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ABSTRACT
Osteosarcoma is a common malignancy seen mainly in children and adolescents. The
disease is characterized by poor overall prognosis and lower survival due to a lack of
predictive markers. Many gene signatures with diagnostic, prognostic, and predictive
values were evaluated to achieve better clinical outcomes. Two public data series,
GSE21257 andUCSCXena, were used to identify theminimumnumber of robust genes
needed for a predictive signature to guide prognosis of patients with osteosarcoma.
The lasso regression algorithm was used to analyze sequencing data from TCGA-
TARGET, and methods such as Cox regression analysis, risk factor scoring, receiving
operating curve, KMplot prognosis analysis, and nomogram were used to characterize
the prognostic predictive power of the identified genes. Their utility was assessed
using the GEO osteosarcoma dataset. Finally, the functional enrichment analysis of
the identified genes was performed. A total of twenty-gene signatures were found to
have a good prognostic value for predicting patient survival. Gene ontology analysis
showed that the key genes related to osteosarcoma were categorized as peptide–antigen
binding, clathrin-coated endocytic vesicle membrane, peptide binding, and MHC class
II protein complex. The osteosarcoma related genes in these modules were significantly
enriched in the processes of antigen processing and presentation, phagocytosis, cell
adhesion molecules, Staphylococcus aureus infection. Twenty gene signatures were
identified related to osteosarcoma, which would be helpful for predicting prognosis of
patients with OS. Further, these signatures can be used to determine the subtypes of
osteosarcoma.

Subjects Bioinformatics, Cell Biology, Genetics, Oncology, Orthopedics
Keywords Osteosarcoma, Gene signature, Prognosis, Survival rate, Coexpression analysis

INTRODUCTION
Osteosarcoma (OS) is a common primary malignancy seen mainly in children and
adolescents (Yang et al., 2018). Its annual incidence ranges from two to three in 1
million people (De Azevedo et al., 2020), and it accounts for 40.51% of primary bone
malignancies (Li et al., 2020). The incidence of OS is higher in males than in females
(Damron, Ward & Stewart, 2007), and it accounts for 15% of all extracranial tumors in the

How to cite this article Qiu Z, Du X, Chen K, Dai Y, Wang S, Xiao J, Li G. 2021. Gene signatures with predictive and prognostic survival
values in human osteosarcoma. PeerJ 9:e10633 http://doi.org/10.7717/peerj.10633

https://peerj.com
mailto:ligang_shzu@shzu.edu.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.10633
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj.10633


10–19-year-old age group) (Nie & Peng, 2018). It is considered the third most common
cancer in adolescence (Zhang, Lan & Lin, 2018). OS treatment is aggressive and combines
neoadjuvant chemotherapy, extensive surgical resection, and additional postoperative
adjuvant chemotherapy. The five-year survival rate of non-metastatic patients is 65%–
70% (Siegel, Miller & Jemal, 2018). Regarding patients with distant metastases, the 5-year
survival rate is only 15%–30% (Whelan & Davis, 2018). Further, relapse rate remains high
at approximately 35% (Yu et al., 2014). Metastasis remains the main cause of death in
patients with OS. Many prognostic factors are reported to be related to OS: miR-195,
miR-21, TGF-β, MMP-9, HIF-1, APE1, and COX2. However, use of these factors has not
improved survival rate related to OS (Zamborsky et al., 2019). Therefore, clarifying the
molecular mechanisms underlying the occurrence and progression of OS and exploring
the potential diagnostic and therapeutic targets are of great importance for the diagnosis
and treatment of OS. Many biomarkers have been evaluated (Table 1) (Wan-Ibrahim
et al., 2015), but none have been approved by the Food and Drug Administration for
clinical settings (Wan-Ibrahim et al., 2015). This lack may be due to research deficiencies,
unacceptable heterogeneity, or absence of effective evaluation. Biomarkers for patients
with OS, particularly those with metastases, are urgently needed for early diagnosis and
establishment of treatment goals. Serum biomarkers are used for predicting prognosis
of other cancers but are rarely characterized in OS (Zamborsky et al., 2019). An obvious
need in OS is effective biomarkers for characterizing disease progression and associated
prognosis.

One study reported that CDC20 and its downstream substrates, secure, cyclin A2 and
cyclin B2 are good prognostic factors for OS (Wu et al., 2019). Savage et al. (2013) suggested
that two loci in the GRM4 gene at 6p21.3 and in the gene, desert, at 2p25.2, These
two loci warrant further exploration to uncover the biological mechanisms underlying
susceptibility to osteosarcoma.The study addressed a single gene and did not take into
account interactions among molecules that regulate tumorigenesis. Three candidate genes
(ALOX5AP, CD74 and FCGR2A) were found. Their expression levels in lung and lymph
nodes were higher than levels in matched cancer tissues, and they may be expressed in
microenvironments (Li et al., 2020). Some limitations exist in these studies. First, accuracy
cannot be guaranteed with only one dataset because of an expected high false-positive rate.
Further, using a single high-throughput analysis method (only sequencing or chip data),
results obtained will be biased. Second, a patient’s sample data are too limited. Finally,
clinical information is incomplete.

