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Abstract
Case-only (CO) studies are a powerful means to uncover gene-environment (G × E) interactions for complex human diseases. 
Moreover, such studies may in principle also draw upon genotype imputation to increase statistical power even further. 
However, genotype imputation usually employs healthy controls such as the Haplotype Reference Consortium (HRC) data 
as an imputation base, which may systematically perturb CO studies in genomic regions with main effects upon disease 
risk. Using genotype data from 719 German Crohn Disease (CD) patients, we investigated the level of imputation accuracy 
achievable for single nucleotide polymorphisms (SNPs) with or without a genetic main effect, and with varying minor allele 
frequency (MAF). Genotypes were imputed from neighbouring SNPs at different levels of linkage disequilibrium (LD) to 
the target SNP using the HRC data as an imputation base. Comparison of the true and imputed genotypes revealed lower 
imputation accuracy for SNPs with strong main effects. We also simulated different levels of G × E interaction to evaluate 
the potential loss of statistical validity and power incurred by the use of imputed genotypes. Simulations under the null 
hypothesis revealed that genotype imputation does not inflate the type I error rate of CO studies of G × E. However, the sta-
tistical power was found to be reduced by imputation, particularly for SNPs with low MAF, and a gradual loss of statistical 
power resulted when the level of LD to the SNPs driving the imputation decreased. Our study thus highlights that genotype 
imputation should be employed with great care in CO studies of G × E interaction.

Introduction

The genetic aetiology of most common complex diseases 
such as, for example, cancer, diabetes and asthma is still 
poorly understood. General progress in this direction has 
been hampered by the fact that the diseases in question result 
from a large number of genetic and environmental factors, 
each with only a small effect upon disease risk. The conse-
quent causative complexity is exacerbated further by a num-
ber of related phenomena (Manolio et al. 2009) including 
gene–gene (G × G) and gene-environment (G × E) interac-
tion, among others.

The precise meaning of ‘interaction’ depends upon the 
context in which this expression is being used as either a 
biological or a statistical term (Cordell 2002; Dempfle et al. 

2008). Biological interaction usually refers to the combined 
effect of two causal factors that interact physically or chemi-
cally, or that affect the same disease-relevant biological 
pathway (Yang and Khoury 1997). Statistical interaction, 
by contrast, is defined as the “departure from additivity of 
effects on a specific outcome scale” (Rothman et al. 2008). It 
is tantamount to so-called ‘effect modification’, meaning that 
the risk difference associated with one factor on a specific 
scale depends upon the presence or absence of the other risk 
factor. In the following, we will focus upon the statistical 
interaction of two risk factors on the logit scale, i.e. we shall 
deal with departures from the multiplicity of the correspond-
ing odds ratios (OR). Ideally, statistical interaction points 
towards plausible biological interaction, but the two need not 
necessarily coincide (Cowman and Koyutürk 2017).

Genetic epidemiological studies of common complex 
diseases employ different designs and methods, and the 
case-control (CC) design has become the ‘work horse’ 
in this context, particularly in the form of genome-wide 
association studies (GWAS) of single nucleotide polymor-
phisms (SNPs). For studies of G × E interaction, however, 
the case-only (CO) design has also received some attention 
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(Piegorsch et al. 1994) because it provides several advan-
tages over the CC design (Gauderman 2002a; Kraft et al. 
2007). First and foremost, only cases (i.e. patients affected 
by the disease of interest) are required, which obviates 
the often difficult identification and recruitment of suit-
able controls (Schulz and Grimes 2002). Second, the CO 
study design entails a substantial gain in statistical power 
to detect G × E over a CC design using the same number of 
cases (Gauderman 2002a). On the other hand, however, the 
reliability of CO studies of G × E hinges upon the validity 
of two critical assumptions, namely (i) that the disease of 
interest is sufficiently rare (i.e. has prevalence ≤ 5%, say) 
and (ii) that the two risk factors under study (genetic and 
environmental) are uncorrelated in the general population 
(Piegorsch et al. 1994). Although the last presumption may 
often seem justified, it still needs to be reviewed carefully for 
each study. For example, some variants in genes associated 
with alcohol metabolism are known to be linked to alcohol 
consumption (Goldman et al. 2005), and even such minor 
gene-environment associations can lead to false-positive 
results in CO studies of G × E (Albert 2001).

