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Abstract

Little is known about the transmission dynamics of Acinetobacter baumannii in hospitals,
despite such information being critical for designing effective infection control measures. In
the absence of comprehensive epidemiological data, mathematical modelling is an attrac-
tive approach to understanding transmission process. The statistical challenge in estimating
transmission parameters from infection data arises from the fact that most patients are colo-
nised asymptomatically and therefore the transmission process is not fully observed. Hid-
den Markov models (HMMs) can overcome this problem. We developed a continuous-time
structured HMM to characterise the transmission dynamics, and to quantify the relative
importance of different acquisition sources of A. baumannii in intensive care units (ICUs) in
three hospitals in Melbourne, Australia. The hidden states were the total number of patients
colonised with A. baumannii (both detected and undetected). The model input was monthly
incidence data of the number of detected colonised patients (observations). A Bayesian
framework with Markov chain Monte Carlo algorithm was used for parameter estimations.
We estimated that 96—-98% of acquisition in Hospital 1 and 3 was due to cross-transmission
between patients; whereas most colonisation in Hospital 2 was due to other sources (spo-
radic acquisition). On average, it takes 20 and 31 days for each susceptible individual in
Hospital 1 and Hospital 3 to become colonised as a result of cross-transmission, respec-
tively; whereas it takes 17 days to observe one new colonisation from sporadic acquisition
in Hospital 2. The basic reproduction ratio (Ro) for Hospital 1, 2 and 3 was 1.5, 0.02 and 1.6,
respectively. Our study is the first to characterise the transmission dynamics of A. bauman-
nii using mathematical modelling. We showed that HMMs can be applied to sparse hospital
infection data to estimate transmission parameters despite unobserved events and imper-
fect detection of the organism. Our results highlight the need to optimise infection control in
ICUs.
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Introduction

Acinetobacter baumannii is an important pathogen that can cause serious infections such as
pneumonia, bacteraemia and meningitis in hospitals, particularly in intensive care units
(ICUs) [1]. It is intrinsically resistant to many antibiotics and has a remarkable ability to
develop and transmit novel mechanisms of resistance, making treatment extremely difficult
with limited therapeutic options available [2]. Infections caused by A. baumannii are associated
with significant mortality (attributable mortality rates ranging from 20% to 37%) and an
increase in the average length of ICU stay by 15 days [3-6]. In Australia, the prevalence of A.
baumannii in ICUs is estimated to range from 4% to 20% [7]; whereas the numbers reported in
Asia, Europe and North America are 19%, 23% and 4%, respectively [8]. Despite numerous
efforts to prevent the spread of healthcare associated infections, the rates of A. baumannii
infections continue to increase worldwide [9-11]. This, in part, is due to an incomplete under-
standing of the transmission dynamics of this pathogen, which is complex and involves various
interrelated factors such as patients, healthcare workers and the hospital environment [12]. In
hospitals, acquisition of A. baumannii is believed to occur by two distinct routes. Acquisition
can occur as a result of transmission between patients treated in the ward, mainly via the tran-
siently contaminated hands of healthcare workers (i.e. cross-transmission acquisition) [13].
Alternatively, acquisition may result from sources independent of cross-transmission (i.e. spo-
radic acquisition) such as colonisation already present at admission and de novo colonisation
from patient’s gastrointestinal flora [13-15].

Quantifying the relative importance of different acquisition routes is essential for setting
infection control priorities [13]. However, quantitative data on the transmission dynamics of
A. baumannii are currently lacking. Such information can be obtained by conducting extensive
epidemiological surveillance in combination with genotyping. However, these methods are
time-consuming, laborious and may be prohibitively expensive. Additionally, these methods
only provide individual patient-level data, and thus are not able to fully capture the complexi-
ties and dynamic interactions that determine the spread of the pathogen [16]. Mathematical
modelling, by providing a theoretical framework to conceptualise the dynamic interactions
between interdependent variables, can overcome these problems. This approach has been used
to model the transmission dynamics of Gram-positive organisms in hospitals [17-19]. At pres-
ent, there are no models specifically developed to examine the transmission dynamics of
Gram-negative bacteria including A. baumannii. In a recent review, we highlighted a need to
understand the transmission dynamics of this pathogen using mathematical modelling because
such information is of great value for designing effective infection control interventions [20].

Estimating transmission parameters using hospital infection data have a number of statisti-
cal challenges. The majority of patients colonised with A. baumannii carry them asymptomati-
cally [21]. Consequently, the underlying transmission process can only be partially observed
and the exact time of acquisition is typically unknown in the absence of frequent routine swabs
[18]. Algorithms for data analysis based on hidden Markov models (HMMs) have been shown
to be useful for making inferences about an unobserved event and estimating transmission
parameters [13,14,22]. In this study, we developed a continuous-time structured HMM to esti-
mate the rates of cross-transmission and sporadic acquisition, and to determine the proportion
of A. baumannii colonisation that was due to these two acquisition sources in the ICU setting
in Australia. This HMM framework allowed for imputation of unobserved transmission pro-
cess using only sparse data on the number of detected colonised patients.
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Methods
Study setting and data