Identifying the minimum number of robust genes needed to produce a predictive
signature for prognosis for patients with OS was the objective of this study. The lasso
regression algorithm was used to analyze sequencing data from TCGA-TARGET, and Cox
regression analysis, risk factor score, receiving operating curve (ROC), KMplot prognosis
analysis, nomogram and other methods were used to assess genes for their predictive
power. Next, the accuracy and predictive power of twenty-gene identified in this process
were assessed using the GEO OS dataset. Finally, we performed functional enrichment
analysis on these twenty-gene.
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Table 1 Potential biomarkers for osteosarcoma.

Study
approach

Type of
biomarker

Candidate
biomarker

Regulation Sample Technique Reference

Diagnostic C7orf24 ↑ Tissue;
cell lines

RT-PCR; qRT-PCR;
Western blot (WB);
siRNA transfection

Uejima et al. (2011)

Diagnostic And
Predictive

miRNA signatures − Tissue;
cell lines

qRT-PCR Gougelet et al. (2011)

Predictive Multigene classifier − Tissue cDNA microarray; qRT-
PCR

Man et al. (2005)

Predictive Multigene classifier − Tissue cDNA microarray; RT-
PC

Mintz et al. (2005)

Predictive And
Prognosis

miRNA signatures − Tissue miRNA microarray;
qRT-PCR; immunohis-
tochemistry (IHC)

Jones et al. (2012)

Predictive And
Prognosis

miR-21 ↑ Serum qRT-PCR Yuan et al. (2012)

Prognosis Tenascin-C ↓ Cell lines cDNA microarray; RT-
PCR; WB; IHC

Xiong et al. (2009)

Genomics

Prognostic miRNA-214 ↑ Tissue qRT-PCR Wang et al. (2014)
Diagnostic Serum amyloid A

(SAA)
↑ Plasma SELDI-TOF MS; WB Li et al. (2010)

Diagnostic Ezrin (EZR); a
crystallin β chain
(CRYAB)

↑ Tissue 2D-DIGE; LC-ESI-
MS/MS; RT-PCR for
mRNA; tissue microar-
ray and IHC

Folio et al. (2009)

Diagnostic Cytochrome C1
(CYC-1)

↑ Serum;
cell lines

SELDI-TOF MS; Gene
microarray (cell lines)

Li et al. (2009)

Diagnostic Zinc finger protein
133 (ZNF 133);
tubulin-a1c
(TUBA1C)

↑ Tissue 2-DE; MALDI-TOF MS;
WB; IHC

Li et al. (2010)

Diagnostic Protein NDRG 1 ↑ Plasma mem-
brane from
cell line and
tissue

2-DE; LC-ESI-MS/MS;
IHC; WB

Hua et al. (2011)

Diagnostic Gelsolin ↓ Serum 2D-DIGE;
MALDIHTOF; WB;
ELISA

Jin et al. (2012)

Predictive And
Prognostic

SAA ↑ Serum 2D-DIGE; MALDI-TOF
MS; WB; ELISA

Jin et al. (2007)

Predictive Peroxiredoxin 2
(PRDX2)

↑(poor prognosis) Tissue 2D-DIGE; LC-ESI-
MS/MS; WB

Kikuta et al. (2010)

Proteomics

Predictive SAA; transthyretin
(TTR)

↑(poor prognosis) Plasma SELDI-TOF MS; WB Li et al. (2011)
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MATERIAL AND METHODS
Data collection and preprocessing
Training set: The TARGET-OS RNA-sequencing dataset (presented as fragments per
kilobase million, FPKM), corresponding clinical characteristics and prognosis information
were downloaded from UCSC Xena (Goldman et al., 2019) (https://xena.ucsc.edu/).
Patients with expression profiles but no prognostic information and clinical characteristics
were excluded. Finally, 84 patients with OS were included in a training set. FPKM data were
converted to TPM data and annotated using gencode.v22.annotation.gene.probeMap.

Validation set: The gene expression data GSE21257 (Buddingh et al., 2011) (GPL570
(HG-U133_Plus_2) Affymetrix Human Genome U133 Plus 2.0 Array) for 53 patients
with OS were downloaded from the GEO database, and corrected and annotated with R
software.

Construction of gene signatures
A linear regression multiple regression model was developed for the underlying expression
levels of genes for prognostic risk scores. The method chosen by lasso Cox was 10-fold
cross-validation. According to themedian cutoff value (the cutoff value refers to the content
before the brackets of the HR value in each dataset) of the risk score, patients with OS were
divided into high-risk and low-risk groups. Model prediction efficiency using the training
set was evaluated by Kaplan–Meier log-rank test, time-dependent ROC curve analysis,
Cox regression analysis, and risk factor score for validation and test sets. A nomogram was
constructed using Iasso’s guidelines.