For some time, researchers studying the genetic basis of 
common complex disease have been trying to improve the 
inferential capacity of GWAS through genotype imputation 
(Marchini and Howie 2010). With this technique, genotypes 
of untyped SNPs are predicted from the genotypes of typed 
SNPs in a panel of reference haplotypes by way of exploit-
ing population-level linkage disequilibrium (LD). Genotype 
imputation has since become a standard for GWAS because 
it facilitates the harmonization of SNP panels, improves sta-
tistical power by increasing sample size, and allows greater 
genomic coverage in terms of the number and density of 
the SNPs considered (Naj 2019). Genotype imputation can 
be performed either offline or using a web-based service 
such as the Michigan Imputation Server (Das et al. 2016) 
or the Sanger Imputation Server (The Haplotype Reference 
Consortium 2016). Notably, all software available for impu-
tation provides means to assess the quality of the predicted 
genotypes, usually through the provision of an imputation 
quality score. The Michigan Imputation Server used in the 
present study, for example, generates an R2 quality score that 
relates the empirical variance of the imputed genotypes to 
its expectation at Hardy–Weinberg equilibrium (Das et al. 
2016).

Irrespective of its potential to improve inferential capac-
ity, genotype imputation is still an error-prone technique that 
can cause bias in subsequent analyses. Thus, the presence 
of hidden population stratification, the use of an inappropri-
ate imputation base, and a lack of sufficient SNP coverage 
may all negatively affect imputation quality (Zhang et al. 
2011; Das et al. 2018; Schurz et al. 2019). Moreover, the 
imputation quality achievable in a certain GWAS may still 
vary substantially along the human genome (Naj 2019). On 

the other hand, misclassification of genotypes is known to 
cause spurious gene-environment associations in CC studies 
(Wong et al. 2004), and Cheng and Lin (2009) demonstrated 
how genotype misclassification can reduce the power of both 
the CC and the CO design.

We previously examined the impact of LD upon the 
validity of CO studies of G × E (Yadav et al. 2015b), and 
subsequently developed means to allow for hidden popu-
lation stratification in such studies (Yadav et al. 2015a). 
Extending this earlier work, we here present an investiga-
tion of how genotype imputation accuracy influences the 
validity and power of CO studies of G × E, an aspect that 
to our knowledge has not been studied in detail so far. In 
our simulation-based study, we paid specific attention to the 
fact that in regions with genetic main effects upon disease 
risk, haplotype frequencies, and hence LD, are bound to 
differ systematically between cases and controls. We also 
considered different environmental exposure frequencies 
when simulating G × E interactions to cover a broad range 
of realistic GWAS scenarios.

Methods

Data

The main goal of our study was to determine under which 
conditions imputed genotypes still allow reliable inference 
of the presence and magnitude of G × E interaction, using 
a CO design. Even though our investigations were mostly 
simulation-based, we nevertheless chose to employ real SNP 
genotype data to ensure realistic LD patterns in our study 
samples (Kulle et al. 2005; Ramnarine et al. 2015). System-
atically varying the parameters of interest, namely the G × E 
odds ratio (OR) and the environmental exposure frequency, 
individual exposure states were randomly assigned to indi-
viduals according to their given SNP genotypes.

The data, which comprised 719 Crohn disease (CD) 
patients and 2491 healthy controls from Northern Ger-
many, were kindly provided to us by the PopGen biobank 
(Krawczak et al. 2006). All individuals had been genotyped 
before for 156 k SNPs, covering all human autosomes. The 
genotypes coincided with the ‘Germany, Kiel’ set used by 
Yadav et al. (2017) in their global study of gene-smoking 
interactions, which means that the data underlying the pre-
sent study had been subject to the quality control measures 
of the earlier study.

