diseased), the dynamics of pressure and flow qualitatively agreed with observations described in literature.
We conclude that the model adequately can predict coronary hemodynamics in both normal and diseased state based on patient-
specific clinical data.

1. Introduction

Diagnosis of coronary circulatory disease based on coronary
pressure and/or flow has been shown to improve the clin-
ical outcome of treatment [1]. The direct measurement of
coronary hemodynamics, however, is still limited to the large
epicardial vessels, which means that microvascular disease
can only be determined from proximal measurements using
an appropriate model of the vessels and their interaction with
the cardiac muscle [2].

Due to the location of the coronary arteries, being
embedded into the myocardium, the contraction of the
heart influences coronary hemodynamics. This results in the
unique feature that blood is mainly supplied during diastole,
while coronary epicardial pressure is high in systole. Several
mathematical models have been proposed tomodel the effect
of cardiac contraction on the coronary vessels. Downey and
Kirk [3] proposed the vascular waterfall mechanism, which

explained the increased resistance to blood flow by vascular
collapse when the intramyocardial pressure, determined by
ventricular cavity pressure, exceeds the lumen pressure.
Spaan et al. [4] introduced the intramyocardial pumpmodel,
which accounted for the role of vascular compliance. The
intramyocardial pressure, determined by the ventricular cav-
ity pressure, served as the extravascular pressure. The time-
varying elastance concept [5] was first applied to the coronary
circulation by Krams et al. [6], in which flow is impeded
due to a varying stiffness of the cardiac wall. Other, more
elaborate, models also include the effect of the coronary
vessels on the cardiac contraction (e.g., [7]).

One-dimensional (1D) wave propagation models are
potentially useful in the interpretation of arterial hemody-
namics [2, 8]. They can provide better insight into the effect
of combinations of epicardial and microvascular disease on
clinically used indices. Application of 1D wave propagation
models to the coronary circulation has been reported in
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several studies. Smith et al. [9] and Huo and Kassab [10]
applied 1D models to vessels representing the coronary
arterial anatomy. However, in these studies the interaction
with the cardiac muscle was not taken into account. The
effect of the cardiac contraction was taken into account
in the 1D models of Mynard and Nithiarasu [11], where
the coronary vessels were loaded with an approximated left
ventricular pressure. Recently, as part of an elaborate arterial
tree, Reymond et al. [12] coupled a 1D model to a time-
varying elastance model to describe the relation between
ventricular pressure, volume, and coronary hemodynamics.

The aim of this study was to construct a model of
the human cardiovascular system in which clinical data
can be incorporated, to enable patient-specific modeling
of coronary hemodynamics. The different submodels were
chosen such that the model complexity remains minimal,
while still enabling the incorporation of both normal and
diseased physiologic and geometric clinical data. To represent
the heart, the single-fiber contraction model [13, 14] was
chosen. This model is based on microstructural material
and macrostructural geometrical properties, allowing the
simulation of cardiac disease with geometry-based parameter
changes. The large vessels are modeled one-dimensionally
[15] to enable easy implementation of the geometry of the
vessels, whereas the small vessels are represented by lumped
elements.

Here, the different components of the model are
explained and the ability of the model to describe both
normal and pathological coronary pressure and flow
dynamics is evaluated via comparison with observations
described in literature. Two disease types are modeled:
coronary stenoses located in the epicardial vessels and
left ventricular hypertrophy with an aortic valve stenosis,
affecting the coronary microvasculature.

2. Materials and Methods

The model consists of three main elements: a heart contrac-
tion model, a wave propagation model for the large arteries,
and lumped elements to model the coronary and systemic
microcirculation. As part of the wave propagation model,
Bessems [16] developed an element that can describe the
effect of a stenosis on the local hemodynamics. Since the
wave propagation model and heart model have already been
described in Bessems et al. [15] and Bovendeerd et al. [14],
respectively, only a short description of the models is given
below.

2.1. Heart Contraction Model. Similar to Bovendeerd et al.
[14], the left ventricle is modeled as a thick-walled sphere,
consisting of nested spherical shells. When assuming rota-
tional symmetry and homogeneity of mechanical load, the
relation between tissue stress and ventricular pressure (𝑝lv),
cavity volume (𝑉lv), and wall volume (𝑉

𝑤
) can be described

as:

𝑝lv =
1

3
(𝜎
𝑓
𝑚

− 2𝜎
𝑟
𝑚

) ln(1 +
𝑉
𝑤

𝑉lv
) . (1)
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is the fiber stress and 𝜎
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is the radial wall stress
at 𝑟lv = 𝑟lv, the shell located at one third of the ventricular
wall.This representative shell was chosen because the strain at
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assuming incompressibility of the myocardial tissue, the fiber
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with 𝑙
𝑠
the instantaneous sarcomere length and 𝑙

𝑠0
the

sarcomere length at𝑉lv,0; the cavity volume at zero transmural
pressure.

The myofibers are modeled one-dimensionally, exerting
only stress in the fiber direction.The fiber stress consists of an
active (𝜎

𝑎
) and passive (𝜎

𝑝
) stress component, where 𝜎

𝑝
only

depends on the sarcomere length (𝑙
𝑠
), while 𝜎

𝑎
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on the sarcomere shortening velocity (𝑣
𝑠
) and time elapsed

since activation (𝑡
𝑎
):
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The active stress is modeled according to Kerckhoffs et al.
[18], which describes a combination of the contractility (𝑐)
and three functions:
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𝑔
1
relates the active stress to the sarcomere length and is given

by:
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where it is assumed that the fibers can only exert stress in
tension. 𝜎

𝑎0
and 𝑐
𝑎
are a scaling and curvature parameter,

respectively. 𝑙
𝑠𝑎0

is the sarcomere length at which the stress
is zero. The time dependent activation function 𝑔

2
is defined

as:
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Here, 𝑡max is the activation duration and 𝑡
𝑟
and 𝑡
𝑑
are the

activation rise and decay time constant, respectively.
The dependency of the active stress on the sarcomere

shortening velocity is modeled hyperbolically:

𝑔
3
(𝑣
𝑠
) =
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with 𝑣
𝑠0
the unloaded shortening velocity and 𝑐

𝑣
the curvature

of the hyperbolic relation.
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𝑟𝑖 𝑟𝑐

Figure 1: A schematic representation of the exact velocity profile
(left) and the approximation (right). 𝑟

𝑐
is the approximated core

radius and 𝛿
𝑠
the viscous layer. Adapted from Bessems [16].