The study setting was ICUs within three major tertiary hospitals in Melbourne, Victoria, Aus-
tralia. For the purposes of protecting the identity of the individual hospitals, they have been
relabelled Hospital 1, Hospital 2 and Hospital 3 in the present study. The number of ICU beds
in the three hospitals was 24, 13 and 32, respectively. At all three hospitals during the study
period (January 2000 to December 2004), standard precautions (hand hygiene, cleaning of
environment and equipment, use of gowns and gloves according to risk of body fluid exposure,
and safe handling and disposal of sharps) were used for patients colonised with susceptible A.
baumannii isolates; whereas contact precautions (use of gowns and gloves for all patient con-
tacts) were used in addition to standard precautions for those colonised with isolates resistant
to gentamicin or imipenem. No further infection control interventions were introduced in
Hospital 2; whereas two infection control liaison nurses were employed in the ICU in Hospital
1 by the end of the study period. Various infection control measures were introduced in the
ICU in Hospital 3 including passive surveillance and feedback, increased environmental clean-
ing, gowns and gloves for staff, revised antibiotic protocol, and increased infectious diseases
physician input. No active screening was performed at the three hospitals. A. baumannii colo-
nisation was identified by clinical specimens and recorded in an electronic database. The date
of ICU admission and discharge was also recorded. Genotype data were not available. This
study was approved by the Human Research Ethics Committee at each hospital, and has been
comprehensively described previously [7]. Written informed consent was not required; and
patient data were anonymised, de-identified and pooled prior to analysis [7].

The data used in the present study were the monthly incidence rates of adult patients who
were identified with A. baumannii colonisation from January 2000 to December 2004 derived
from the aforementioned study (Fig 1). The mean (range) number of detected colonised
patients in Hospital 1, 2 and 3 was 5 (0-21), 0 (0-2) and 6 (0-19) per month, respectively.

Mechanistic transmission model

We used the Susceptible-Infected model structure with admission and discharge to describe the
transmission dynamics of A. baumannii (Fig 2A) [13,14,22]. This model structure is a modified,
more parsimonious variant of the Ross-Macdonald model in which the healthcare worker com-
partment in the Ross-Macdonald model is replaced by the constant, 3 x (number of colonised
patients), where f3 is the transmission coefficient incorporating both direct and indirect transmis-
sion [20]. Within the model, patients were classified as being uncolonised (therefore susceptible)
or colonised with A. baumannii. The number of colonised patients (both detected and unde-
tected) is denoted by C. The number of uncolonised patients is N-C, assuming the ICU ward of
fixed size (N) and 100% bed occupancy rate. Acquisition of A. baumannii can occur due to trans-
mission between patients within the ward, defined as cross-transmission. This acquisition pro-
cess is determined by the cross-transmission coefficient 5 (per colonised per susceptible per day)
and described by the mass-action term SC(N — C) [14]. A. baumannii can also arise from spo-
radic acquisition, defined as colonisation already present at admission or any other process that
is independent of the number of colonised patients such as de novo colonisation from patient’s
gastrointestinal flora, and occurs at a rate v (per susceptible per day). To put these parameters
into clinical perspective, they can be converted into the average number of days required for one
secondary colonised case to occur using the following equations:
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The average number of days to colonisation due to cross-transmission for a susceptible indi-
vidual

1

=5c (1)

The average number of days required for one secondary colonisation arising from sporadic
acquisition for the whole ICU

1

TN Q) 2

Once colonised, patients are assumed to remain so for their entire stay [14,23]. As such, the
transition from colonised to uncolonised status occurs when a colonised patient is discharged
from the ward and replaced by an uncolonised patient, which occurs at a rate y. This discharge
rate was calculated as the inverse of length of stay (LOS), which was available from our dataset.
Changes in the number of colonised patients, C, over a small time increment, 4, have probabili-
ties that follow the first-order Markov process [14]. Such transition probabilities are governed
by the following equations:

Pr(C,, =i+ 1|C, =i = (N —i)vh+ (N —i)ifh + o(h);
Pr[C,,, =i—1|C, = i] = pih + o(h);

Pr[C,., = i|C, =i = 1 — (N — i)vh — (N — i)iBh — pih + o(h);
Pr[C,., =j(i#i—1,i,i+1)|C, =i] = o(h);

40 I I I I | I I I I
35 F - All hospitals combined J
Hospital 1
30 F  ceeeeernnees Hospital 2 -
— = = Hospital 3

Number of detected colonised patients (observations)

6 12 18 24 30 36 42 48 54 60

Time (months)
Fig 1. Monthly observed number of A. baumannii colonisation.

doi:10.1371/journal.pone.0132037.g001
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Fig 2. Mechanistic transmission model of A. baumannii (Fig 2A) and hidden Markov model (Fig 2B). 8, cross-transmission coefficient; C, number of
colonised patients; p, discharge rate; N, ward size; v, sporadic acquisition coefficient. In Fig 2B, the horizontal arrows represent the transition from one state
to the next. The vertical arrows represent the probability relationship between the hidden state (C) and the corresponding observation (Y).

doi:10.1371/journal.pone.0132037.g002

where o(h)s are additional probabilities which we assume to have low order magnitude that
can be neglected when h is small. The number of colonised patients (both detected and unde-
tected), C, at any given time ¢ is unknown, and forms a Markov process on state space S = {0, 1,
2,..,N}L

Hidden Markov model

We aimed to estimate the cross-transmission coefficient, f, and the sporadic acquisition coeffi-
cient, v, by fitting a structured HMM to the observed data. The HMM was used to accommo-
date the partially observed nature of the underlying transmission process in which, at a given
time ¢, only a proportion of colonised patients is observed and therefore recorded in our dataset
(i.e. observations); whereas the total number of colonised patients (both detected and unde-
tected) is unknown (i.e. hidden). The term “structured” means this underlying continuous-
time Markov chain is derived from the mechanistic transmission model as described above, in
which the process of acquiring colonisation is determined by the model parameters, fand v.
This HMM framework allows the hidden states to be inferred based on the number of
observations.