Analysis strategy

Our analysis comprised two tiers: In tier 1, we first masked 
the genotypes of selected SNPs (henceforth referred to as 
‘target SNPs’) in the cases and imputed them from a suitable 
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imputation base (see below). Next, we compared the minor 
allele frequencies (MAFs) of the true and imputed SNP 
genotypes (i.e. allele dosages) both to one another and to 
the MAFs of the European population of the Haplotype 
Reference Consortium (The Haplotype Reference Consor-
tium 2016; HRC), which served as an imputation base in our 
study. Finally, the imputed allele dosages were compared 
to the true genotypes using Cohen’s kappa to quantify the 
level of genotype concordance for each SNP. In tier 2, we 
simulated binary environmental exposure states (1: exposed, 
0: non-exposed) for the cases depending upon the presumed 
G × E odds ratio and the original genotype of the target SNP 
under study. Consideration of different types of target SNP 
allowed us to study the effects of genotype imputation upon 
the validity of subsequent G × E interaction analyses under 
different scenarios regarding MAF, main effect OR and sur-
rounding LD structure.

All statistical analyses were carried out with R (v. 3.5.0) 
or PLINK2 (Chang et al. 2015). For statistical modelling, 
SNP genotypes (G) were encoded assuming a dominant 
G × E effect of the minor allele, i.e. G = 1 for homozygous or 
heterozygous carriers of the minor allele, G = 0 for homozy-
gous carriers of the major allele. A simple dominant model 
was used because it can cover a wide range of plausible 
genotype-phenotype relationships (Guan et al. 2012).

SNP selection

The choice of SNPs for tier 1 (i.e. the genotype imputation) 
was based upon the respective MAF and the presence or 
absence of a main effect on CD risk. To this end, the dis-
ease ORs of SNPs were determined by way of a CC logistic 
regression association analysis of all SNPs that passed qual-
ity control, adjusted for the first 10 principal components 
of these SNPs to allow for possible population stratifica-
tion (Price et al. 2006). SNPs with a disease association p 
value <  10–5 were considered further and pruned according 
to the following pair-wise criteria: (i) main effect OR dif-
ference ≤ 0.02, (ii) MAF difference in cases ≤ 0.02, and (iii) 
physical distance ≤ 15 kb. Pruning left 141 ‘independent’ 
SNPs that were grouped into four MAF-defined catego-
ries: low (MAF < 0.05), medium low (0.05 ≤ MAF < 0.15), 
medium high (0.15 ≤ MAF < 0.25) and high (0.25 ≥ MAF). 
All main effect SNPs in the low (n = 16) and medium low 
(n = 7) category were included in the subsequent imputa-
tion, together with 18 SNPs per category randomly chosen 
from ‘medium high’ and ‘high’. These 59 main effect SNPs 
were complemented by 59 randomly selected SNPs lacking 
a main effect, chosen according to the following matching 
criteria: (i) localization on the same chromosome as the 
respective main effect SNP, and (ii) a MAF difference ≤ 0.01 
in cases. A detailed list of the 118 target SNPs is provided 
in Supplementary Table 1.

Only target SNPs with a proven main effect were for-
warded to tier 2 of our study (i.e. G × E simulation and anal-
ysis). Here, however, we excluded main effect SNPs with an 
imputed MAF < 0.005 or a missing rate > 0.2, bringing the 
final number of target SNPs in tier 2 to 56. These criteria 
were found to be sufficient to ensure that no segmentation 
errors occurred with the PLINK software in tier 2.

