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Abstract 

 
Hematoxylin and eosin (H&E) is a common and inexpensive histopathology assay. Though 
widely used and information-rich, it cannot directly inform about specific molecular markers, 
which require additional experiments to assess. To address this gap, we present ROSIE, a 
deep-learning framework that computationally imputes the expression and localization of 
dozens of proteins from H&E images. Our model is trained on a dataset of over 1000 paired and 
aligned H&E and multiplex immunofluorescence (mIF) samples from 20 tissues and disease 
conditions, spanning over 16 million cells. Validation of our in silico mIF staining method on 
held-out H&E samples demonstrates that the predicted biomarkers are effective in identifying 
cell phenotypes, particularly distinguishing lymphocytes such as B cells and T cells, which are 
not readily discernible with H&E staining alone. Additionally, ROSIE facilitates the robust 
identification of stromal and epithelial microenvironments and immune cell subtypes like tumor-
infiltrating lymphocytes (TILs), which are important for understanding tumor-immune interactions 
and can help inform treatment strategies in cancer research. 
 

Introduction 

H&E staining is ubiquitously used in clinical histopathology due to its affordability, accessibility, 
and effectiveness for discerning clinically relevant features. While H&E readily identifies nuclear 
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and cytoplasmic morphology, its utility is limited in revealing more complex molecular 
information associated with modern precision medicine (1). Pathologists can identify diverse cell 
types from H&E staining alone; however, computational approaches to annotating H&E images 
only distinguish a few broad cell categories, such as endothelial, epithelial, stromal, and immune 
cells (2–4). These methods are valuable for detecting tumors and identifying basic structural 
features but are limited in revealing detailed aspects of the cellular microenvironment, such as 
protein expression profiles, disease signatures, or the specific identity of immune cells like 
lymphocytes. 

In contrast, multi-plex immunofluorescence (mIF) imaging techniques such as Co-Detection by 
Indexing (CODEX) and immunohistochemistry (IHC) enable in situ detection of dozens of 
proteins simultaneously. This capability allows for the exploration of richer tissue 
microenvironments, offering insights that are unattainable through H&E staining alone (5–8). 
However, the application of CODEX and similar mIF techniques is limited by high costs, time-
intensive protocols, and lack of adoption in clinical labs, making them less feasible for routine 
use (9). 

In this work, we present ROSIE (RObust in Silico Immunofluorescence from H&E images), a 
framework for in silico mIF staining based on an H&E-stained input image. We train a deep 
learning model on a dataset of over 1,000 tissue samples co-stained with H&E and CODEX. 
This dataset, comprising nearly 30 million cells, is the largest of its kind to date and significantly 
surpasses the scale of previous studies, which typically focus on data from a single clinical site 
or a limited number of stains. Our findings demonstrate that the proposed method can robustly 
predict and spatially resolve dozens of proteins from H&E stains alone. 

We validate the biological accuracy of these in silico-generated protein expressions by 
employing them in detailed cell phenotyping and the discovery of tissue structures such as 
stromal and epithelial tissues. Our approach enables the identification of immune cell subtypes, 
including B cells and T cell subtypes that are not discernible by H&E staining alone, thus 
offering a powerful tool for enhancing the diagnostic and research potential of standard 
histopathological practices. 

Related works 
 
Recent advancements in training histopathology foundation models (10–12) have demonstrated 
that models trained on large, diverse sets of histology images in an unsupervised manner can 
yield strong performance when adapted to downstream tasks like predicting tissue types and 
disease diagnosis and prognosis. While foundation models can learn intricate biological features 
within the distribution of H&E images, they still need to be explicitly trained on other imaging 
modalities and molecular information to be adapted for generative methods like in silico staining. 
 
Previous works in predicting immunostains from H&E have typically focused on small paired or 
unpaired datasets and imputing up to several biomarkers at once. To start, VirtualMultiplexer is 
a GAN-based method for predicting 6-plex IHC stains (13) using unpaired H&E and IHC 
samples. The limitation of using unpaired samples is that validation of predictions is limited to 
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qualitative or visual assessments. Several methods have been trained on paired (adjacent slice) 
datasets, such as: Multi-V-Stain (14)), which predicts a 10-plex mIMC panel on 336 melanoma 
samples; DeepLIIF (15) which predicts 3-plex mIHC on one sample; and other GAN-based 
methods for predicting single or several biomarkers (16), (17–21). (22) predict two IHC 
biomarkers on brain tissue. Compared with paired samples, co-stained (or same slice) samples 
allow for direct pixel-level alignment and prediction from H&E to immunostain; to this end, 
HEMIT (3-plex mIHC) (23) and vIHC (1-plex mIHC) both are trained on co-stained samples but 
are also limited to evaluation on a single sample. (24) focus on predicting a transcriptomics 
panel (1000 genes) using 4 co-stained samples. Specific to multiplexed immunofluorescence, 7-
UP (25) used a small 7-plex panel to predict over 30 biomarkers. (26) use autofluorescence and 
DAPI channels to infer seven biomarkers. 
 
Our method improves upon this previous body of work in several ways. First, we train and 
evaluate the largest co-stained H&E and immunostaining dataset with over 1000 samples. 
Second, whereas previous datasets were limited to one or several tissue types, our dataset 
spans ten body areas and disease types. Third, whereas previous works focus on visual or 
quantitative metrics of expression prediction only, ours demonstrates the usefulness of the 
predicted expressions for cell phenotyping and tissue structure discovery. Finally, instead of 
using difficult-to-train adversarial methods, we use a straightforward single MSE objective for 
training our model. 