The HMM is illustrated in Fig 2B. It consists of the hidden states, C, and the number of
observations, Y, at each time point. This observation component of the HMM consists of 60
data inputs (Y=Y, Y5, ..., Y,,) of monthly incidence of A. baumannii colonisation over 5
years (n = 60) and a vector of time, t =, t,, . . ., t,,, corresponding to each observation. For
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each observation, there is one corresponding hidden state, denoted by C;, C,, . . ., C,.. The
probability of transition from one hidden state to another is determined by the transition prob-
ability matrix and illustrated as the horizontal arrows in Fig 2B. A detailed discussion of the
construction of the transition probability matrix can be found in McBryde et al. [14]. The num-
ber of hidden states at a given time t is conditional (probabilistically) on the corresponding
number of observations at that time, and is illustrated as the vertical arrows in Fig 2B. This
probability relationship is assumed to follow a binomial distribution Y; ~ Bin(Cy, d), where Y}
is the number of observed colonisation at time t;; Cy is the actual number of colonisation at
that time point (unobserved or hidden); and d is the probability of being known to be colonised
given that a patient is actually colonised. Prior information on d is limited, except that it is
between 0 and 1, and that the mean value of the sensitivity of swabbing methods reported in
the literature is 70% [24,25]. We allowed for this uncertainty by randomly drawing the value
for d from the beta (4.5, 2.5) distribution. A beta (1, 1) distribution was also assessed in sensi-
tivity analysis. The shapes of these distributions are shown in S1 Fig

Bayesian framework

A Bayesian framework within the HMM was used for estimating the cross-transmission coeffi-
cient, 3, and sporadic acquisition coefficient, v. Let GP = {B, v} be the vector of model parame-
ters. The posterior probability distributions of model parameters conditional on the dataset are
given by

Pr(0,]Y) o m(0)L(Y10,), (4)

where 7(0) is the prior distribution of model parameters and L(Y | 6,) is the likelihood of the
data given model parameters. Uniform U[0, 0.1] priors were assigned to  and v, because little
was known about these parameters except that negative values or values higher than 0.1 were
biologically implausible. The likelihood function, L(Y | 6,), is described in McBryde et al. [14].
The posterior probability distributions were estimated using the Markov chain Monte Carlo
algorithm. For each parameter, five Markov chains were constructed and run until convergence
was achieved. Convergence of the Markov chains was assessed using the Gelman-Rubin
method [26]. A Gelman-Rubin value of less than 1.1 was considered convergence [26]. The
Markov chain Monte Carlo algorithm is comprehensively described in McBryde et al. [14].
Methodological appendices are available upon request.

The basic reproduction ratio, Ry, is calculated as S(N — 1) / p. It is the average number of
secondary cases resulting from one single colonised individual in a totally susceptible popula-
tion [27]. We also aimed to estimate the proportion of colonisation that was acquired via
cross-transmission. The expected number of acquisition due to cross-transmission at time #;,
following time f; is BCx(N — Cy); whereas the total number of acquisition (both cross-transmis-
sion and sporadic acquisition) is SCt(N — Cy) + V(N — Cy). Therefore, the proportion of coloni-
sation that was due to cross-transmission, p, is approximated by

_ SLBGIN-G)
b= Be(N=c)+v(N=C,)

(5)

All analysis was performed using MATLAB (version R2013b, MathWorks, Natick, MA,
USA).
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Table 1. Comparison of different models.

Model Estimate of 8 x10™* Estimate of v x10™* BIC
(95% credible interval) (95% credible interval)

All hospitals combined (assuming homogeneity across hospitals regarding transmission)

One value for 8 and one value for v 50 (39-71) 21 (11-39) 897
B = 0; one value for v 0 279 (189-458) 1,284
v = 0; one value for 57 (46-88) 0 1,390
One value for v and two values for 8 with 38 (23—-54); 55 (40-90) 23 (11-53) 903
change point at the end of month 302

Two values for v and two values for 8 38 (26-53); 53 (40-84) 22 (10-55); 25 (11-57) 904
with change point at the end of month

30?2

Individual hospitals (assuming heterogeneity across hospitals regarding transmission)

One value for 8 and one value for v for Hospital 1: 71 (59-95) Hospital 1: 15 (5-36) 787
each hospital

Hospital 2: 1.7 (0.037-24) Hospital 2: 46 (25-83)
Hospital 3: 36 (29-49) Hospital 3: 4 (0.23—18)

BIC, Bayesian information criterion; 3, cross-transmission coefficient; v, sporadic acquisition coefficient.
3Data set suggested a marked increase in the number of colonised patients at month 30 of the study
period.

doi:10.1371/journal.pone.0132037.1001

Model selection

The Bayesian information criterion (BIC) was used for model selection, as previously shown to
be appropriate for Bayesian HMMs [28,29]. Briefly, it is a Bayesian method for model selection,
based on the trade-off between the model’s goodness of fit and the corresponding complexity
of the model [28,29]. The model with the lowest BIC value is preferred [28,29]. Table 1 shows
the various models that were evaluated.