Imputation (Tier 1)

Genotype imputation was carried out for the 118 target SNPs 
in 10 successive rounds, each time thinning further the set 
of SNPs driving the imputation. In the first round, only the 
genotypes of the 118 target SNPs themselves were masked; 
in the nth subsequent round (n = 2 to 10), the surrounding 
SNPs were LD-pruned maintaining only SNPs with  r2 < (11-
n)/10 to the target SNP. A script published by the Wellcome 
Centre for Human Genetics, Oxford, UK (https:// www. well. 
ox. ac. uk/ ~wrayn er/ tools/) was used to prepare the datasets 
for genotype imputation with the Michigan Imputation 
Server (https:// imput ation server. sph. umich. edu/), which 
uses minimac4, selecting Quality control and Eagle v. 2.4 
phasing settings. The HRC European data comprising 39.6 
Million SNP genotypes from each of 32,470 individual sam-
ples (The Haplotype Reference Consortium 2016) served as 
the imputation base.

Simulation of G × E interaction (Tier 2)

For the simulation and analysis of G × E interaction, imputed 
genotypes were converted to hard-calls using a hard-call 
threshold of 0.8. Environmental exposure states were simu-
lated assuming two different population-level exposure fre-
quencies, namely 10% and 30%. Under a dominant model, 
G × E interaction manifests in cases through a different expo-
sure frequency for carriers and non-carriers of the minor 
SNP allele. Hence, we simulated G × E interaction by assign-
ing environmental exposure states to individuals depending 
upon their respective (true) SNP genotype. The necessary 
genotype-specific exposure probabilities were calculated in 
two steps: First, QUANTO software (Gauderman 2002b) 
was used for each of the 56 main effect target SNPs to cal-
culate the G × E interaction OR that would be detectable 
with 80% statistical power, taking into account the main 
effect OR and MAF of the SNP, the population-level expo-
sure frequency and the case sample size (n = 719). In the 
power calculations, a nominal significance level of 0.05 was 
assumed. QUANTO also requires a main effect OR for the 
environmental exposure, which was consistently set to 1.5. 
A summary of the resulting SNP genotype-specific exposure 
probabilities is provided in Supplementary Table 2. The null 
hypothesis of no G × E interaction, where all genotype-spe-
cific exposure probabilities equal the population-level value, 

https://www.well.ox.ac.uk/~wrayner/tools/
https://www.well.ox.ac.uk/~wrayner/tools/
https://imputationserver.sph.umich.edu/
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was also simulated for each SNP to complement the G × E 
interaction analyses.

For each of the 56 main effect target SNPs, 10,000 rep-
licates of the environmental exposure simulation were 
undertaken and the G × E interaction ORs determined for 
the 10 imputed genotype sets from tier 1. Since our study 
was concerned with a CO design, the G × E interaction OR 
was estimated from the simulated exposure and either the 
true or the imputed genotype data by logistic regression via

The statistical significance (i.e. the p value) of β1 ≠ 0 
was determined for each replicate with a Wald test, and the 
overall statistical power was estimated by the proportion of 
replicates with p < 0.05. Following Piergosch et al. (1994), 
no classical confounders such as age or sex were included 
in the regression model because their main effects cannot 
sensibly be modelled in a CO design.

Results

A first impression of the accuracy of SNP genotype impu-
tation can be gained from the correspondence, or not, 
between the MAF of real and imputed genotypes. In this 
regard, our study of 118 target SNPs revealed that imputa-
tion seems to work well in a CO sample for SNPs lacking a 
main effect on disease risk, but less so when a main effect 
is present. Although this difference was most evident in the 
low MAF category of SNPs (MAF < 0.05; Fig. 1), it also 
became apparent in the other three categories (Supplemen-
tary Figs. 1, 2, 3).