The passive stress in the fiber (𝜎
𝑝
) and radial (𝜎

𝑟
)

direction are modeled in a similar way:
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The passive stress-length relation is determined by the scaling
parameters 𝜎

𝑝0
and 𝜎

𝑟0
and the curvature parameters 𝑐

𝑝
and

𝑐
𝑟
, respectively.
The intramyocardial pressure (𝑝im) is used as the

extravascular pressure on the coronary circulation and is
assumed to be linearly dependent on the radial position in
the wall. The shell at 𝑟lv = 𝑟lv is also considered representative
for 𝑝im:

𝑝im = 𝑝im (𝑟lv) = 𝜎𝑟
𝑚

+
𝑟
𝑜,lv − 𝑟lv

𝑟
𝑜,lv − 𝑟𝑖,lv

𝑝lv, (9)

with 𝑟
𝑖,lv and 𝑟𝑜,lv the inner and outer radius of the ventricle,

respectively.

2.1.1. Valves. Since the atrial contraction was not taken into
account, the behaviour of the mitral valve was simplified and
modeled as an ideal diode, where the pressure gradient over
the mitral valve (Δ𝑝mv) is determined by Ohm’s law:

Δ𝑝mv = 𝑄mv𝑅mv, (10)

with 𝑄mv the flow through the mitral valve and 𝑅mv defined
as:

𝑅mv = {
𝑅mv,𝑜 if Δ𝑝mv ≥ 0,

𝑅mv,𝑐 if Δ𝑝mv < 0.
(11)

𝑅mv,𝑜 and 𝑅mv,𝑐 are the resistance of the valve in the open and
closed situation, respectively. For the aortic valve the inertia
is taken into account and opens due to a positive pressure
gradient (Δ𝑝av) and closes when the flow through the valve
(𝑄av) becomes negative. The differential equation relating
Δ𝑝av to 𝑄av is defined as:

Δ𝑝av = 𝐿av
𝑑𝑄av
𝑑𝑡

+ 𝑅av𝑄av. (12)

Here, 𝑅av is the resistance and 𝐿av the inertia of the valve.
𝐿av is determined by the cross-sectional area𝐴

𝑣
, the effective

valvular length 𝑙av, and blood density 𝜌; 𝐿av = 𝜌𝑙av/𝐴av. The
value of the resistance parameter 𝑅av is determined by the
state of the valve:

𝑅av = {
𝑅av,𝑜 if 𝑄av ≥ 0,

𝑅av,𝑐 if 𝑄av < 0.
(13)

Here, 𝑅av,𝑜 and 𝑅av,𝑐 are the resistance of the aortic valve in
the open and closed situation, respectively. The values of the
different parameters are listed in Table 1.

2.2. Wave Propagation Model. The governing equations
describing the one-dimensional propagation of pressure and
flow waves of a Newtonian incompressible fluid are derived
from the conservation of mass and momentum and were
taken from Bessems et al. [15]. The conservation of mass is
derived as:

𝜕𝐴

𝜕𝑡
+
𝜕𝑄

𝜕𝑧
+ 𝜓 = 0, (14)

with 𝑧 and 𝑡 representing the axial direction and time,𝐴 is the
local arterial lumen area, 𝑄 is the volumetric flow rate, and
𝜓 the flow per unit length distributed to small side-branches
that are not separately modeled by vascular segments. As
described by Bessems et al. [15], an appropriate velocity
profile function is assumed that describes the frictional forces
and non-linear terms in the balance of momentum equation
(see Figure 1):
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. (15)

Here, 𝑝 is the transmural pressure, 𝑎 is the vessel radius, 𝑓
𝑧

is the body force, that is, force per unit mass, in the axial
direction, and 𝜂 and 𝜌 are the dynamic viscosity and density
of the fluid, respectively. The wall shear stress is given by:

𝜏
𝑤
= −

2𝜂

(1 − 𝜁
𝑐
) 𝑎

𝑄

𝐴
+
𝑎

4
(1 − 𝜁

𝑐
)
𝜕𝑝

𝜕𝑧
, (16)

with 𝜁
𝑐
= (max[0, (1 − √2/𝛼)])2 representing the relation

between the radius of the inertia dominated core and the
thickness of the Stokes layer. 𝛼 is the Womersley parameter
according to 𝛼 = 𝑎√2𝜋𝜌𝑓/𝜂, with 𝑓 the heart rate. The 𝜁

𝑐

parameter also determines the 𝛿 parameter of the convective
term in (15):

𝛿 =
2 − 2𝜁

𝑐
(1 − ln 𝜁

𝑐
)

(1 − 𝜁
𝑐
)
2

. (17)

2.2.1. ArterialWallModel. To solve (14) and (15) a constitutive
relation between 𝑝 and 𝐴 is required. In this section we will
derive an analytical description of the coronary arterial wall
mechanics, with parameters that depend on the geometry of
the vessel only and are based on amicrostructural constitutive
model. The main advantage of this approach is that this
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Table 1: The parameters describing the heart, blood, and arterial wall. The values between brackets represent the parameters used to model
LVH-AVS before and after AVR, respectively.