Results

The BIC values of the different models evaluated are shown in Table 1. The models with only
either cross-transmission (v = 0) or sporadic acquisition (3 = 0) had the highest BIC values.
This provides statistical support for a mixed model in which A. baumannii colonisation can be
acquired via both cross-transmission and sporadically. The models that allowed for a change in
transmission coefficients just prior to a marked increase in the number of colonised patients as
observed in our data set (month 30, Fig 1) did not improve model fit. The model with fand v
estimated specifically for each hospital best fit the data. There is a good agreement between the
observed number of colonised patients (observations) and the predicted number of detected
colonised patients fitted through the HMM (predictions), further supporting that the model is
appropriate for explaining the data (Fig 3).

We estimated that 29% (7/24) and 28% (9/32) of patients in Hospital 1 and Hospital 3 were
colonised with A. baumannii at any given time point, respectively; whereas the prevalence esti-
mated for Hospital 2 was 4% (0.5/13) (hidden states, Fig 4). Estimates of the transmission
parameters are provided in Table 2. The estimated cross-transmission coefficient, 3, for Hospi-
tal 1,2 and 3 was 71x10™* (95% credible interval: 59-95x10~*), 1.7x10™* (0.037-24x10"*), and
36x107* (29-49x10~*), respectively. This means that, on average, each susceptible individual
in Hospital 1 and 3 will become colonised as a result of cross-transmission after 20 (95%

PLOS ONE | DOI:10.1371/journal.pone.0132037 July 1,2015 7/15



@‘PLOS | ONE

Transmission Dynamics of A. baumannii in ICUs

40

Number of detected colonised patients
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Fig 3. Observed number of colonised patients and predicted number of colonised patients in each month estimated by fitting the structured

hidden Markov model to the observations.

doi:10.1371/journal.pone.0132037.g003

credible interval: 15-24) days and 31 (23-38) days, respectively. We estimated that there was
no cross-transmission in Hospital 2.

The estimated value for the sporadic acquisition coefficient, v, for Hospital 1 was 15x10~*
(95% credible interval: 5-36x10~*). This means there is one new case due to sporadic acquisi-
tion every 39 (95% credible interval: 16-117) days for the whole ICU; whereas it only takes 17
(9-31) days to observe one new case from sporadic acquisition in Hospital 2 (v = 46x10™* [25-
83x10~*]). Hospital 3 had the lowest sporadic acquisition coefficient, requiring 109 (24-1,890)
days for one new case to arise from this acquisition route (v = 4x107*[0.23-18x10"*]). The
posterior probability distributions of 5 and v for each hospital are shown in Fig 5. There is a
weak negative correlation between f and v. The coefficient of correlation between f and v for
Hospital 1, 2 and 3 was -0.23, -0.15 and -0.22, respectively.

Differentiating between cross-transmission and sporadic acquisition is inherently difficult
because both increase the number of colonisation for a given constant number of observed
acquisition. Despite this, we were able to distinguish and quantify these two sources of
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Fig 4. Predicted number of hidden states (detected and undetected colonised patients).

doi:10.1371/journal.pone.0132037.9004

colonisation. By plotting the lines of equal importance of sporadic and cross-transmission
colonisation (i.e. each acquisition route is responsible for 50% of colonisation), defined by v =
BXCequitivrium> we showed that cross-transmission was the predominant route of colonisation in
Hospital 1 and 3; whereas sporadic acquisition was more important in Hospital 2 (Fig 6). Spe-
cifically, we estimated that cross-transmission was responsible for 96% (95% credible interval:
89-99%) and 98% (92-100%) of A. baumannii colonisation in Hospital 1 and 3, respectively
(Table 2). In contrast, only 1.6% (0-22%) of acquisition in Hospital 2 was due to cross-trans-
mission (Table 2). The estimated R, for Hospital 1, 2, and 3 was 1.5 (95% credible interval:
1.2-2),0.02 (0-0.2) and 1.6 (1.3-2.2), respectively (Table 2). There were modest changes in
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Table 2. Model parameters.

Parameters

Number of patients

Removal rate of colonised patients
Cross-transmission coefficient
Sporadic acquisition coefficient
Proportion of cross-transmission
Basic reproduction ratio

HMM, hidden Markov model.

doi:10.1371/journal.pone.0132037.t002

Symbol (unit) Value (95% credible interval) Source
Hospital 1 Hospital 2 Hospital 3
N (patients) 24 13 32 Data set
u (day™) 0.11 0.13 0.07 Data set
B (x107%) (/colonised/susceptible/day) 71 (59-95) 1.7 (0.037-24) 36 (29-49) Fitted using HMM
v (x10™%) (/susceptible/day) 15 (5-36) 46 (25-83) 4 (0.23-18) Fitted using HMM
P (%) 96 (89-99) 1.6 (0-22) 98 (92-100) Fitted using HMM
Ro 1.5 (1.2-2) 0.02 (0-0.2) 1.6 (1.3-2.2) Fitted using HMM

parameter estimates (Table 3) and their posterior distributions (S2 Fig) when a beta (1, 1) dis-
tribution was used for the probability of detection, d.