For some main effect SNPs with low MAF, namely 
rs11465804 to rs80174646 (from left to right in Fig. 1a), 
the real and imputed MAF agreed well, irrespective of the 
regional level of LD of SNPs surrounding the target SNP. 
The MAF only changed when LD pruning was nearly com-
plete. For SNPs rs75157713 to rs2066845 (Fig. 1a), the two 
MAFs agreed well initially but differed increasingly as LD 
pruning progressed. Concurrently, the imputed MAF was 
found to converge towards the MAF observed in the impu-
tation base. For the remaining SNPs in the low MAF cat-
egory, namely rs79045655 to rs77262732 (Fig. 1a), the real 
and imputed MAF were rather different right from the start, 
and the imputed MAF consistently resembled the MAF in 
the imputation base. Notably, the real MAF differed sub-
stantially from the MAF in the imputation base for all 16 
main effect SNPs, thereby highlighting the fact that owing to 
their association with CD, the genotype distribution of these 
SNPs in cases would have been systematically different from 
that in an appropriate population reference in the first place.

logit{P(E = 1)} = �0 + �1G.

For SNPs lacking a main effect on CD risk, a comparison 
between the true and imputed MAF revealed only minor dif-
ferences in the low MAF category, with the sole exception 
of rs113593463 (Fig. 1b). Moreover, the imputed MAF was 
less responsive to LD pruning of the neighbourhood of the 
target SNP, and both MAFs resembled the MAF observed 
in the imputation base more closely than was the case for 
main effect SNPs.

The trend towards poorer genotype imputation for main 
effect SNPs evidenced by the MAF differences also became 
apparent when the concordance of individual genotypes 
(real vs imputed) was quantified by Cohen’s kappa (Fig. 2). 
Except for a few outliers, particularly in the medium high 
MAF category, SNPs with a main effect on CD risk yielded 
lower kappa values (Fig. 2a) than SNPs lacking a main effect 
(Fig. 2b). Moreover, the main effect SNPs also showed a 
stronger decline in imputation accuracy when LD pruning 
progressed from weak (r2 < 1.0) to strong (r2 < 0.1). This 
effect was most prominent for SNPs in genomic regions 
known to be strongly associated with CD risk, namely 
around the NOD2, NKD1 and CYLD genes (Cleynen et al. 
2014). By contrast, Cohen’s kappa appeared to be less sensi-
tive to LD pruning for SNPs without a main effect (Fig. 2b). 
An exception to this rule seemed to be rs113593463 from 
the low MAF category. However, this SNP is located in 
the NOD2 gene region (highlighted by green colouring 
in Fig. 2b) and was characterized in our study data by a 
genotype–phenotype association p value of 3.3 ×  10–4 (main 
effect OR: 1.82). Although not formally counting as a main 
effect SNP itself, genotype imputation was therefore likely 
hampered for rs113593463 by its proximity to other main 
effect SNPs in the same region.

Most imputation software, including the Michigan Impu-
tation Server, provides some kind of SNP-specific ‘impu-
tation accuracy score’ as a measure of imputation quality. 
Accuracy scores > 0.8 are usually considered adequate and 
conservative enough (Verma et al. 2014) for imputed geno-
types to be used in downstream analyses. In view of this, 
scores in the named range should reflect good matching of 
true and imputed genotypes. Indeed, our analysis broadly 
confirmed this supposition by a strong correlation between 
imputation accuracy score and Cohen’s kappa in all MAF 
categories of SNPs (Fig. 3), with one exception: For sev-
eral main effect SNPs in the ‘low’ category, the imputation 
accuracy score from minimac4 exceeded 0.8, yet the agree-
ment between true and imputed genotypes, as quantified by 
Cohen’s kappa, was low (Fig. 3a).