Parameter Value Unit Parameter Value Unit
𝑉lv, 0 60 (60, 60) 10−6m3

𝑅av, 𝑐 1 ⋅ 10
12 Pa sm−3

𝑉
𝑤

200 (250, 200) 10−6m3
𝑅mv, 𝑜 4 ⋅ 10

6 Pa sm−3

𝑙
𝑠, 0

1.9 10−6m 𝑅mv, 𝑐 1 ⋅ 10
12 Pa sm−3

𝑙
𝑠, 𝑎0

1.5 10−6m 𝜌 1050 kgm−3

𝑐 1 (1.4, 1) — 𝜂 0.004 kgm−1 s−1

𝜎
𝑎0

90 103 Pa 𝜓 0 10−6m3 s
𝑐
𝑎

2.4 106 m 𝑓
𝑧

0 kgm s−2

𝑡
𝑎

75 10−3 s 𝐶
0, 1

284 10−9m2 Pa−1

𝑡
𝑑

75 10−3 s 𝐶
0, 2

12.1 —
𝑡max 0.4 s 𝐶

0, 3
−3.59 —

𝑣
𝑠,0

10 10−6ms−1 𝐶
1, 1

1.09 10−9m2 Pa−1

𝑐
𝑣

1 — 𝐶
1, 2

34.7 —
𝜎
𝑝, 0

0.9 103 Pa 𝐶
1, 3

−9.85 —
𝑐
𝑝

12 — 𝑝max, 1 646 Pa
𝜎
𝑟, 0

0.2 103 Pa 𝑝max, 2 −17.0 Pa
𝑐
𝑟

9 — 𝑝max, 3 15.9 103 Pa
𝑙av 10 10−3m 𝑝

𝑤, 1
708 Pa

𝐴av 679 10−6m2
𝑝
𝑤, 2

−14.8 Pa
𝑅av, 𝑜 1 (3 ⋅ 107, 1) Pa sm−3 𝑝

𝑤, 3
12.9 103 Pa

𝛽

(a)

𝑎0
𝑎𝑠

𝐿𝑠
2

(b)

Figure 2: (a) A schematic representation of the model of coronary arterial wall [17]. The fiber orientation is determined by angle 𝛽. (b) A
two-dimensional representation of the stenosis element. 𝐿

𝑠
is the length of the stenosis, 𝑎

𝑠
the radius of the vessel at the neck of the stenosis,

and 𝑎
0
the radius of the vessel proximal to the stenosis. Adapted from Bessems [16].

analytical model enables easy implementation into the wave
propagation equations, while retaining the microstructural
properties of the arterial wall.

In van der Horst et al. [20], it was demonstrated that a
model based on the two-fiber constitutive model developed
by Holzapfel et al. [17] was able to accurately capture the
radius-pressure relations of porcine and human coronary
arteries. In that model the arterial wall was modeled as a
cross-ply of helically wound fibers embedded in a cylinder
composed of hyperelastic material. The stress (𝜎)-stretch (𝜆)
behaviour is determined by:

𝜎 = −𝑝
ℎ
I + 𝐺 (B − I) +

2

∑

𝑖=1

𝜏
𝑖

𝑓
⃗𝑒
𝑖

𝑓
⃗𝑒
𝑖

𝑓
, (18)

with 𝑝
ℎ
the hydrostatic pressure, I the unity tensor, 𝐺 the

shear modulus, B the Finger tensor, and 𝜏𝑖
𝑓
the fiber stress

of fiber 𝑖. ⃗𝑒
𝑖

𝑓
is the fiber orientation, which is represented by

the angle 𝛽 with the circumference (see Figure 2(a)). It was

assumed that in compression no stress can be transmitted by
the fibers, with 𝜏

𝑓
defined as:

𝜏
𝑓
= 𝑘
1
𝜆
2

𝑓
(𝜆
2

𝑓
− 1) 𝑒

𝑘
2
(𝜆
2

𝑓
−1)

2

if 𝜆
𝑓
≥ 1

𝜏
𝑓
= 0 if 𝜆

𝑓
< 1.

(19)

Here, 𝜆
𝑓
is the collagen fiber stretch and 𝑘

1
and 𝑘

2
are

constants determining the stress-stretch relation of the col-
lagen fibers. For coronary arteries the value of these four
parameters have been determined [20]. With removal of the
outliers, the median of the four parameters are:𝐺 = 19.3 kPa,
𝑘
1
= 2.01 kPa, 𝑘

2
= 5.10, 𝛽

0
= 34.6

∘.
The stress-free geometry is determined by the opening

angle parameter and the axial stretch 𝜆
𝑧
, which are both

estimated according to optimization rules explained in van
der Horst et al. [20]. The first rule states that at physiological
loading the circumferential stress gradients across the wall
are minimal. The opening angle parameter is optimized to
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comply with this rule. The second rule emerges from the
finding that the fiber orientation at physiological loading
(𝛽phys) is almost constant for all arteries. Using this rule, 𝜆

𝑧

can be directly related to the circumferential stretch at 𝑝 =

13.3 kPa, via two constants: 𝛽
0
and 𝛽phys = 36.4

∘.
The balance equations resulting from this two-fiber

model are solved using numerical integration. Since a numer-
ical integration scheme is also employed to solve (14) and
(15), the direct implementation of this two-fiber model will
be computationally expensive. Therefore, as an intermediate
step, a phenomenological model described by Langewouters
et al. [22] is used to analytically relate the compliance (𝐶) to
the pressure (𝑝):

𝐶 = 𝐶
0
+

𝐶
1

1 + ((𝑝 − 𝑝
𝑚
)/𝑝
𝑤
)
2
. (20)

Here, 𝐶
0
, 𝐶
1
, 𝑝
𝑚
, and 𝑝

𝑤
determine the 𝐶-𝑝 relation. To

relate this analytical model to the two-fiber model, it is
assumed that these four parameters depend on the only
clinically measurable quantities: the radius (𝑎

𝑝
) and wall-

thickness (ℎ
𝑝
) at physiological axial stretch and pressure

(𝑝 = 13.3 kPa). First, the 𝐶-𝑝 relation was determined with
the two-fiber model (including the optimization rules) for
different combinations of 𝑎

𝑝
and ℎ

𝑝
. 𝑎
𝑝
ranged from 0.25 to

3mm and ℎ
𝑝
ranged from 0.025 to 0.3mm. Then, for each

combination of 𝑎
𝑝
and ℎ

𝑝
within the range 0.05 < 𝜅 < 0.15

(𝜅 = ℎ
𝑝
/𝑎
𝑝
), the four parameters of the Langewouters model

were fittedwith theGauss-Newton algorithmas implemented
in Matlab (R2010a, The Mathworks, Natick, MA). Using the
multiple regression function in Statgraphics (Centurion XVI,
statpoint technologies, inc.Warrenton, VA) a polynomial was
extracted based on the best 𝑅2-adjusted value:

𝐶
0
(𝑎
𝑝
, ℎ
𝑝
) = 𝐴

𝑝
𝐶
0,1
(1 + 𝐶

0,2
𝜅
2

+ 𝐶
0,3
𝜅) , 𝑅

2

= 0.999,

𝐶
1
(𝑎
𝑝
, ℎ
𝑝
) = 𝐴

𝑝
𝐶
1,1
(1 + 𝐶

1,2
𝜅
2

+ 𝐶
1,3
𝜅) , 𝑅

2

= 0.999,

𝑝
𝑚
(𝑎
𝑝
, ℎ
𝑝
) = 𝑝
𝑚,1

+ 𝑝
𝑚,2

1

𝜅
+ 𝑝
𝑚,3
𝜅, 𝑅

2

= 0.996,

𝑝
𝑤
(𝑎
𝑝
, ℎ
𝑝
) = 𝑝
𝑤,1

+ 𝑝
𝑤,2

1

𝜅
+ 𝑝
𝑤,3
𝜅, 𝑅

2

= 0.999.