Results 

 
A comprehensive, diverse dataset of co-stained tissue samples 
We introduce a first-of-its-kind training and evaluation dataset of 23 studies spanning nearly 
30M cells, over 2000 samples, and 259M unique patches (Figure 1A, Table 1; see 
Supplementary Materials for dataset details). All studies are on tissue samples with H&E and 
CODEX co-staining on the exact same samples. We hold out four studies for evaluation while 
training and validating with the remaining nineteen. All datasets consist of tissue microarray 
(TMA) cores (average 10K cells per core) except UChicago-DLBCL, which contains full slide 
samples (average 1.5M cells per slide). Stanford-PGC is a study of patients with pancreatic and 
gastrointestinal cancer from Stanford Healthcare. Ochsner-CRC is a study of patients with 
colorectal cancer from Ochsner Medical Center. Tuebingen-GEJ is a study of patients with 
cancer in the gastroesophageal junction from Tübingen University Hospital. UChicago-DLBCL is 
a study of patients with diffuse large B-cell lymphoma from the University of Chicago Medical 
Center. 

 
Generative deep learning model for inferring protein expression from H&E stains 
ROSIE is a framework for in silico staining on a sample based on an H&E image. Using a 
ConvNext (27) convolutional neural network (CNN) architecture, ROSIE operates on the patch 
level: given an input 128x128 pixel patch, it produces a prediction for the average expressions 
of the biomarker panel across the center 8x8 pixels (Figure 1B). Using a sliding window with an 
8px step size, we iteratively generate predictions on all 8x8 pixel patches within a sample, then 
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stitch together predictions to produce a whole, contiguous image. ROSIE can be run with 
smaller sliding window sizes, down to 1px for native resolution outputs (see Figure S6 for 
examples). Due to computational tradeoffs, analyses performed in this paper are on the 
standard 8px sliding window setting. Although Vision Transformer (ViT) models (28) have 
recently gained traction as top-performing histopathology foundation models, we find that 
ConvNext outperforms several ViT models despite its smaller size (Table S1). 
 
A total of 148 unique biomarkers are represented across all studies. We constrain our method to 
predict the top 50 biomarkers by prevalence. While all evaluation studies are stained with these 
50 biomarkers, some studies used in training do not; in these cases, only the subset of 
biomarkers present in this set are used. The full biomarker set that the model is trained to 
predict includes (in order of prevalence): 
 
DAPI, CD45, CD68, CD14, PD1, FoxP3, CD8, HLA-DR, PanCK, CD3e, CD4, aSMA, CD31, 
Vimentin, CD45RO, Ki67, CD20, CD11c, Podoplanin, PDL1, GranzymeB, CD38, CD141, CD21, 
CD163, BCL2, LAG3, EpCAM, CD44, ICOS, GATA3, Gal3, CD39, CD34, TIGIT, ECad, CD40, 
VISTA, HLA-A, MPO, PCNA, ATM, TP63, IFNg, Keratin8/18, IDO1, CD79a, HLA-E, CollagenIV, 
CD66 

 
ROSIE accurately predicts protein biomarker expressions 
 
When applying ROSIE to the four evaluation datasets, we report a Pearson R correlation of 
0.285, a Spearman R correlation of 0.352, and a sample-level C-index of 0.706 when comparing 
the ground truth and computationally generated expressions across all 50 biomarkers in all four 
datasets (Table 2). Whereas the Pearson correlation indicates a linear predictive relationship, 
the Spearman R and C-index indicate the usefulness of the predicted expressions in clinical 
tasks that involve ordering cells or samples by expressing a certain biomarker (e.g., identifying 
immune markers in a cancer patient cohort). C-index refers to the concordance index computed 
on the sample level using the 75th percentile expression value as a threshold. A C-index of 0.5, 
for instance, indicates random chance. We show that our method significantly outperforms two 
baseline methods: H&E expression, which uses the average intensity across RGB channels as 
a direct proxy for protein expression for every biomarker, is intended to test whether our 
predictive accuracy is simply due to recapitulating the staining signal; and cell morphology, 
which uses morphology features derived from the cell segmentations in addition to the three 
RGB channels as inputs to a multi-layer perceptron (MLP) neural network trained to predict 
protein expression, is intended as a representative machine learning model that uses common 
H&E-derived features as input. Both baseline methods reported near-at-random performance 
based on the three evaluation metrics. Figure 1C visualizes an exemplar predicted sample with 
a representative seven biomarker panel.  
 
ROSIE generates highly accurate full-sample CODEX images and recapitulates salient visual 
features across representative immune and structural biomarker panels (Figure 2A). To 
illustrate the robustness of ROSIE across a range of predictions including relatively low-
performing ones, we display side-by-side predicted and ground truth samples drawn from the 
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99th, 75th, 50th, and 25th percentiles of performance (by Pearson R) in the Stanford-PGC 
dataset. Figure 2B shows the Pearson R score for each of the 50 predicted biomarkers 
averaged across all evaluation datasets. We also visualize every single biomarker individually 
(Figure S1) from Stanford-PGC (median samples by Pearson R), along with their distributions 
by Pearson R (Figure S2) and scores on rank tests (Spearman R and C-index, Figure S3). 
 
Generalization to unseen studies and disease types 
ROSIE performs robustly even when evaluated on samples from clinical sites and disease types 
never seen during training. When evaluated on Ochsner-CRC and Tubingen-GEJ, two studies 
whose samples and disease types do not appear in the training dataset, ROSIE reports 
comparable average performance to Stanford-PGC: a Pearson R of 0.241 (vs. 0.319 on 
Stanford-PGC), Spearman R of 0.283 (vs. 0.386 on Stanford-PGC), and a sample-level C-index 
of 0.633 (vs. 0.694 on Stanford-PGC) across all 50 biomarkers (see Table 2). We confirm these 
results visually in Figure 2C which contains median samples (by Pearson R) from three other 
evaluation datasets (Ochsner-CRC, Tuebingen-GEJ, and UChicago-DLBCL) with the same 
representative immune and structural biomarker panels.  
 