Within the confines of resolution provided by the cur-
rent sample size (n = 719), our simulations of an imputa-
tion-based G × E analysis using a CO study design revealed 
three main characteristics in terms of statistical power. 
First, a higher exposure frequency implies greater statisti-
cal power to detect a given level of G × E interaction (Fig. 4), 
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an observation made in all but the low MAF category. In 
fact, when MAF ≥ 0.05, the median statistical power was 
consistently greater by at least 20% at an exposure frequency 
of 30% than at 10%, regardless of the LD pruning threshold 

employed. Second, while the median power appeared to be 
rather independent of the MAF, its variability was found 
to increase with decreasing MAF (Fig. 4). In the low MAF 
category, the interquartile range of the power thus spanned 

Fig. 1  MAF of true and imputed genotypes of SNPs in the low MAF 
category (MAF < 0.05). Target SNPs are distinguished according 
to whether they (a) had a main effect on CD risk, i.e. showed a sig-
nificant association with CD in the study data, or (b) lacked a main 
effect. The left-most bar (red) depicts the MAF in the HRC Euro-
pean population sample that served as the imputation base. The next 

bar (orange) marks the real MAF of the SNP in the CO sample. The 
adjacent bars (shades of blue) depict the MAF at advancing levels of 
LD pruning of the SNPs surrounding the target SNP, namely from 
r2 < 1.0 to r2 < 0.1 in steps of 0.1 (for details, see “Methods”. Group-
ing of SNPs by MAF characteristics, as referred to in the main text, is 
indicated by horizontal black bars
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0.25 to 0.80 except when LD pruning was strong (r2 < 0.1). 
Moreover, while the target SNP-specific G × E interaction 
ORs underlying our simulations should have consistently 
afforded 80% power to detect G × E with the true genotypes, 
this was obviously not the case when the exposure frequency 
was 10%. Finally, a gradual power loss occurred in all MAF 
categories when the neighbourhood of the target SNP was 
LD-pruned, with a prominent drop seen in the ‘high’ cat-
egory between r2 thresholds 0.6 and 0.5.

Our simulations also revealed that G × E interaction ORs 
estimates from imputed genotypes can be biased, particularly 
when the MAF of the target SNP is low (Fig. 5). This bias is 
the more prominent the more sparsely the genomic region 
of interest is saturated with SNPs driving the imputation.

Simulations were also carried out under the null hypoth-
esis of no G × E interaction to assess the type I error rate of 
imputation-based CO studies. The results suggest that the 
type I error rate is not systematically inflated, regardless 
of the level of LD around the target SNP (Supplementary 
Figs. 4 and 5). On the contrary, as a flipside of its reduced 
power, the G × E analysis was even found to be overly con-
servative in the low MAF category in that the corresponding 
median type I error rate was consistently smaller than 0.05 
(Supplementary Fig. 4). Finally, notable bias of the G × E 
interaction OR estimates was observed only in the low MAF 
category, and this bias was independent of the level of LD 
pruning (Supplementary Fig. 5).

Discussion

Using real genotype data from over 700 German CD patients 
alongside simulated environmental exposure states, we stud-
ied how the power and validity of CO studies of G × E inter-
action are affected when the target SNP genotypes of the 
cases are imputed using population controls as an imputation 
base. We tried to cover realistic scenarios and therefore not 
only considered SNPs embedded into different real-world 
LD structures, and with different MAFs and main effects 
(ME) upon disease risk, but also systematically thinned out 
the respective imputation base so as to comprise fewer and 
fewer SNPs that could drive the imputation of the target 
SNP genotypes.

One of our main findings was that genotype imputation 
seems to be more prone to errors for target SNPs with an 
ME than for SNPs without an ME. This was exemplified by 