(21)

The parameters (𝐶
(0-1,1−3), 𝑝(𝑚,1−3), 𝑝(𝑤,1−3)) are determined

by 𝐴
𝑝
= 𝜋𝑎2
𝑝
and 𝜅 and the correlation is good, as indicated

by the 𝑅2 values. With these relations, the compliance of the
coronary arteries as function of the instantaneous diameter
could be determined and used in the wave propagation
model.

For the systemic arterial walls we use a simple linear
elastic model:

𝐶 =
2𝜋 (1 − 𝜇

2

) 𝑎
3

𝑝

ℎ
𝑝
𝐸

. (22)

Here, 𝐸 is the Young’s modulus and 𝜇 is Poisson’s ratio. For all
systemic arteries, incompressibility is assumed (𝜇 = 0.5) and
𝐸 = 0.4MPa [19].

2.2.2. Stenosis Element. While one-dimensional theory is
suitable to model the pressure and flow waves in relatively
straight arteries, it may yield unrealistic results in patholog-
ical regions like aneurysms and stenoses. In the derivation
of the one-dimensional model it is assumed that variations
in the cross-sectional area of the vessels is relatively small,
so the radial and circumferential blood velocity is negligibly
small with respect to the axial component. Considering that
epicardial coronary arteries are prone to the development of
stenoses, it is necessary to use a specific element that can be
incorporated into to the 1D model.

Bessems [16] developed a 1D stenosis element, based on
the semi-empirical relations obtained by Young and Tsai
[23, 24] but with an improved contribution of the viscous and
unsteady components, to calculate the pressure-drop over
an axisymmetric narrowing. The parameters of this model
are based on two-dimensional axisymmetrical finite element
simulations of stenotic hemodynamics. The axisymmetric
stenosis geometry is depicted in Figure 2(b).

From oscillatory flow simulations Bessems [16] derived
the following relation for the pressure drop over a stenosis
(Δ𝑝
𝑠
):

Δ𝑝
𝑠
= 𝐾
𝑣
(𝛼) 𝑅
𝑠𝑡
𝑄 +

𝜌𝐾
𝑡

2𝐴2
0

(
𝐴
0

𝐴
𝑠

− 1)

2

|𝑄| 𝑄

+ 𝐾
𝑢
(𝛼) 𝐿
𝑢

𝜕𝑄

𝜕𝑡
+ 𝐾
𝑐
(𝛼)𝑄.

(23)

The parameters𝐴
0
and𝐴

𝑠
are the cross-sectional areas of the

vessel proximal to and at the neck of the stenosis, respectively.
𝑄 is the average flow, and 𝐾

𝑣
, 𝐾
𝑡
, 𝐾
𝑢
, and 𝐾

𝑐
are empirically

determined constants obtained by Bessems [16]. They are
given by:

𝐾
𝑣
= 1 + 0.053

𝐴
𝑠

𝐴
0

𝛼, 𝐾
𝑡
= 0.95,

𝐾
𝑢
= 1.2, 𝐾

𝑐
= 0.0018𝛼

2

.

(24)

𝑅
𝑠𝑡
is the resistance and 𝐿

𝑢
is inertia across the stenosis:

𝑅
𝑠𝑡
=
8𝜂

𝜋𝑎4
0

∫
𝐿
𝑠

𝑎
4

0

𝑎4
𝑠
(𝑧)

𝑑𝑧, 𝐿
𝑢
=

𝜌

𝜋𝑎2
0

∫
𝐿
𝑠

𝑎
2

0

𝑎2
𝑠
(𝑧)

𝑑𝑧.

(25)

𝑎
0
is the radius of the vessel proximal of the stenosis and

𝑎
𝑠
(𝑧) the varying radius of the vessel at the site of the stenosis.

When assuming that the pressure drop develops linearly over
the length of the stenosis, (23) can be written in the following
differential form:

𝜕𝑄

𝜕𝑡
+
𝐾
𝑣
𝑅
𝑠𝑡
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𝑄 +
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𝑡

2𝐴2
0
𝐾
𝑢
𝐿
𝑢

(
𝐴
0

𝐴
𝑠

− 1)

2

|𝑄| 𝑄

+
𝐿
𝑠

𝐾
𝑢
𝐿
𝑢

𝜕𝑝

𝜕𝑧
+
𝐾
𝑐
𝑅
𝑠𝑡

𝐾
𝑢
𝐿
𝑢

𝑄 = 0.

(26)

The conservation of mass in the stenosis is given by (14) and
its compliance is assumed to be negligible.
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Figure 3:The three-element model with parameters𝑍, 𝑅
𝑤
, and 𝐶

𝑤
.

2.3. Lumped Elements. The contribution of the peripheral
vasculature at each end-point of the 1Dmodel is lumped with
the three-element model depicted in Figure 3 (see [25]). The
relation between the pressure and flow for this model can be
written as:

𝐶
𝑒

𝜕𝑝
𝑒

𝜕𝑡
+ 𝑅
𝑒

˜
𝑝
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˜
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𝑒

, (27)

with

𝐶
𝑒
=
[
[
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(28)

The wave impedance is given by:

𝑍 = √
𝜌

𝐴𝐶
, (29)

with𝐴 and𝐶 the average cross-sectional area and compliance
of the connecting vessel. The total resistance (𝑍 + 𝑅

𝑤
) was

determined from the average flow and pressure drop over the
element. Finally, 𝐶

𝑤
is the compliance of the artery defined

by a time constant 𝜏 = 𝑅
𝑤
𝐶
𝑤
, with 𝜏 = 2 s.