A simple metric for postprocessing and filtering in silico staining quality 
Batch effects, or variations across histopathology samples due to factors like staining quality, 
tissue type, and artifacts, can significantly affect deep learning model generalizability (29, 30). It 
is desirable, therefore, to be able to predict which samples might be of lower quality due to 
batch effects and exclude them from downstream analyses.  
To this end, we introduce two simple but effective heuristics for scoring predicted samples on 
staining quality: dynamic range, which is a measure of the difference between the 99th and 1st 
percentile values in a biomarker stain; and W1 distance, which is the average Wasserstein 
distance between a test H&E image’s histogram distribution and all histogram distributions from 
the training H&E image dataset. Figure S6 shows the effect of applying each quality filter to the 
four evaluation datasets: using the median as a cutoff for out-of-distribution samples, the 
average Pearson R score increases from 0.285 to 0.312 using W1 distance and to 0.336 using 
the dynamic range. Panel A of Figure S6 illustrates the relationship between the dynamic range 
and Pearson R score. Panel B likewise shows the relationship between the predicted 
Wasserstein distance and Pearson R score. 
 
Biomarker predictions are useful for cell and tissue phenotyping 
Given that the protein biomarker expressions generated by ROSIE are highly correlated with 
ground truth measurements, we validate their biological and clinical usefulness by using them in 
phenotyping cells. To do this, we first train a nearest-neighbor algorithm to predict annotated 
cell labels on the ground truth CODEX biomarker expressions. Then, we input the biomarker 
expressions generated by ROSIE into the algorithm to produce cell type predictions. ROSIE can 
predict seven cell types (B cells, Endothelial cells, Epithelial cells, Fibroblasts, Macrophages, 
Neutrophils, and T cells) significantly better than a model using cell morphology and H&E RGB 
channels as inputs (cell morphology) or randomly assigning cell types according to average 
sample proportions (bulk phenotyping) (Figure 3). Further analyses show strong B and T cell 
differentiation from the cell type classification confusion matrix (Figure S4). Furthermore, we 
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perform cell phenotyping on the Ochsner-CRC dataset and find that the labels produced by the 
ROSIE-generated biomarkers performed comparably to Stanford-PGC (average F1 of 0.411 vs. 
0.507, respectively) (Table S2 and Figure S4). 
 
We are interested in whether these predictions validate therapeutically relevant distinctions 
between tissues. Different tissue types are typically known to be immunologically “hot”, 
indicating greater immune cell presence and infiltration, or “cold”, implying less immune cell 
activity. For instance, colorectal cancer (e.g. Stanford-PGC dataset) is known to be “cold” while 
pancreatic cancer (e.g. Ochsner-CRC dataset) is known to be “hot” (31, 32). Indeed, our results 
reflect this immunological validity check, with the immunologically “colder” Stanford-PGC having 
a lower predicted average proportion of T cells per sample of 20.0% (vs. 21.1% ground truth) 
and the immunologically “hotter” Ochsner-CRC having 40.1% T cells per sample (vs. 30.6% 
ground truth).  
 
We also extend our method beyond single-cell phenotyping and demonstrate its effectiveness in 
identifying tissue structures within a sample. We use a top-performing tissue structure 
identification algorithm, SCGP (33), which projects the acquired tissue sample into a graph, with 
nodes as cells and edges as neighboring cell pairs. Using this graph structure, the algorithm 
performs unsupervised clustering to discover tissue structures based on the ground truth and 
ROSIE-generated biomarker expressions separately. Figure 4 shows structures discovered in 
several samples and the reported Adjusted Rand Index (ARI) and F1 scores by comparing the 
ground truth and generated expressions. Our method achieves average ARI and F1 scores of 
0.475 and 0.624, respectively, and is significantly higher than a baseline method of expressions 
generated from a three-layer neural network using cell morphology features derived from cell 
segmentations and mean H&E RGB values as inputs (ARI of 0.105 and F1 of 0.229). Full 
scores are reported in Figure S8. 
 
Additionally, we use the ROSIE-generated expressions to identify two cell neighborhood 
phenotypes of interest: tumor-infiltrating lymphocytes (TILs) and lymphocyte neighboring 
epithelial cells (LNEs). These cell types are defined by their cellular niche and their biomarker 
expression profile: TILs are lymphocytes that reside in epithelial tissues, and LNEs are epithelial 
cells that neighbor lymphocytes. Figure 5 shows that the predicted proportions of TILs and 
LNEs per sample in the Stanford-GPC test dataset are highly correlated with the ground truth-
derived proportions (Pearson R of 0.805 and 0.598 and Spearman R of 0.329 and 0.575 for 
TILs and LNEs, respectively), suggesting that the ROSIE-generated expressions may be useful 
for clinical tasks that involve estimating or ordering samples in a patient cohort by the presence 
of specific biomarkers, cells, or cell interactions. 
 

Discussion 
 
Our study aims to bridge the gap between abundant, inexpensive H&E staining and the rich but 
more costly molecular information provided by multiplex immunofluorescence (mIF) staining. 
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The primary question we shed light on is the extent to which H&E stains embed molecular 
hallmarks and features that could be computationally extracted. Our results indicate that 
although H&E staining has been traditionally limited in identifying few cell phenotypes, its 
structural and morphological features indeed contain significant information about protein 
expressions when analyzed with deep learning generative AI methods. This suggests that H&E 
staining has unrealized potential for use in clinical decisions that traditionally require more 
complex and expensive assays. Although prior work has focused on imputing up to several 
markers at a time, our study is the first to use deep learning to learn the relationship between 
H&E and up to 50 protein biomarkers at once. This setting now enables a more comprehensive 
view of the tissue microenvironment and offers more nuanced insights into specific tumor and 
immune cellular phenotypes.  
 