Discussion

Our study is the first to use mathematical modelling to characterise the transmission dynamics
of A. baumannii. Unlike the majority of previous models [12,17-19,30,31], we incorporated
sporadic acquisition, in addition to cross-transmission, to account for other potential sources
of colonisation. Using an HMM with a Bayesian framework, we were able to make inferences
about transmission parameters in the face of unobserved events and imperfect data. We esti-
mated that A. baumannii can be acquired both via cross-transmission and sporadically, with
the former responsible for the majority (96-98%) of colonisation in the endemic setting. While
there are limited data on the transmission dynamics of A. baumannii or other Gram-negative
organisms with which our results can be compared, Cooper and Lipsitch [22] and McBryde

et al. [14] found that cross-transmission was the major acquisition source of Gram-positive
organisms (methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci) in
their models. Our findings are of practical significance for setting infection control priorities in
hospitals. They suggest that infection control interventions that target cross-transmission such
as hand hygiene and contact precautions would have the potential to substantially reduce the
spread of A. baumannii. We found that the number of secondary cases infected by one single
colonised patient (R,) was above unity in Hospital 1 and 3 (1.5 and 1.6, respectively), emphasis-
ing the need for optimising infection control in these hospitals.

Several assumptions were made in our model due to the lack of data on various aspects of
the transmission dynamics of the pathogen. In the observation model, we described the proba-
bility relationship between the observations and the corresponding hidden states using a bino-
mial distribution. While other alternative observation models such as Poisson or negative
binomial distributions could have been used, the binomial distribution was chosen to ensure
that the number of hidden states (total number of colonised patients) is always higher than the
number of observations (detected colonised patients). Indeed, using the Poisson or negative
binomial distribution did not improve model fit (data not shown). Limited information is
available on the probability of being known to be colonised given that a patient is actually colo-
nised, d. We allowed for this uncertainty by randomly drawing the value for d from a beta dis-
tribution. This also allowed incorporation of the variability in detection efforts between the
hospitals and over time, on which we lacked data. Nevertheless, our results are robust to
changes in this variable. We assumed a constant discharge rate for each hospital, implying an
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model. B, cross-transmission coefficient; v, sporadic acquisition coefficient; p, proportion of colonisation due to cross-transmission.

doi:10.1371/journal.pone.0132037.9005

exponential distribution of LOS. Our data showed that the distribution of LOS was right-
skewed with a long tail and a mode close to zero, suggesting that the assumption of a constant

discharge rate was plausible. We assumed that patients, once colonised, remain so until dis-

charge. While within-ward loss of colonisation cannot be ruled out, it has been shown that col-
onised patients in the ICU setting typically remain so for their entire stay in the hospital [23].
In our model, changes in infection control practice were not considered because of the lack of

data. Further studies are needed to quantify the effects of such changes on the transmission

dynamics of A. baumannii. We assumed that uncolonised patients were equivalent with respect

to susceptibility to colonisation. Future models that allow for heterogeneity in susceptibility are

PLOS ONE | DOI:10.1371/journal.pone.0132037 July 1,2015

11/15



@’PLOS ‘ ONE

Transmission Dynamics of A. baumannii in ICUs

x107

0.01 T T r T 7

0.009 F Hospital 1 -
6

0.008 | .
0.007 F . 5

0.006 F HOSpltal% _ E
/___———--“'_'- 4

G 0.005F Hospital 3 , ]

’

0.004 / .

Q) 3
/ Hospital 1

0.003 ’ P ]

p pmmm T TTTTTTT 2
0.002 ’ s Hospital 3

r oo
0.001f ,/ 7 ' ]

,,% - ER=——>> Hospital 2

0 0.002 004 0.006 0.008 0.01

v

Fig 6. Contour plots of the likelihood of B8 (cross-transmission coefficient) and v (sporadic acquisition coefficient). The colours represent different
levels (as indicated in the colour bar) of the probability density of 8 and v estimates. The dashed lines indicate equality between cross-transmission and
sporadic acquisition (i.e. each acquisition route is responsible for 50% of colonisation). For each hospital, if the contour plot lies above the corresponding
equality line, cross-transmission is a more important route of colonisation than sporadic acquisition. If the contour plot is below the corresponding equality
line, sporadic acquisition is more important than cross-transmission.

doi:10.1371/journal.pone.0132037.9006

needed [23]. The interactions between community-acquired and hospital-acquired A. bauman-
nii should also be considered in future studies. However, extensive clinical data would be
required for such models. While we lacked genotyping data to verify our results, previous stud-
ies have shown that transmission dynamic models and genotyping approaches yielded compa-
rable estimates [14]. Model selection for HMM:s remains an unresolved methodological issue
[28]. We used the BIC for model selection as it has been demonstrated to have an adequate
behavior for HMMs [28,29]. Previous studies showed that the Akaike information criterion
(AIC) and the deviance information criterion (DIC) are also appropriate in this setting [14,32].
Nevertheless, the results of our model selection remain unchanged when the AIC or DIC was
considered (S1 Table).

Setting hospital infection control priorities is a matter of ensuring efficient allocation of
scarce resources. In this regard, it is generally agreed that infection control measures should be
tailored according to the importance of different acquisition routes [13]. In the absence of com-
prehensive epidemiological data, mathematical modelling appears to be the best alternative.
Our model framework is well suited to the hospital setting and has wide applicability. It is
appropriate for any hospital pathogen that can be carried asymptomatically, including other
Gram-negative organisms, of which transmission data are currently lacking. The transmission
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Table 3. Sensitivity of model outcomes to changes in the probability of detection, d.