2.4. The Complete Model. The model of all 1D vessels and
lumped elements is shown in Figure 4. The pulmonary
venous pressure (1200 Pa≈ 9mmHg) serves as the input for
the left ventricle (LV) in diastole. The contraction sequence
described in Section 2.1 increases the left ventricular pressure
(𝑝lv), closing the mitral valve and, if the pressure exceeds
the aortic pressure (𝑝ao), opening the aortic valve. From the
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Figure 4: The total model consisting of the left ventricle (LV),
with the mitral (𝑀

𝑣
) and aortic valve (𝐴

𝑣
), the aorta, and the

coronary circulation.The aorta and its main branches are numbered
according to Table 2.The LMCAhas a length of 5mm and splits into
the LAD and the LCx, with a length 7.5 cm and 6 cm, respectively.
Side branches are modeled at intervals of 1.5 cm. Each coronary
segment is represented by the characters a–f. The radius of segment
a is 1mm and Murray’s law is used to determine the radius of
segments b–f. All a-segments are connected to the three-element
model representing the coronary microvessels. The intramyocardial
pressure (𝑝im) acts on the three capacitors that represent the vessel
compliance. When a stenosis is modeled, it is incorporated into the
𝑐-segment of the LAD.

resulting pressure gradient the flow over the aortic valve is
calculated using (12) and serves as the input for the aortic
wave propagation elements.

To include the effect of the systemic wave reflections, the
aorta is modeled with all major side branches, with at each
distal end a terminal impedance that is prescribed using the
three-element model. The geometrical data are taken from
Stergiopulos et al. [19] and are listed in Table 2.

A hypothetical anatomy of the main coronary branches
is assumed. The left main coronary artery (LMCA) and right
coronary artery (RCA) originate 5mm distal from the aortic
valve. The LMCA splits into the left anterior descending
(LAD) and circumflex (LCx) arteries. The LAD has a total
length of 7.5 cm with four side branches (representing the
diagonal and septal side branches), while the LCx has a
length of 6 cm with three side branches (marginal and
posteriorlateral branches). The geometry of the RCA is equal
to the LAD and it is assumed that it supplies both the left
and right ventricle (RV), with a ratio of 0.4. Since the RV
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Table 2: Geometric and physiological parameters of the arterial vessels. The length (𝐿), proximal radius (𝑎
𝑝
), distal radius (𝑎

𝑑
), and wall

thickness (ℎ) of the systemic arteries are based on Stergiopulos et al. [19]. The parameters of the three-element model (Z, 𝑅
𝑤
, and 𝐶

𝑤
; see

Figure 3) were determined as described in Section 2.3. The numbers of the vessels correspond to the numbers shown in Figure 4.

Nr. Name 𝐿 𝑟ip 𝑟id ℎ 𝑍 𝑅
𝑤

𝐶
𝑤

mm mm mm mm MPa sm−3 GPa sm−3 mm3 Pa−1

1 ascending aorta A 5.0 14.7 14.7 1.63
2 ascending aorta B 35 14.7 14.4 1.63
3 innominate 30 6.20 6.20 0.80 52.2 0.36 4.125
4 aortic arch A 20 11.2 11.2 1.26
5 left carotid 30 3.70 3.70 0.63 161 1.80 0.835
6 aortic arch B 39 10.7 10.7 1.15
7 left subclavian 30 4.23 4.23 0.66 118 1.19 1.259
8 thoracic aorta A 52 9.99 9.99 1.10
9 intercostals 30 2.00 2.00 0.49 659 11.7 0.128
10 thoracic aorta B 104 6.75 6.75 1.00
11 celiac 30 3.00 3.00 0.64 273 3.40 0.442
12 abdominal aorta A 53 6.10 6.10 0.90
13 sup. mesenteric 30 4.35 4.35 0.69 112 1.09 1.374
14 abdominal aorta B 10 5.90 5.90 0.80
15 left renal 30 2.60 2.60 0.53 356 5.28 0.284
16 abdominal aorta C 10 5.90 5.90 0.80
17 right renal 30 2.60 2.60 0.53 356 5.28 0.284
18 abdominal aorta D 106 5.80 5.48 0.75
19 inf. mesenteric 30 1.60 1.60 0.43 108 23.1 0.065
20 abdominal aorta E 10 5.20 5.20 0.65
21 l. common iliac 30 3.68 3.68 0.60 15.9 1.83 0.820
22 r. common iliac 30 3.68 3.68 0.60 15.9 1.83 0.820

is not modeled here, it is assumed that the intramyocardial
pressure (𝑝im) of the RV is smaller by a factor proportional to
the ratio of maximum pressure in the two ventricles (𝑝im,rv =
0.2 𝑝im,lv). For all terminal coronary 1D vessels (14 in total)
a radius of 1mm was prescribed and for each bifurcation
Murray’s law [26] relates the diameter of the parent and
daughter vessels by a power of 3. Based on van den Broek
et al. [27], it is assumed that for all coronary vessels the wall
thickness is equal to 10% of the radius (𝜅 = 0.1).

The microvasculature is modeled with three serial three-
element models.The total resistance (𝑅

𝑡
) is determined using

Ohm’s law by assuming an average pressure of 100mmHg
and prescribing a flow of approximately 20mL/min through
every terminal branch. Following Bovendeerd et al. [14], 𝑅

𝑡

is distributed over the four resistances according to: 𝑅art =
(7/27)𝑅

𝑡
, 𝑅myo1,2 = (9/27)𝑅𝑡, and 𝑅ven = (2/27)𝑅𝑡. The values

of the three capacitors are based on measurements by Spaan
[28]: 𝐶art = 0.2mm3 Pa−1, 𝐶myo = 0.53mm3 Pa−1, and
𝐶ven = 0.65mm3 Pa−1. The intramyocardial (𝑝im) pressure
that is generated by the heart contraction model is connected
to the three capacitors to model the extravascular pressure
on the coronary vessels. Since the circulation is not closed, a
constant venous pressure of 700 Pa (±5mmHg) is prescribed
at the output of the model.

To be able to solve the full set of equations, the method
of Kroon et al. [29] is used in which the 1D and 0D pressure
and flow relations of (14), (15), and (27) are solved fully

coupled by writing the differential equations in the same
form. The 1D vessels are divided into a number of non-
overlapping elements of 2.5mm and the temporal discretiza-
tion is performed using the Euler implicit integration scheme.
The final set of equations is solved using a direct solver [30],
as implemented in the finite element package Sepran (Inge-
nieursbureau SEPRA, Leidschendam, The Netherlands).