Recent advances in Transformer architecture-based foundation models trained on 
histopathology images (10, 12, 34) show promise when adapted and fine-tuned on a wide range 
of clinical downstream tasks. However, our results indicate that such models still underperform 
our significantly smaller convolutional neural network. For instance, a ViT-L/16 Transformer 
model with over 300M parameters pre-trained on histopathology images still did not perform as 
well as ConvNext, a 50M parameter CNN pre-trained on non-pathology images. We offer 
several potential explanations for this counterintuitive finding: First, the inductive biases of 
convolutional operations in CNNs are better suited for extracting local contextual features from 
patch-based histology imaging; second, larger foundation models are harder to train and may 
overfit easier to the training data—indeed, we observed that the performance of the larger 
Vision Transformer models plateaus earlier in the process than compared to a CNN. This result 
suggests the importance of future research in analyzing when large foundation models are more 
appropriate than smaller CNNs. 
 
One focus of our study is on the rank correlation of our generated expressions and cellular 
phenotypes. Strong rank correlations suggest that the generated biomarkers are useful in 
clinical settings where the relative ordering of the presence of a biomarker or phenotype is 
important, e.g., finding patients that are the most receptive to a therapy, or predicting patient 
prognosis based on a specific biomarker. For instance, we observe that while our model can 
effectively predict cell neighborhood phenotypes (TILs and lymphocyte neighboring epithelial 
cells), these predictions also exhibit biases in over- or under-predicting the proportion or counts 
of these phenotypes. Despite these biases, the relative ordering of these phenotypes is still 
largely maintained and thus is still useful in the settings mentioned above. 
 
Inter-batch effects due to staining technique, quality, and machinery are known to cause 
variations in the image statistics of H&E stains. Since predictions generated on H&E stains that 
significantly deviate from the training data are expected to perform worse, we propose two 
methods for quantifying the quality of generated mIF stains. We demonstrate that computing the 
dynamic range of predicted expressions and calculating the Wasserstein distance between 
training and generated data image histograms both correlate well with the empirical prediction 
accuracy. We believe these can be valuable tools that accompany our deep learning framework, 
allowing users to determine their clinically acceptable range of stain generation quality. 
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We acknowledge several limitations with our data and framework. Though we perform quality 
control on each sample (see Supplementary Methods), the alignment of H&E and CODEX 
images is susceptible to artifacts such as fraying, which can lead to misalignments and affect 
the accuracy of predictions. Second, not every biomarker is equally represented in the training 
data -- this data imbalance is one reason why our performance on certain biomarkers is poor. 
We attempted to mitigate this by oversampling underrepresented biomarkers but did not 
observe significant improvement over equal sampling. As a result, we focus our phenotyping 
analysis on using the top 24 biomarkers, where performance is the most robust. Additionally, all 
data collected and imaged in our study was performed in-house on the same experimental 
setup (e.g., H&E scanner, PhenoCycler Fusion). Due to this uniformity, we have limited 
experimental evidence demonstrating our model’s robustness on data sourced from significantly 
different environments. We look forward to additional validation of our method as more paired 
H&E/mIF data is made publicly available. 

Our study demonstrates a method for extracting multi-plex spatially resolved protein expression 
from H&E stains. Given the ubiquity of H&E staining in clinical workflows, a framework for 
enabling in silico staining of dozens of spatially resolved protein biomarkers offers enormous 
potential for improving clinical workflows and decision-making by extending the capabilities of 
standard histopathology. 

 

Materials and Methods 
 
CODEX data collection 
All samples are prepared, stained, and acquired following CODEX User Manual Rev C 
(https://www.akoyabio.com).  
 
Coverslip preparation: Coverslips are coated with 0.1% poly-L-lysine solution to enhance 
adherence of tissue sections prior to mounting. The prepared coverslips are washed and stored 
according to the guidelines in the CODEX User Manual. 
 
Tissue sectioning: formaldehyde-fixed paraffin-embedded (FFPE) samples are sectioned at a 
thickness of 3-5 μm on the poly-L-lysine coated glass coverslips. 
 
Antibody conjugation: Custom conjugated antibodies are prepared using the CODEX 
Conjugation Kit, which includes the following steps: (1) the antibody is partially reduced to 
expose thiol ends of the antibody heavy chains; (2) the reduced antibody is conjugated with a 
CODEX barcode; (3) the conjugated antibody is purified; (4) Antibody Storage Solution is added 
for antibody stabilization for long term storage. Post-conjugated antibodies are validated by 
SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and quality control (QC) tissue testing, 
where immunofluorescence images are stained and acquired following standard CODEX 
protocols, then evaluated by immunologists.  
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Staining: CODEX multiplexed immunofluorescence imaging was performed on FFPE patient 
biopsies using the Akoya Biosciences PhenoCycler platform (also known as CODEX). 5 μm 
thick sections were mounted onto poly-L-lysine-treated glass coverslips as tumor microarrays. 
Samples were pre-treated by heating on a 55 °C hot plate for 25 minutes and cooled for 5 
minutes. Each coverslip was hydrated using an ethanol series: two washes in HistoChoice 
Clearing Agent, two in 100% ethanol, one wash each in 90%, 70%, 50%, and 30% ethanol 
solutions, and two washes in deionized water (ddH2O). Next, antigen retrieval was performed 
by immersing coverslips in Tris-EDTA pH 9.0 and incubating them in a pressure cooker for 20 
minutes on the High setting, followed by 7 minutes to cool. Coverslips were washed twice for 
two minutes each in ddH2O, then washed in Hydration Buffer (Akoya Biosciences) twice for two 
minutes each. Next, coverslips were equilibrated in Staining Buffer (Akoya Biosciences) for 30 
minutes. The conjugated antibody cocktail solution in Staining Buffer was added to coverslips in 
a humidity chamber and incubated for 3 hours at room temperature or 16 hours at 4 °C. After 
incubation, the sample coverslips were washed and fixed following the CODEX User Manual. 
 