Parameters beta (4.5, 2.5) distribution beta (1, 1) distribution
median (95% credible interval) median (95% credible interval)

Cross-transmission coefficient, 8 (x10~%)

Hospital 1 71 (59-95) 83 (60-164)
Hospital 2 1.7 (0.037-24) 1.3 (0.05-38)
Hospital 3 36 (29-49) 42 (29-86)
Sporadic acquisition coefficient, v (x107%)
Hospital 1 15 (5-36) 13 (3.2-43)
Hospital 2 46 (25-83) 62 (31-118)
Hospital 3 4 (0.23-18) 3(0.2-47)
Proportion of acquisition due to cross-transmission, p (%)
Hospital 1 96 (89-99) 98 (90-100)
Hospital 2 1.6 (0-22) 1.1 (0-30)
Hospital 3 98 (92-100) 99 (87-100)
Basic reproduction ratio, Rg
Hospital 1 1.5 (1.2-2) 2 (1.4-4)
Hospital 2 0.02 (0-0.2) 0.01 (0-0.38)
Hospital 3 1.6 (1.3-2.2) 1.9 (1.3-4)

doi:10.1371/journal.pone.0132037.t003

parameters estimated in our study will be useful for simulation studies that require such infor-
mation, for example studies considering the impact of infection control measures.

Supporting Information

S1 Fig. Shapes of beta (4.5, 2.5) and beta (1, 1) distributions for the probability of detec-
tion, d.
(TIF)

S2 Fig. Posterior probability density of parameter estimates using beta (1, 1) distribution
for the probability of detection, d, in the observation model. j, cross-transmission coeffi-
cient; v, sporadic acquisition coefficient; p, proportion of colonisation due to cross-transmis-
sion.

(TIF)

S1 Table. Comparison of the results of different model selection methods
(DOC)

Acknowledgments

Preliminary data of this work were presented at the 54™ Interscience Conference on Antimi-
crobial Agents and Chemotherapy, Washington DC, USA, September 2014, abstract K-1673.

Author Contributions

Conceived and designed the experiments: TND DCMK CM CMJK ESM. Performed the exper-
iments: TND ESM. Analyzed the data: TND ESM. Wrote the paper: TND DCMK CMJK ESM.
Interpreted the study results: TND DCMK CM CMJK ESM.

PLOS ONE | DOI:10.1371/journal.pone.0132037 July 1,2015 13/15


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0132037.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0132037.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0132037.s003

@’PLOS ‘ ONE

Transmission Dynamics of A. baumannii in ICUs

References

1.

10.

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

Consales G, Gramigni E, Zamidei L, Bettocchi D, de Gaudio AR. A multidrug-resistant Acinetobacter
baumannii outbreak in intensive care unit: antimicrobial and organizational strategies. J Crit Care.
2011; 26: 453-459. doi: 10.1016/j.jcrc.2010.12.016 PMID: 21439763

Brusselaers N, Vogelaers D, Blot S. The rising problem of antimicrobial resistance in the intensive care
unit. Ann Intensive Care. 2011; 1:47.doi: 10.1186/2110-5820-1-47 PMID: 22112929

Playford EG, Craig JC, Iredell JR. Carbapenem-resistant Acinetobacter baumannii in intensive care
unit patients: risk factors for acquisition, infection and their consequences. J Hosp Infect. 2007; 65:
204-211. doi: 10.1016/j.jhin.2006.11.010 PMID: 17254667

Dent LL, Marshall DR, Pratap S, Hulette RB. Multidrug resistant Acinetobacter baumannii: a descriptive
study in a city hospital. BMC Infect Dis. 2010; 10: 196. doi: 10.1186/1471-2334-10-196 PMID:
20609238

Grupper M, Sprecher H, Mashiach T, Finkelstein R. Attributable mortality of nosocomial Acinetobacter
bacteremia. Infect Control Hosp Epidemiol. 2007; 28: 293-298. doi: 10.1086/512629 PMID: 17326019

Falagas ME, Bliziotis IA, Siempos Il. Attributable mortality of Acinetobacter baumannii infections in criti-
cally ill patients: a systematic review of matched cohort and case-control studies. Crit Care. 2006; 10:
R48. doi: 10.1186/cc4869 PMID: 16563184

Marshall C, Richards M, Black J, Sinickas V, Dendle C, Korman T, et al. A longitudinal study of Acineto-
bacter in three Australian hospitals. J Hosp Infect. 2007; 67: 245-252. doi: 10.1016/j.jhin.2007.08.011
PMID: 17942187

Vincent JL, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, et al. International study of the preva-
lence and outcomes of infection in intensive care units. JAMA. 2009; 302: 2323-2329. doi: 10.1001/
jama.2009.1754 PMID: 19952319

Sengstock DM, Thyagarajan R, Apalara J, Mira A, Chopra T, Kaye KS. Multidrug-resistant Acinetobac-
ter baumannii: an emerging pathogen among older adults in community hospitals and nursing homes.
Clin Infect Dis. 2010; 50: 1611-1616. doi: 10.1086/652759 PMID: 20462357

Wadl M, Heckenbach K, Noll |, Ziesing S, Pfister W, Beer J, et al. Increasing occurrence of multidrug-
resistance in Acinetobacter baumannii isolates from four German University Hospitals, 2002—2006.
Infection. 2010; 38: 47-51. doi: 10.1007/s15010-009-9225-x PMID: 20108161