SNPs from the NOD2, NKD1 and CYLD gene regions, all of 
which are known to harbour important risk factors for CD 
(Cleynen et al. 2014). Moreover, the imputation accuracy 
for ME SNPs was also found to depend strongly upon the 
amount of local LD that could be exploited for imputation. 
The correspondence between real and imputed genotypes, 
regardless of whether measured by MAF similarity, at the 
population level, or Cohen’s kappa, at the sample level, grad-
ually deteriorated when the maximum LD between the target 
SNP and SNPs comprising the imputation base was artifi-
cially reduced. The difference noted in this regard between 
SNPs with and without an ME are plausible because the 
imputation base in our study comprised population con-
trols, namely the HRC European data, which is unlikely 
to be representative of CD patients in genomic regions 
known to be associated with this disease. One target SNP 
formally lacking an ME (rs113593463) showed a similar 
decline in Cohen’s kappa as the ME SNPs, thereby provid-
ing a counter example at first glance. However, this SNP is 
located in the NOD2 gene region and its disease association 
p value (3.3 ×  10–4) just missed the significance threshold 
of 5 ×  10–5 in our case–control data. Given its low MAF of 
0.04, the gradual loss of imputation accuracy observed for 
rs113593463 is, therefore, more of proof than not that SNP 
genotype imputation is hampered by a local ME upon dis-
ease risk.

Our study also shows that particularly for ME SNPs with 
low MAF, the accuracy scores provided by the imputation 
software used may still be high even in situations where 
Cohen’s kappa between imputed and original SNP genotypes 
is low, indicative of poor imputation quality. This means that 
using accuracy scores as a means of quality control does 
not obviate the need for caution, particularly when imputing 
patient SNP genotypes from population controls in disease-
associated gene regions where such practise is likely to ren-
der the resulting case genotypes systematically more similar 
to the controls. Since not all MEs may be known in the first 
place, negative findings of CO studies of G × E interaction 
should, therefore, not be over-interpreted and held too firm 
a proof of the absence of such effects.

Of course, the above concerns about representativeness 
apply to the CO and the CC study design alike, and we sus-
pect that the effect on the power to detect G × E with the lat-
ter would be similar to that demonstrated for the CO design 
by our simulations. However, the consequences are more 
dramatic for the CO design: For one, CO studies lack con-
trols that could potentially highlight unknown MEs in the 
process. Second, and more importantly, the main benefit of 
the CO design is an increase in power over the CC design, 
and this advantage may vanish unnoticed due to the sublimi-
nal reduction in imputation accuracy.

Poor genotype imputation also clearly affects the quality 
of the statistical analysis of G × E interactions when using a 

Fig. 2  Cohen’s kappa of genotype agreement (real vs imputed) for 
target SNPs (a) with and (b) without a main effect on CD risk. Hori-
zontal axis: LD pruning around each target SNP proceeded using an 
r2 threshold that varied between 1.0 (weak pruning) and 0.1 (strong 
pruning). SNPs in selected gene regions are color-coded (NOD2: 
green, NKD1: orange, CYLD: blue). For the definition of MAF cat-
egories of SNPs, see “Methods”

◂



1224 Human Genetics (2021) 140:1217–1228

1 3

CO design. Thus, our simulation-based study of ME SNPs 
highlights that their G × E interaction ORs are systematically 
underestimated from imputed genotypes and that this effect 
gets more prominent when the level of LD between the target 
SNP and SNPs in the imputation base decreases. Conse-
quently, the power to detect G × E interaction was found to 
deteriorate in a similar LD-dependent manner. Although the 
consequences for G × E analysis of poor genotype imputation 

were most serious for ME SNPs with low MAF, biased OR 
estimates and a loss of statistical power also became evident 
in the high MAF category. Moreover, when examining sta-
tistical power in relation to the local level of LD, a sudden 
widening of the boxplots could be noted for ME SNPs with 
high MAF when the r2 threshold changed from 0.6 to 0.5. 
Since a similar kinking occurred in this SNP category for 
Cohen’s kappa, we may surmise that the requirement, in CO 

Fig. 3  Estimated imputa-
tion accuracy score (R2 from 
minimac4) and Cohen’s kappa 
for target SNPs (a) with and 
(b) without a main effect on 
CD risk. MAF categories are 
labelled as follows: crosses 
(low), squares (medium low), 
triangles (medium high), circles 
(high)
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studies of G × E interaction, of a sufficiently rich imputation 
base of SNPs with strong LD to the target SNP is not a ques-
tion of MAF alone.