Data acquisition: Sample coverslips are mounted on a microscope stage. Images are acquired 
using a Keyence microscope that is configured to the PhenoCycler Instrument at a 20X 
objective. All of the sample collections were approved by institutional review boards.  
 
To correct for possible autofluorescence, “blank” images were acquired in each microscope 
channel during the first cycle of CODEX and during the last. For these images, no fluorophores 
were added to the tissue. These images were used for background subtraction. Typically, 
autofluorescence will decrease over the course of a CODEX experiment (due to repeated 
exposures). Thus, to correct each cycle, our method determines the extent of subtraction 
needed by interpolating between the first and last “blank” images. 
 
Sample Preprocessing 
 
Samples are first stained and imaged using CODEX antibodies on the Akoya Biosciences 
PhenoCycler platform and then stained and imaged with H&E on a MoticEasyScan Pro 6N 
scanner with default settings and magnification. The CODEX DAPI channel and a grayscale 
version of the H&E image are used to perform image registration. Both images have their 
contrast enhanced using contrast-limited adaptive histogram equalization. The SIFT features 
(35) of each image are then found and matched based on the RANSAC algorithm (36) to find an 
image transformation from the H&E image to the CODEX coordinate space. The transformation 
was limited to a partial affine transformation (combinations of translation, rotation, and uniform 
scaling).  If the initial alignment based on the grayscale H&E image was not successful, the process 
was repeated using the nuclear channel of the deconvolved H&E image (using a predetermined 
optical density matrix (37)), or individual color channels of the H&E image. 
 
 
Training details 
The training process is visualized in Figure 1B. Each sample was first split into patches. In our 
standard approach, we subdivided a sample into non-overlapping 8x8px patches. The average 
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expression within each patch is computed for every CODEX biomarker. Then, a 128 by 128px 
H&E patch is extracted centered on the 8x8px patch, which is used as input to the model. Thus, 
for instance, a 1024px by 1024px sample would yield a prediction of 128px by 128px resolution, 
as each 8px by 8px patch is represented by a single pixel prediction. Our model is based on a 
ConvNext-Small architecture with 50M parameters. The model is pre-trained on the ImageNet 
image dataset. During training, random augmentations are performed: horizontal and vertical 
flipping, brightness, contrast, saturation, hue jittering, and normalization are all performed. The 
training task consists of the model predicting the mean expression of the center 8x8px of a 
128x128px patch for each biomarker. Thus, the model performs multitask regression (i.e., a 50-
length vector) for a given patch. Model validation during training is performed using two metrics: 
Pearson R and SSIM (Structural Similarity Index Measure). Pearson R is a correlation metric 
used to assess the similarity between the measured and predicted expressions; SSIM is a 
similarity metric that assesses the qualitative similarity between two samples. Pearson R is 
computed across patches, while SSIM is computed on the reconstructed samples. This is to 
evaluate the model’s predictions both in terms of biological accuracy and visual similarity.  
 
Each study has a different biomarker panel, so to account for missing biomarkers, we used a 
masked mean squared error loss where only the loss over present biomarkers is computed.  
Training is performed on 4 V100 GPUs with a batch size of 256 and a learning rate of 1e-4 with 
the Adam (38) optimizer on a schedule that reduces by half every 30K iterations. Models are 
trained until no improvement in this metric is observed for 75K steps. 
 
Sample generation 
Inference is performed on the foreground H&E patches and then stitched into the predicted 
sample. In the standard analyses presented, a stride of 8px is used, which produces a predicted 
image that is 8x downsampled from the original image size. This produces predictions at a 
resolution of 3.02 microns per pixel). Using this image, we then produce cell-level expression 
predictions by upsampling the predicted image to the native resolution and then computing the 
average expression per cell based on the cell segmentation mask. 
To produce higher-resolution images, we also demonstrate the predictions using 1px strides. In 
this setting, overlapping patches are generated at 64x the number of total predictions. This 
setting produces predictions at a resolution of 0.3775 microns per pixel. The resulting images 
are demonstrated and compared to the standard 9px setting in Figure S5.  
 
Quality control 
We introduce two quantitative metrics for determining whether an H&E sample is in distribution 
and a high-quality generation. First, we measure the deviation between the image intensity 
distributions of a test H&E sample and the H&E samples in the training data. For a given test 
and training image pair, we extract 256 histogram bins from the image to obtain discrete 
distributions and then compute the Wasserstein (or Earth Mover’s) distance (also called W1 
distance) between the two distributions. The quality metric for a given test image, then, is 
computed as the average W1 distance across all training images. By using this metric, we can a 
priori determine whether a test sample is in distribution and appropriate for evaluation. 
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Additionally, at the biomarker channel level, we use the dynamic range as a simple proxy for 
estimating the quality of a predicted sample. Since channels with very low maximum expression 
correlate with poor quality acquisitions (due to artifacts, staining issues, etc.), we set a threshold 
below which we exclude biomarkers from evaluation. Dynamic range is computed as the 
difference between the 99th and 1st percentile values in a generated biomarker stain. Since the 
dynamic range is only a function of the predicted image, it does not depend on having ground 
truth CODEX measurements for an H&E sample. 
 