Vilacoba E, Almuzara M, Gulone L, Rodriguez R, Pallone E, Bakai R, et al. Outbreak of extensively
drug-resistant Acinetobacter baumannii indigo-pigmented strains. J Clin Microbiol. 2013; 51: 3726—
3730. doi: 10.1128/JCM.01388-13 PMID: 23985923

D'Agata EM, Horn MA, Ruan S, Webb GF, Wares JR. Efficacy of infection control interventions in
reducing the spread of multidrug-resistant organisms in the hospital setting. PLOS ONE. 2012; 7:
€30170. doi: 10.1371/journal.pone.0030170 PMID: 22363420

Pelupessy |, Bonten MJ, Diekmann O. How to assess the relative importance of different colonization
routes of pathogens within hospital settings. Proc Natl Acad Sci USA. 2002; 99: 5601-5605. doi: 10.
1073/pnas.082412899 PMID: 11943870

McBryde ES, Pettitt AN, Cooper BS, McElwain DL. Characterizing an outbreak of vancomycin-resistant
enterococci using hidden Markov models. J R Soc Interface. 2007; 4: 745-754. doi: 10.1098/rsif.2007.
0224 PMID: 17360254

Armand-Lefevre L, Angebault C, Barbier F, Hamelet E, Defrance G, Ruppe E, et al. Emergence of imi-
penem-resistant gram-negative bacilli in intestinal flora of intensive care patients. Antimicrob Agents
Chemother. 2013; 57; 1488—1495. doi: 10.1128/AAC.01823-12 PMID: 23318796

Jit M, Brisson M. Modelling the epidemiology of infectious diseases for decision analysis: a primer.
Pharmacoeconomics. 2011; 29: 371-386. doi: 10.2165/11539960-000000000-00000 PMID:
21504239

Wang X, Xiao Y, Wang J, Lu X. A mathematical model of effects of environmental contamination and
presence of volunteers on hospital infections in China. J Theor Biol. 2012; 293: 161-173. doi: 10.1016/
}.jtbi.2011.10.009 PMID: 22024632

Christopher S, Verghis RM, Antonisamy B, Sowmyanarayanan TV, Brahmadathan KN, Kang G, et al.
Transmission dynamics of methicillin-resistant Staphylococcus aureus in a medical intensive care unit
in India. PLOS ONE. 2011; 6: €20604. doi: 10.1371/journal.pone.0020604 PMID: 21750700

Chamchod F, Ruan S. Modeling methicillin-resistant Staphylococcus aureus in hospitals: transmission
dynamics, antibiotic usage and its history. Theor Biol Med Model. 2012; 9: 25. doi: 10.1186/1742-
4682-9-25 PMID: 22738359

Doan TN, Kong DCM, Kirkpatrick CMJ, McBryde ES. Optimizing hospital infection control: the role of
mathematical modeling. Infect Control Hosp Epidemiol. 2014; 35: 1521-1530. doi: 10.1086/678596
PMID: 25419775

PLOS ONE | DOI:10.1371/journal.pone.0132037 July 1,2015 14/15


http://dx.doi.org/10.1016/j.jcrc.2010.12.016
http://www.ncbi.nlm.nih.gov/pubmed/21439763
http://dx.doi.org/10.1186/2110-5820-1-47
http://www.ncbi.nlm.nih.gov/pubmed/22112929
http://dx.doi.org/10.1016/j.jhin.2006.11.010
http://www.ncbi.nlm.nih.gov/pubmed/17254667
http://dx.doi.org/10.1186/1471-2334-10-196
http://www.ncbi.nlm.nih.gov/pubmed/20609238
http://dx.doi.org/10.1086/512629
http://www.ncbi.nlm.nih.gov/pubmed/17326019
http://dx.doi.org/10.1186/cc4869
http://www.ncbi.nlm.nih.gov/pubmed/16563184
http://dx.doi.org/10.1016/j.jhin.2007.08.011
http://www.ncbi.nlm.nih.gov/pubmed/17942187
http://dx.doi.org/10.1001/jama.2009.1754
http://dx.doi.org/10.1001/jama.2009.1754
http://www.ncbi.nlm.nih.gov/pubmed/19952319
http://dx.doi.org/10.1086/652759
http://www.ncbi.nlm.nih.gov/pubmed/20462357
http://dx.doi.org/10.1007/s15010-009-9225-x
http://www.ncbi.nlm.nih.gov/pubmed/20108161
http://dx.doi.org/10.1128/JCM.01388-13
http://www.ncbi.nlm.nih.gov/pubmed/23985923
http://dx.doi.org/10.1371/journal.pone.0030170
http://www.ncbi.nlm.nih.gov/pubmed/22363420
http://dx.doi.org/10.1073/pnas.082412899
http://dx.doi.org/10.1073/pnas.082412899
http://www.ncbi.nlm.nih.gov/pubmed/11943870
http://dx.doi.org/10.1098/rsif.2007.0224
http://dx.doi.org/10.1098/rsif.2007.0224
http://www.ncbi.nlm.nih.gov/pubmed/17360254
http://dx.doi.org/10.1128/AAC.01823-12
http://www.ncbi.nlm.nih.gov/pubmed/23318796
http://dx.doi.org/10.2165/11539960-000000000-00000
http://www.ncbi.nlm.nih.gov/pubmed/21504239
http://dx.doi.org/10.1016/j.jtbi.2011.10.009
http://dx.doi.org/10.1016/j.jtbi.2011.10.009
http://www.ncbi.nlm.nih.gov/pubmed/22024632
http://dx.doi.org/10.1371/journal.pone.0020604
http://www.ncbi.nlm.nih.gov/pubmed/21750700
http://dx.doi.org/10.1186/1742-4682-9-25
http://dx.doi.org/10.1186/1742-4682-9-25
http://www.ncbi.nlm.nih.gov/pubmed/22738359
http://dx.doi.org/10.1086/678596
http://www.ncbi.nlm.nih.gov/pubmed/25419775