2.4.1. Simulations and Data Analysis. To test whether the
model is able to describe coronary hemodynamics in both
normal and pathological situations, three different simula-
tions are performed.Thenormal, healthy situation ismodeled
with the parameters listed in Tables 2 and 1. The pressure,
flow, and volumes of the heart and aorta obtained with the
model are qualitatively compared to similar signals described
by VanDeVosse and Stergiopulos [8].Themodeled coronary
pressure and flow in the LMCA and RCA are compared to
pressure and velocity measurements performed simultane-
ously in the LMCA and RCA by Hadjiloizou et al. [21]. Two
types of pathological situations are modeled: a stenosis in the
LAD (see Figure 4) and left ventricular hypertrophy due to an
aortic valve stenosis (LVH-AVS).

Dynamic pressure measurements proximal and distal
to a mild stenosis (50% diameter, length 2.65mm) and
severe stenosis (70% diameter, length 7.48mm), performed
at the catheterization laboratory of the Catharina Hospital
(Eindhoven,The Netherlands), are used to verify the stenosis
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element. Since the flow through the stenotic vessels was not
measured, quantitative comparison is difficult.Therefore, the
dynamics of the measured and modeled pressure signals
is only compared qualitatively. Since the pressure measure-
ments are performed during hyperaemia, the flow in the
model was increased five-fold, by decreasing the coronary
microvascular resistances. Furthermore, the clinically most
used index to quantify coronary stenoses, fractional flow
reserve (FFR), which is defined as the ratio of the pressure
distal and proximal to a stenosis, is determined with both the
model and the measurements.

The ability of the model to describe coronary hemody-
namics when LVH-AVS is present is verified with clinical
measurements performed byHildick-Smith and Shapiro [31].
With transthoracic Doppler echocardiography, they mea-
sured the dynamics of flow in the LAD in LVH-AVS patients
before and six months after aortic valve replacement (AVR).
While the average left ventricular cavity volume was constant
before and six months after AVR, the measured average
ventricular mass decreased significantly: from 271 to 226 g.
The average aortic valve pressure gradient before AVR was
93mmHg and systemic pressures were normal with a mini-
mum and maximum pressure of 89 and 134mmHg. The two
situations before and after AVR are modeled with ventricular
wall volumes based on the measured ventricular wall mass,
assuming a mass density of 1.1 kg/L. The contractility and
aortic valve resistance are increased such that the pressure
gradient across the aortic valve is approximately 93mmHg,
while the average aortic pressure remains normal.Themodel
parameters of the heart contraction model and valves are
listed in Table 1. The main features of the dynamics of the
modeled flow in the LAD are qualitatively compared to the
measurements by Hildick-Smith and Shapiro [31].

The difference between the arterial wall model derived
in Section 2.2.1 and a simple linear elastic model (22),
with respect to the hemodynamics, is investigated. As it
is expected that the difference between the used coronary
arterial wall model and a simple linear elastic model is largest
in the low pressure range, the difference between the two
models is determined both proximal and distal to the severe
stenosis described above. The relative differences between
the pressure, flow, cross-sectional area, and wall shear stress
calculated with the model are quantified with parameter 𝛿

𝑦
:

𝛿
𝑦
= 100 ∗

𝑦 − 𝑦lin
𝑦/2 + 𝑦lin/2

. (30)

Here, 𝑦 is the hemodynamic signal obtained with the
microstructural-based coronary arterial model and 𝑦lin is the
signal obtained with the linear elastic model with a Young’s
modulus of 1.5MPa and a Poisson ratio of 0.5.

3. Results

3.1. Normal Hemodynamics. Figure 5 shows that the heart
and systemic pressures, flows, and volumes obtained with
the model, qualitatively agree with values found in literature
[8]. With a stroke volume of 70 mL/min, a mean aortic flow
of 4.8 L/min, and an aortic mean and pulse pressure of 93

and 47, respectively, the main clinically relevant parameters
are within the normal physiological range. At the transition
between systole and diastole the effect of the closing of the
aortic valve together with a reflection originating from the
bifurcation to the iliac arteries is also clearly visible. The
dynamics of the different signals are similar, except the time-
dependent behaviour of the mitral flow, especially at late
diastole (Figures 5(f) and 5(c)). This is obviously due to the
lack of the atrial contraction in the model. Another clear
difference is that modeled aortic pressure in early systole
increases faster than found in Van De Vosse and Stergiop-
ulos [8], which is related to the choice of heart activation
function.

Themodeled pressure and fleow in the left main (LMCA)
and proximal right (RCA) coronary artery are depicted in
Figure 6. The data are compared to pressure and blood
velocity measurements acquired simultaneously in a human
LMCA and RCA [21]. It should be noted that the mean
and pulse pressure measured by Hadjiloizou et al. [21] were
relatively high and there was an average offset of approxi-
mately 15mmHg between the pressure measured in the RCA
and LMCA (Figure 6(a)). Although these pressures are not
considered to be representative for non-diseased vessels, the
data do enable the qualitative comparison between the flow
velocities in both the LMCA and RCA and the pressure-
flow relation. The modeled pressures in the LMCA and
RCA were almost identical and are determined by the aortic
pressure. The flow in the LMCA was diastolic dominated,
with the typical flow impediment during early systole. The
ratio of maximum diastolic and systolic flow in the LMCA
was 2.1 for both the simulation and measurements. Although
it depends to what degree the RCA supplies blood to the left
or right ventricle, the flow in the RCA was markedly less
dominant in diastole, compared to the LMCA. For the RCA,
the ratio of maximum diastolic and systolic flow was 1.2 and
0.9 for the measurements and simulation, respectively. The
difference between the LMCA and RCA demonstrates the
influence of the intramyocardial pressure on the coronary
flow. Besides the pressure in early systole, the main difference
between the simulated coronary hemodynamics and the
clinical data is that the flow in the early diastole displays a
peak in the simulation with subsequently a relatively large
decline, whereas this is not the case in the experimental
data.