Expression Metrics 
We report three primary evaluation metrics for patch-level predictions: Pearson R 
(sklearn.metrics.pearsonr), Spearman R (sklearn.metrics.spearmanr), and concordance index, 
or C-index (lifelines.utils.concordance_index). Pearson correlation is a measure of the linear 
relationship between the ground truth and predicted biomarker expressions. Additionally, we 
report two rank metrics (Spearman R and C-index) to assess the model predictions’ usefulness 
in clinical tasks that rely on ordering patient samples by a specific biomarker expression or cell 
type count. Pearson and Spearman correlations are calculated as the average correlations 
across all ground truth and predicted CODEX patches. C-index is computed on the 75th 
percentile values for both ground truth and predicted CODEX, for each biomarker and across all 
samples. Only during training, SSIM is computed across ground truth and predicted images. To 
ensure that the metrics are calculated on valid data points, we exclude patches with a lower 
groundtruth expression value than the 90th percentile value of background noise for each 
biomarker. 
 
Baseline Methods 
We also introduce several baseline methods for comparison to ROSIE: 
First, we use the H&E sample alone to predict CODEX expression (called H&E expression). In 
this method, we apply a simple threshold (>50), averaged across the three color channels, and 
then use the intensity to predict each biomarker. This is to evaluate the similarity of the 
hematoxylin and eosin stains to the CODEX stains and to validate that the model is not simply 
recapitulating stain intensity in its CODEX predictions. 
Second, we compute morphology statistics based on the segmentation masks calculated from 
the DAPI channel (called cell morphology). Cell segmentation is performed using the DeepCell 
algorithm (39). We use the HistomicsTK compute_morphometry_features function and extract 
19 features in total: Orientation, Area, Convex Hull Area, Major Axis Length, Minor Axis Length, 
Perimeter, Circularity, Eccentricity, Equivalent Diameter, Extent, Minor to Major Axis Ratio, 
Solidity, Hu Moments (1st to 7th). In addition, we compute the average across each of the RGB 
channels and include these as three additional features. We train a three-layer multi-layer 
perceptron neural network using these features as input to predict the expression of 50 protein 
biomarkers. Each layer has 100 nodes followed by a ReLU activation function and is trained 
with a 1e-4 learning rate, mean squared error loss, and Adam optimizer. The weights that 
generated the best validation accuracy after 50 epochs are used. This is a stronger baseline 
that is intended to represent typical features (morphology and intensity) derived from H&E 
images. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 19, 2024. ; https://doi.org/10.1101/2024.11.10.622859doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.10.622859
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Finally, as an additional baseline for cell phenotyping, we assign cell labels randomly according 
to the average ground truth cell label proportions across all samples (called bulk phenotyping). 
This method approximates estimating cell type proportions through a cheaper, more readily 
available phenotyping technique than CODEX (like flow cytometry) and then using them to infer 
spatially located cell types. 
 
Cell Phenotyping 
Cell phenotyping metrics are computed using the following steps: First, cell clusters are 
produced using Leiden clustering based on the cell-level CODEX measured expressions. These 
clusters are identified and merged based on cell expression within each cluster to produce 
manually annotated cell labels. Then, we trained a k-nearest neighbors algorithm (where k=100) 
to generate a graph based on these clusters, which is used to automatically generate the 
reference cell labels. We use the same kNN and the predicted expressions to generate the 
predicted cell labels. We report the F1 scores, which are relative to the cell typing determined 
using clustering on the CODEX measurements. In this analysis, we use only the top 24 
biomarkers by Pearson correlation as input features to the kNN algorithm. Figure S7 shows the 
mean biomarker expressions for each defined cell type. For cell phenotyping performed on 
Ochsner-CRC, we similarly train a kNN on manually annotated cell labels and use it to generate 
reference cell labels. For uniformity of comparision, we define the same cell phenotypes as in 
the Stanford-PGC dataset. 
 
Tissue Structure Discovery 
The Spatial Cellular Graph Partitioning (SCGP) framework is described in full detail in (33). The 
algorithm is summarized in the following steps: 
 

1. Construct a graph with cells as nodes. Spatial edges are added between neighboring 
cell pairs, and feature edges are added for cell pairs with similar expression profiles. 

2. Partitions are detected by community detection algorithms such as the Leiden algorithm 
(40). 

3. Each partition is manually annotated based on its underlying expression profile and cell 
morphology. 

 
The above steps are performed independently on the ground truth and H&E imputed mIF 
samples, and a mapping from the imputed partitions to the ground truth partitions is calculated. 
Finally, we compute the adjusted Rand Index (ARI) and F1 scores. ARI measures the similarity 
between the ground truth and imputation-derived partitions and does not require cluster 
labeling; the F1 score is computed over manually annotated labels. As a baseline, we perform 
the partitioning over morphology features extracted from the cell segmentations, as well as 
adding in the average RGB expressions per cell. Figure S7 shows the mean biomarker 
expressions for each defined tissue structure. 
 