In our analyses, we considered only dominant G × E 
effects whereas, for most polygenic traits analyzed in GWAS 
so far, an additive model was most often used to study the 
respective main effects. With a low MAF, where the power 
loss was found to be most dramatic in CO studies of G × E, 
the difference to an additive model is, however, small. More-
over, additive models bear a risk of being less stable com-
putationally owing to the sparseness of certain cells of the 
underlying G × E tables. Since we preferred to use the same 
genetic model for all MAF categories for the sake of com-
parability, we thus chose to consistently employ the more 
stable dominant model of G × E throughout our study.

The power assessments in our G × E simulations were all 
based upon a nominal significance level of 0.05 which, given 
that we tested multiple G × E ORs may seem inappropriate 

at first glance. However, for studying the impact of genotype 
imputation on power, the choice of significance level is of 
minor importance and the effects seen in our simulations 
are likely to be similar at more stringent significance levels. 
Studying the latter was, however, beyond the possibilities of 
our real-life genotype data because the power to detect G × E 
would have been low to start with, or G × E ORs should 
have been unrealistically high to provide reasonable power.

Interestingly, for low exposure frequency, i.e. 10% in 
our study, the statistical power to detect G × E interaction 
appeared to be systematically lower than suggested by the 
QUANTO software which was used to calculate the underly-
ing simulation parameters. In fact, a median statistical power 
of 80% was rarely achieved. To a considerable extent, this 
failure may be due to the comparatively small sample size 
of 719 cases in our study because, at a MAF of 0.021, the 
QUANTO results indicated that an interaction OR of 2.95 
was detectable with 80% statistical power. With a low MAF 

Fig. 4  Simulation-based estimates of the statistical power to detect 
G × E interaction, using a CO design with imputed SNP genotypes 
(10,000 replicates per parameter setting). The interaction OR under-
lying the simulations was such that the true genotypes should have 
afforded 80% power according to the QUANTO software (depicted 
by a dashed line). Horizontal axis: r2 threshold used for LD prun-

ing around the target SNP (for details, see “Methods” and legend to 
Fig.  2) except for column ‘True’, which refers to the non-imputed 
genotypes. Boxes are tinted according to the environmental exposure 
frequency underlying the simulations: grey (30%), white (10%). For 
the definition of MAF categories of SNPs, see “Methods”
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of say 0.05, however, the mean number of exposed carriers 
of the minor allele equals 7, which implies that more than 
99.5% of the simulations were expected to yield less than 
15 such cases. Hence, one likely explanation of the lower 
than expected power seen in our simulations is that the large 
sample theory underlying QUANTO (or similar software) 
was not taking sufficient effect at the lower end of the MAF 
range.

The consideration of non-genotyped SNPs may be essen-
tial to detect a particular G × E interaction, depending upon 
the nature and location of the genetic variants involved. Of 
course, such interactions could be missed if genotype impu-
tation was omitted entirely from CO studies, but the possible 
pitfalls of the technique highlighted by our study need to be 
taken into consideration as well. It all comes down to the 
fact that genotype imputation requires an imputation base, 
i.e. a reference sample of true genotypes of nearby SNPs, 
and it is all too clear that the imputation quality hinges on 
the comparability of the imputation base and the CO sam-
ple. This limitation does not only apply to ethnicity, but to 
disease status as well. Cases are genetically different from 

the general population (usually represented by the imputa-
tion base) in regions with MEs, because this is what makes 
an ME an ME. Consequently, imputation-based analysis of 
G × E interactions in CO studies is inherently problematic, 
albeit to a variable extent, depending upon various factors. 
Thus, poor performance was shown in our study to affect tar-
get SNPs with low MAF and located in regions that are not 
saturated by sufficiently many SNPs in strong LD with the 
target SNPs. The main problem in these instances was a lack 
of power, rather than an inflation of false-positive results, a 
shortcoming that could perhaps be overcome in practice by 
the use of denser SNP sets or by an increase of sample size.
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