3.2. Stenosis. Thepressuremeasurements depicted in Figures
7(a) and 7(b) demonstrate the effect of a mild stenosis (50%
diameter) and severe stenosis (70% diameter), respectively.
It is obvious that the pressure gradient was much larger for
the severe stenosis, especially in diastole when the flow was
highest. The pressures determined with the model showed
the same behaviour as the measurements, with the largest
pressure gradient in diastole (Figures 7(c) and 7(d)). For
the modeled mild stenosis this pressure gradient variation
between systole and diastole is larger than in the experimental
data. A possible explanation for this discrepancy is a less
distinct difference between systolic and diastolic flow in
that measurement. The FFR values determined with the
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Figure 5: Top: the left ventricular pressure-volume loop (a), the left ventricular pressure (- -) and aortic (-) pressure (b), and the flow through
the aortic (-) and mitral (- -) valve (c), adapted from Van De Vosse and Stergiopulos [8] (Figure 3). The pressure-volume loop in (a) is
determined from the data in (b) and (c) with the end-systolic volume assumed to be 45 mL. Bottom: similar signals obtained with the model.

measurements were 0.93 and 0.57 for the mild and severe
stenosis, respectively, whereas the FFR’s determined with the
model were 0.96 and 0.61.

3.3. Left Ventricular Hypertrophy with an Aortic Valve Steno-
sis. In Figure 8 the effect of LVH-AVS on the coronary flow
is shown and compared to transthoracic Doppler echocar-
diography measurements by Hildick-Smith and Shapiro [31],
before and six month after AVR. The normal characteristic
flowdynamics, with a small positive systolic and large diastole
component, was found after AVR, in both the measurements
and the simulations. Before the AVR, so when the LVH-AVS
is present, the measurements reveal that the positive systolic
flow component was replaced by a period of negative flow.
The measured maximum diastolic flow decreased slightly
after AVR. The ratio of the maximum positive or negative
systolic velocity before and after AVR was −1.3, whereas ratio
of the maximum diastolic velocity before and after AVR
was 1.1. These features were also captured by the model,
demonstrating the influence of the increased intramyocardial
pressure on the coronary flow dynamics. The ratio of the
simulated maximum positive or negative systolic velocity
before and after AVR was −0.6, whereas the ratio of the
maximum diastolic velocity before and after AVR was 1.3.

3.4. Arterial Wall Model. The effect of using the arterial wall
model proposed by Langewouters et al. [22] compared to a

linear elastic model will be most apparent in the low pressure
range. Therefore, the difference between the two arterial wall
models was determined both proximal and distal to the 70%
diameter stenosis. In Figure 9 the relative difference between
the two models, as defined by (30), on the pressure (𝑝),
flow (𝑄), cross-sectional (𝐴), compliance (𝐶), and wall shear
stress (𝜏

𝑤
) are shown. Proximal to the stenosis, the difference

between the two models was small. While the effect on the
pressure (max 𝛿

𝑝
= 5%), flow (max 𝛿

𝑄
= 2%), and cross-

sectional area (max 𝛿
𝐴
= 8%) was rather limited, the wall

shear stress changed significantly (max 𝛿
𝜏
𝑤

= 17%).

4. Discussion

In the present study, previously publishedmodels of the heart
and vessels have been combined to create a model capable
of describing coronary hemodynamics in health and disease.
By coupling a heart model to a 1D wave propagation model,
the effect of heart disease on both the coronary microvessels
and the aortic perfusion pressure could be related to coronary
epicardial hemodynamics. With the combination of models,
stable solutions were obtained and the waveforms found with
the model featured the main characteristics of both sys-
temic and epicardial coronary pressure and flow dynamics.
Additionally, by changing a limited amount of parameters,
a coronary stenosis and left ventricular hypertrophy with
an aortic valve stenosis (LVH-AVS) could be modeled and
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Figure 6: Top: the left main (-) and right (- -) coronary pressure (a) and flow (b), extracted from Hadjiloizou et al. [21] (Figure 1). Bottom:
similar signals obtained with the model.

produced specific hemodynamical features that qualitatively
agreed with experimental observations described in litera-
ture.

The heart mechanics is governed by the single-fiber
contraction model developed by Bovendeerd et al. [14]. The
main advantage of this particular model over existing models
(e.g., the intramyocardial pump model [4] and the time-
varying elastance model [5]) is that it is based on geometric
data that can be obtained in the clinic in combination
with microstructural properties of the myocardium. This
enables the simulation of cardiac disease with physiology-
based parameter changes, as was shown by simulating LVH-
AVS. Being modeled as a sphere with myofibers oriented
in the same direction in each shell, the heart model is a
simplified representation of the cardiac muscle. Although
the validity of this model should be evaluated for each type
of cardiac disease, this simplified representation is also the
strength of model, since it is able to produce physiological
hemodynamics with a limited amount of parameters. Due
to the use of a representative intramyocardial pressure, and
average values for the coronary compliances and resistances,
the coronary flow in the model should be regarded as a
mean flow over themyocardium. It therefore cannot describe
radial layer-specific differences in coronary perfusion, which

can be clinically relevant in relation to ischemia. Although
it will increase the number of parameters, these spatial
differences can be incorporated by modeling branches at
different layers in the myocardium. Even though the main
features of coronary hemodynamics were captured, in future
studies it would be interesting to incorporate these branches
at different transmural positions to get a more physiologic
representative flow distribution in the myocardium. The
effect of the deformation of the vessels on its compliance
and resistance, especially on the venous side, should then
be taken into account as well [32, 33]. From the comparison
between the model and literature it was found that the
activation model used results in a rise in pressure that is
too fast in early systole. An activation function as proposed
in van der Hout-van der Jagt et al. [34], in which the
early and late part of the activation function can be tuned
separately, might prove to resolve this issue. However, this
does increase the number of parameters. The contraction of
the left atrium was not modeled, which was clearly reflected
in the mitral valve flow. This, however, did not result in an
unrealistic pressure-volume relation in the left ventricle. The
right ventricle was also not incorporated into the model.
Therefore, the right ventricular intramyocardial pressure
(𝑝im,rv) was approximated by a factor (0.2) proportional to
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Figure 7: The pressure proximal (-) and distal (- -) to a 50% diameter stenosis with a length of 2.65mm (a) and (c) and a 70% diameter
stenosis with a length of 7.48mm (b) and (d), measured in human coronary arteries (a) and (b), and determined with the model (c) and (d).
Measurements were performed at the Catharina Hospital, Eindhoven,The Netherlands. Written informed consent was given by each patient.

the left ventricular intramyocardial pressure (𝑝im,lv). To get a
more realistic measure of 𝑝im,rv, the right ventricle can also
be modeled with a similar heart contraction model as was
demonstrated by Cox et al. [35].