Cell neighborhood phenotyping 
To define cell neighbors, we first perform cell segmentation on the DAPI channel for each 
sample. Based on the computed cell centroids, we then construct a Delauney triangulation and 
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Voronoi diagram, from which we then construct a graph with cells as nodes and Delauney 
neighbors as edges. To define lymphocyte neighboring epithelial cells, we identify epithelial 
cells and then find the subset of these cells that share an edge with a lymphocyte (B cell or T 
cell). The reported percentage of LNEs is defined as the proportion of epithelial cells in a 
sample that are LNEs.  Additionally, we define tumor-infiltrating lymphocytes (TILs) as 
lymphocytes embedded in tumor regions. To identify TILs, we find lymphocytes that are 
assigned to epithelial tissue structures. For each sample, we report the raw count of TILs. 
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Fig. 1. Overview of ROSIE. (A) Our training dataset consists of 20 studies and over 16M cells. 
Each tissue sample is co-stained with H&E and CODEX. 16 disease types and 10 body areas 
are represented in this dataset. The overall distribution of represented tissue types across 
training and evaluation datasets is shown on the right. (B) Given an H&E-stained image, ROSIE 
predicts the pixel-level expression of 50 biomarkers. An exemplar image is visualized, where 
seven representative biomarkers are colored and shown alongside the true CODEX image. 
While the generated images used in our analyses are produced with 8px striding, this image is 
produced using 1px striding for greater visual clarity. (C) A schematic of model training and 
inference is shown. Given an H&E sample, the image is split into patches of size 128px by 
128px. The model is trained to predict the average expressions of the center 8px by 8px patch 
in the corresponding CODEX image. After the model is trained, a predicted CODEX image is 
generated by aggregating all of the generated patches into a single image.  
 

Evaluation 
Datasets 

In training data? 

# Samples # Slides # Cells Study Disease 

Stanford-PGC Yes Yes 149 1 817,765 

Ochsner-CRC No No 94 1 635,649 

Tuebingen-GEJ No No 240 1 365,734 

UChicago-DLBCL Yes Yes 2 1 3,099,419 

Total - - 485 8 4,918,567 

 
Table 1. Description of evaluation datasets. We describe the four evaluation datasets used in 
this study. Samples from Stanford-PGC and UChicago-DLBCL are divided into training and test 
splits; on the other hand, no samples and disease types from Ochsner-CRC and Tuebingen-
GEJ are used in the model’s training data. UChicago-DLBCL contains two full tissue samples, 
whereas the rest of the datasets consist of TMA core samples. 
 

Evaluation Datasets (50 biomarkers) Pearson R Spearman R 
C-index 
(sample) 

Stanford-PGC    

- H&E expression 0.007 0.013 0.504 

- Cell morphology 0.072 0.081 0.574 

- ROSIE (our method) 0.319 0.386 0.694 

ROSIE evaluated on:    

- Ochsner-CRC 0.218 0.276 0.597 

- Tuebingen-GEJ 0.265 0.289 0.668 
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- UChicago-DLBCL 0.254 0.327 0.820 

Average (ROSIE) 0.246 0.297 0.695 

 
Table 2. Main evaluation results. Our method is evaluated using three metrics: Pearson R, 
Spearman R, and C-index (sample), which refers to the concordance index computed on the 
sample level using the 75th percentile of expression values in a sample as a threshold. The 
performance of our method on the primary dataset (Stanford-PGC) is reported along with two 
baseline methods: H&E expression, which uses the mean cell-wise H&E pixel value as a proxy 
for protein expression, and cell morphology, which uses features derived from the cell outlines 
based on DAPI expression as well as the RGB pixel values as input to a neural network to 
predict protein expression. We also report the performance of our method on the other three 
evaluation datasets. 
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Fig 2. Visualization of predictions from ROSIE. (A) Predicted and measured CODEX 
samples along with the co-stained H&E images. The 99th, 75th, 50th, and 25th percentile (by 
Pearson R) samples are shown, colored with seven structural (Keratin8/18, EpCAM, Vimentin, 
ECad, aSMA, CD31, PanCK) and immune (HLA-E, Gal3, CD45, CD21, LAG3, CD66, CD68) 
markers. (B) Pearson R correlation on all evaluation datasets for 50 biomarkers (visualized 
biomarkers are colored). Figure S5 visualizes zoomed-in patches of predictions. (C) 
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Visualizations of median samples (by Pearson R) from three additional datasets: Ochsner-CRC, 
Tuebingen-GEJ, and UChicago-DLBCL. 
 

Fig. 3. Cell type predictions using ROSIE. (A) F1 scores on the primary Stanford-PGC 
dataset, comparing the performance of ROSIE to two baselines: bulk phenotyping, which 
randomly assigns cell types based on sample-level cell type proportions, and morphology 
features, which uses a three-layer neural network to classify cells based on morphology 

C, 
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features and the H&E RGB channels. Error bars are the 95% bootstrapped confidence intervals. 
(B) Visualization of cell phenotype predictions from twelve median samples by Pearson R. 
 

 
Fig. 4. Tissue structure discovery by ROSIE. Discovery of tissue structures using biomarkers 
generated by ROSIE on the Stanford-PGC test dataset. Five tissue structures are identified 
using a graph partitioning algorithm that clusters cells based on their expression profiles and 
neighboring cells. This algorithm is performed on both the ground truth measured and ROSIE-
generated biomarker expressions and then reconciled to a common label set. (A) visualizes 
several representative samples of tissue structures discovered using the ground truth CODEX 
measurements, ROSIE-generated expressions, and morphology baseline method. (B) We 
report the F1 score by comparing the structures discovered using ground truth, ROSIE-
generated biomarkers, and morphology features. Error bars are the 95% bootstrapped 
confidence intervals.  

ls. 

 

rs 
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ARI score is also reported by comparing the unlabeled discovered clusters, where each dot is a 
sample. 