@’PLOS ‘ ONE

Transmission Dynamics of A. baumannii in ICUs

21.

22,

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

Donskey CJ. Antibiotic regimens and intestinal colonization with antibiotic-resistant gram-negative
bacilli. Clin Infect Dis. 2006; 1: S62—-S69. doi: 10.1086/504481

Cooper B, Lipsitch M. The analysis of hospital infection data using hidden Markov models. Biostatistics.
2004; 5:223-237. doi: 10.1093/biostatistics/5.2.223 PMID: 15054027

Arvaniti K, Lathyris D, Ruimy R, Haidich A-B, Koulourida V, Nikolaidis P, et al. The importance of coloni-
zation pressure in multiresistant Acinetobacter baumannii acquisition in a Greek intensive care unit.
Crit Care. 2012; 16: R102. doi: 10.1186/cc11383 PMID: 22694969

Doi Y, Onuoha EO, Adams-Haduch JM, Pakstis DL, McGaha TL, Werner CA, et al. Screening for Aci-
netobacter baumannii colonization by use of sponges. J Clin Microbiol. 2011; 49: 154—158. doi: 10.
1128/JCM.01043-10 PMID: 20980559

Thom KA, Howard T, Sembajwe S, Harris AD, Strassle P, Caffo BS, et al. Comparison of swab and
sponge methodologies for identification of Acinetobacter baumannii from the hospital environment. J
Clin Microbiol. 2012; 50: 2140-2141. doi: 10.1128/JCM.00448-12 PMID: 22461673

Link WA, Barker RJ. Bayesian inference. 1sted. London: Elsevier; 2010.

Keeling MJ, Danon L. Mathematical modelling of infectious diseases. Br Med Bull. 2009; 92: 33—42.
doi: 10.1093/bmb/Idp038 PMID: 19855103

Costa M, de Angelis L. Model selection in hidden Markov models: a simulation study. Quaderni di
Dipartimento. 2010; n7: ISSN 1973-9346. http://amsacta.unibo.it/2909/1/Quaderni_2010_7_
FanelliDeAngelis_Model.pdf. Published 2010. Accessed January 15, 2015.

Nylund KL, Asparouhov T, Muthen BO. Deciding on the number of classes in latent class analysis and
growth mixture modeling: a Monte Carlo simulation study. Struct Equ Modeling. 2007; 14: 535:569.

Raboud J, Saskin R, Simor A, Loeb M, Green K, Low DE, et al. Modeling transmission of methicillin-
resistant Staphylococcus aureus among patients admitted to a hospital. Infect Control Hosp Epidemiol.
2005; 26:607-615. doi: 10.1086/502589 PMID: 16092740

D'Agata EM, Magal P, Olivier D, Ruan S, Webb GF. Modeling antibiotic resistance in hospitals: the
impact of minimizing treatment duration. J Theor Biol. 2007; 249: 487—499. doi: 10.1016/j.jtbi.2007.08.
011 PMID: 17905310

Lin TH, Dayton CM. Model selection information criteria for non-nested latent class models. J Educ
Behav Stat. 1997; 22: 249-264. doi: 10.2307/1165284

PLOS ONE | DOI:10.1371/journal.pone.0132037 July 1,2015 15/15


http://dx.doi.org/10.1086/504481
http://dx.doi.org/10.1093/biostatistics/5.2.223
http://www.ncbi.nlm.nih.gov/pubmed/15054027
http://dx.doi.org/10.1186/cc11383
http://www.ncbi.nlm.nih.gov/pubmed/22694969
http://dx.doi.org/10.1128/JCM.01043-10
http://dx.doi.org/10.1128/JCM.01043-10
http://www.ncbi.nlm.nih.gov/pubmed/20980559
http://dx.doi.org/10.1128/JCM.00448-12
http://www.ncbi.nlm.nih.gov/pubmed/22461673
http://dx.doi.org/10.1093/bmb/ldp038
http://www.ncbi.nlm.nih.gov/pubmed/19855103
http://amsacta.unibo.it/2909/1/Quaderni_2010_7_FanelliDeAngelis_Model.pdf
http://amsacta.unibo.it/2909/1/Quaderni_2010_7_FanelliDeAngelis_Model.pdf
http://dx.doi.org/10.1086/502589
http://www.ncbi.nlm.nih.gov/pubmed/16092740
http://dx.doi.org/10.1016/j.jtbi.2007.08.011
http://dx.doi.org/10.1016/j.jtbi.2007.08.011
http://www.ncbi.nlm.nih.gov/pubmed/17905310
http://dx.doi.org/10.2307/1165284