The systemic large epicardial coronary arteries are mod-
eled one-dimensionally, which enables the investigation of
the propagating pressure and flow waves as was validated by
Bessems et al. [15]. This specific model has the advantage
that it is time domain-based and has a velocity profile
that approximates the actual Womersley profiles. For the
relatively small coronary arteries with Womersley numbers
of approximately 2 the velocity profiles are almost similar to
the Poiseuille profile, whereas in the aorta there is a phase
difference between velocities near the wall and in the central
core. This similarity to Womersley profiles is also important
when the 1D model is used as the boundary condition for
a more detailed 3D model. The choice which branches are
lumped or modeled individually, depends on the point of
interest and the specific disease that being modeled and the
available clinical data. In the model presented here the total
aorta and the first part of its side-branches were modeled
individually to include its main reflection sites. The coronary
arteries with a radius smaller than 1mm are lumped, since
intracoronary measurements are mainly limited to the larger

coronary vessels. In future studies, the 1D representation of
the coronary vessels also enables the analysis of pressure and
flow wave patterns, which have been the subject of recent
research [21, 36].

A three-element model was chosen to represent the coro-
nary microvasculature. While this representation did result
in physiological coronary hemodynamics, a four-element
model with an inertia term [37] might improve the signal,
particulary at the large increase in flow during early diastole
where the inertia of the blood will play a role. Furthermore,
it was found that the parameters of the first three-element
model have a large influence on the dynamics of the coronary
flow. A proper sensitivity analysis of the model parameters
may be helpful in the correct parameter choice for patient-
specific modeling.

The compliance of the arterial wall of the coronary vessels
was modeled with the analytical model of Langewouters et al.
[22]. The parameters of the model were fitted to the model
described in van der Horst et al. [20]. For different radii
and wall thicknesses an accurate, polynomial description
was found for each parameter of the Langewouters model.
The main advantage of this approach is that the analytical
description enables easy implementation into the model, at
low additional computational cost, while the microstructural
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Figure 8: Flow in the LAD of LVH-AVS patients before (- -) and six months after (-) AVR measured in a human LAD with transthoracic
Doppler echocardiography by Hildick-Smith and Shapiro [31] (Figures 3(a) and 4(a)) (a) and determined with the model (b).
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Figure 9: The difference between the results obtained the Langewouters model and linear elastic model, as described in (30). The pressure
(𝑝), flow (𝑄), cross-sectional (𝐴), and wall shear stress (𝜏

𝑤
) are shown proximal (-) and distal (- -) to the 70% diameter stenosis.
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properties are taken into account. By comparing the pressure
and flow waves obtained with this wall model with a linear
elastic model, it was found that the differences where very
small, even distal to a severe stenosis where the change in
compliance are the largest. The wall shear stress, however,
did change significantly distal to this stenosis (17%). This
might be of clinical interest, since the wall shear stress has
been indicated as a factor involved in the development and
destabilization of plaques [38].

The stenosis element has been shown to be compatible
with the wave propagation elements and agrees qualitatively
with pressure measurements from the clinic. The flow in
these stenotic vessels was, however, not measured, which
makes a proper quantitative comparison impossible. The
stenosis is modeled as being smooth and axisymmetric,
whereas in clinical practice stenoses are irregular. This might
also be the reason why the measured FFR values were
lower than the ones obtained with the model. Although 3D
modeling [39] is required to investigate to which extent the
stenosis element is capable of describing the hemodynamics
of irregular stenoses, it is likely that in most cases the
stenosis element cannot adequately describe stenoses found
in patients. Besides the shape-dependency of the constants of
the stenosis element equation, it is also assumed that these
constants depend on the heart frequency only, neglecting
the contribution of other frequency components. Although
Bessems [16] verified the relation with finite element simula-
tions for physiologic flows and found only small differences,
this is obviously a limitation of the stenosis model.

The simulated LVH-AVS also qualitatively agreed with
the data described in literature, indicating that model is able
to capture the global effect of LVH-AVS on coronary flow.
However, for a proper verification of themodel, simultaneous
measurements of left ventricular pressure and volume and
coronary pressure andflow should be performed in both non-
diseased and LVH-AVS hearts. Furthermore, a number of
case studies should also be performed, in which the effect
of for different disease types on coronary hemodynamics
is measured under well controlled conditions. An isolated
beating heart set-up [40] might be a suitable platform for
these studies.

The next step in improving the model would be to
include autoregulatory mechanisms. The baroreflex mech-
anism could be included to regulate the heart rate, as
was already incorporated into a similar heart contraction
model by Cox et al. [35]. Furthermore, by including the
coronary autoregulation, the difference between resting and
hyperaemic flow can be simulated [41]. This is valuable since
it enables the determination of clinical indices based on the
difference between resting and hyperaemic hemodynamics,
for example, coronary flow reserve [42] or diastolic coronary
vascular reserve [43].This heart contractionmodel is suitable
to include this mechanism, since the work performed by
the heart can be used as a parameter in the autoregulation
mechanism.

Besides application of this model to enhance the diag-
nosis in case of combinations of multiple disease types, the
model can also be used to investigate the global effect of
an intervention, bypass surgery, or collaterals on coronary

epicardial hemodynamics. To be able to use the model for
patient-specific modeling of the (diseased) coronary circula-
tion, model parameters need to be fitted to hemodynamical
measurements. Besides adequatemeasuring devices for coro-
nary pressure and flow (and lumen area), this will require a
proper parameter sensitivity analysis of themodel. Due to the
number of parameters involved, a Monte Carlo approach as
used by Huberts et al. [44] might be suitable to find the most
influential parameters.

5. Conclusion

We constructed a model of the cardiovascular system, in
which physiologic and geometric clinical data can be incor-
porated for patient-specific modeling of coronary hemody-
namics. The modeled pressure and flow dynamics are in
qualitative agreement with clinical measurements described
in literature, especially with respect to the shape details.
Although further research is required to improve and verify
themodel, we conclude that themodel adequately can predict
coronary hemodynamics in both normal and diseased state
based on patient-specific clinical data.
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