Fig. 5. Cell neighborhood phenotyping by ROSIE. We identify two cellular neighborhood 
phenotypes of interest: tumor-infiltrating lymphocytes (TILs) and lymphocyte neighboring 
epithelial cells (LNEs). TILs are defined as cells that are labeled as lymphocytes (B and T cells) 
and reside in epithelial tissue (using the graph partitioning algorithm). LNEs are epithelial cells 
that have at least one lymphocyte as a neighbor. TILs are measured as the raw count per 
sample, whereas LNEs are measured as the proportion of epithelial cells with lymphocyte 
neighbors. (A) We visualize three samples (by median Pearson R) of TILs and LNEs based on 
ground truth-derived and ROSIE-predicted expressions. (B) Scatter plots of predicted and 
ground truth measurements, where each dot represents a sample. 
 

a 
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Supplementary Materials 
 
 

Stanford-PGC 
(50 biomarkers) 

Model 
parameters (#) Pearson R Spearman R C-index (sample) 

- ConvNext 
(Ours) 50.2M 0.319 0.386 0.694 

- UNI 
(VitL-16) 

304.3M 0.278 0.337 0.619 

- VitB-16
  

86.6M 0.294 0.356 0.626 

 
Supplemental Table 1: Comparison of model architectures. Our CNN-based approach 
outperformed larger Vision Transformer models and histopathology image pre-training 
approaches. 
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Supplementary Figure 1: Median samples (by Pearson R) are visualized for all 50 biomarkers 
from the Stanford-PGC test set. 
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Supplementary Figure 2: Density plot of Pearson R correlation for each biomarker across the 
distribution of samples in the Stanford-PGC test set. 
 

Supplementary Figure 3: Rank tests on each biomarker comparing ground truth and ROSIE-
generated expressions in the Stanford-PGC test set. 
 
 
 
 
 
 

Dataset Stanford-PGC Ochsner-CRC 
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Method ROSIE Bulk phenotyping Cell morphology ROSIE 

B cells 

0.307 (0.304-
0.312) 0.054 (0.049-0.058) 0.040 (0.039-0.041) 

0.118 (0.115-
0.121) 

Endothelial cells 

0.313 (0.308-
0.317) 0.065 (0.063-0.067) 0.000 (0.000-0.000) 

0.222 (0.219-
0.226) 

Epithelial cells 

0.611 (0.609-
0.613) 0.450 (0.449-0.452) 0.000 (0.000-0.001) 

0.551 (0.549-
0.553) 

Fibroblasts 

0.547 (0.545-
0.548) 0.305 (0.303-0.307) 0.263 (0.261-0.265) 

0.287 (0.284-
0.289) 

Macrophages 

0.182 (0.180-
0.185) 0.162 (0.159-0.164) 0.053 (0.051-0.055) 

0.012 (0.000-
0.027) 

Neutrophils 

0.262 (0.256-
0.266) 0.196 (0.193-0.200) 0.000 (0.000-0.000) 

0.288 (0.284-
0.293) 

T cells 

0.561 (0.559-
0.563) 0.453 (0.451-0.455) 0.395 (0.394-0.397) 

0.465 (0.464-
0.467) 

Weighted 
Average 0.507 0.360 0.169 0.411 

 
Supplementary Table 2: Cell type predictions by individual cell labels on the Stanford-PGC and 
Ochsner-CRC test datasets, along with two baseline methods (Bulk phenotyping and Cell 
morphology). We report F1 scores for each cell label and 95% bootstrapped confidence 
intervals in parentheses.  
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Supplementary Figure 4: ROSIE generalizes well to predicting cell types in a study of not-
seen-before colorectal cancer tumor samples (Ochsner-CRC). A: The cell type predictions on 
Ochsner-CRC are comparable to those in Stanford-PGC and two baseline methods, Bulk 
Phenotyping and Morphology Features. B: Cell type confusion matrices for predictions from 
ROSIE on the Stanford-PGC and Ochsner-CRC datasets. Of note is that B cells and T cells are 
well differentiated in cell predictions. 
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Supplemental Figure 5: Zoomed in patches of predictions from ROSIE, using an 8px striding 
window and 1px striding window. With 1px, the resolution and detail are significantly improved; 
however, generating a sample requires 64x the amount of compute resources. All analyses in 
this study are performed on the 8px sliding window-generated images. 
 
 

Supplemental Figure 6: Quality filtering: We show two simple methods for predicting the 
quality of a predicted stain using ROSIE. Left: Low-quality predictions yield samples with low 
dynamic range; based on this intuition, we show that the predictive accuracy (measured by 
average Pearson R) of a biomarker stain is strongly positively correlated with a higher dynamic 
range. Right: We also compute the Wasserstein distance between the H&E image intensity 
histograms of the training and test data. We also find that higher W1 distances are associated 
with lower Pearson R scores. In both plots, each point represents the average Pearson R of all 
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samples with measured values less than or equal to the value on the x-axis.

Supplementary Figure 7: A: The mean expression profile for each ground truth cell phenotype 
on the Stanford-PGC test dataset. Each biomarker expression is mean normalized across the 
cell types. B: The mean expression profile for each ground truth tissue structure on the 
Stanford-PGC test dataset. 
 

Tissue Structure F1 (ROSIE) F1 (Morphology) 

Stroma 0.786 (0.784-0.788) 0.627 (0.625-0.629) 

Tumor-like Epithelium 0.712 (0.710-0.714) 0.408 (0.405-0.410) 

Vessel-like Epithelium 0.588 (0.583-0.593) 0.062 (0.059-0.065) 

Endothelium (CD31+ CD34+) 0.416 (0.409-0.424) 0.049 (0.046-0.051) 

Tumor-like Epithelium 
(EpCAM+ TP63+) 0.620 (0.610-0.627) 0.000 (0.000-0.000) 

 
e 
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Supplementary Figure 8: Tissue structure discovery performance by individual tissue structure 
type. 95% bootstrapped confidence intervals are reported in parentheses. 
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