Weighted correlation network analysis of genes
Based on the variance of gene expression in TARGET-OS data, the top 5000 genes were
selected for WGCNA (Langfelder & Horvath, 2008). This analysis proceeded as: check for
outliers in all samples, construct sample tree with hclust, and remove outliers according
to cut height. To explore the correlation between expression data and clinical phenotypes,
the sample tree and characteristic heat map were visualized. Subsequently, the strength
of associations between pairs of nodes of the adjacency matrix aij was calculated as: sij
= |cor (xi, xj)| aij = Sijβ. xi and xj are genes i and j. The vector of expression value, sij,
indicates the strength of Pearson’s correlation coefficient between genes i and j. The aij
coding network connects genes i and j. β value is a soft threshold (power value). Further,
the Scale-Free Topology Fit Index (scale-free R2) range from 0 to 1 is used to determine the
scale-free topological model. Selecting a set of soft threshold powers (range: 1 to 20) assists
in calculating scale-free topological model fitting. The soft threshold of β= 7 was used to
define the adjacency matrix. The corresponding scale-free R2 value is 0.87, suggesting a
satisfactory scale-free topology model.

In coexpression networks, the highest absolute association genes were clustered into
the same module to generate a clustering dendrogram. Relationships between clinical
traits and risk scores were analyzed by Pearson correlation and results were visualized
by heat map analysis. Genes in the module were analyzed for gene ontology (GO) and
KEGG pathway enrichment. Moreover, Cytoscape (Smoot et al., 2010) (version 3.7.2)

Qiu et al. (2021), PeerJ, DOI 10.7717/peerj.10633 4/19

https://peerj.com
https://xena.ucsc.edu/
http://dx.doi.org/10.7717/peerj.10633


was used to visualize the weighted coexpression network. gene ontology (GO) analysis,
which includes annotation of biological processes (BPs), molecular functions (MFs), and
cellular components (CCs), serves as a major bioinformatics tool to annotate genes and
analyze the biological processes of these genes. Huimei Wang et al. analyzed the biological
classification of DEGs, showing that changes in BPs of DEGs were significantly enriched in
positive regulation of associated cell response, by GO analysis (Wang et al., 2018).

Functional enrichment analysis
Clusterprofiler (Yu et al., 2012) was used to study modules related to biological function
for determining functional and pathway enrichment. A multiple testing correction was
performed using hypergeometric test functions and the Benjamini–Hochberg method.
The GOplot (Walter, Sánchez-Cabo & Ricote, 2015) package was used to visualize the
enrichment analysis.

Statistical analysis
Statistical analysis was conducted in R software (version 3.6.1) with the following packages:
‘‘glmnet’’ (Friedman, Hastie & Tibshirani, 2009), ‘‘survivalROC’’ (Heagerty, Lumley &
Pepe, 2000), ‘‘WGCNA,’’ and ‘‘clusterProfiler.’’ All the statistical tests were two sided, and
P-values of < 0.05 were considered statistically significant.

RESULTS
Construction of genes classifier for OS
Prognostically significant genes for OS in TARGET-OS data were analyzed and a total
of 1151 genes were significantly associated with poor prognosis. These 1151 candidate
genes were included in the lasso prognostic classifier for further screening and model
construction. A twenty-gene classifier for the OS was developed (Figs. 1A and 1B). The
gene information in the model is shown in Table 1. Patients were divided into a high-risk
group (n= 42) and low-risk group (n= 42) based on risk scores. The median risk score
was set as the cutoff (the cutoff value refers to the content before the brackets of the HR
value in each dataset). Table 2 shows clinical characteristics of patients with OS in the
training set according to their high risk and low risk scores. The Kaplan–Meier log-rank
test suggested a significant difference between high-risk and low-risk groups in the training
set (P < 0.001; Fig. 1C). In the time-dependent analysis of the ROC curve, AUCs for OS in
the first, third, and fifth years were 0.94, 0.98, and 0.97, respectively (Fig. 1D).

Identification of a prognostic risk score model based on the training
set
Based on univariate regression analysis (Cox’s proportional hazard model), forest plots of
selected genes with p-value and hazard ratios are shown in Fig. 2A. HR, Hazard Rate in
Fig. 2A, shows that the p-value of selected genes was less than 0.05, showing the statistical
difference, which cannot be ignored. Only when 95% CI conclude 1, it could be proved
that these selected genes signatures were not significantly associated with the prognosis of
patients with OS. Although the extremum of HR is very close to 1, they show that these
selected genes might be associated with the prognosis of patients with OS. Risk scores and
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Figure 1 Construction of comprehensive prognostic classifier based on the training set. A-10-fold
cross-validation for tuning parameter selection in the LASSO model for OS.B-LASSO coefficient pro-
files of 20 prognostic genes for OS.C-Kaplan–Meier overall survival with a low or high risk of death in the
training dataset.D-Time dependent ROC curves at 1, 3 and 5 years for OS OS overall survival.

Full-size DOI: 10.7717/peerj.10633/fig-1

survival status of patients with OS are shown in Figs. 2B and 2C, respectively. These results
indicate that patients with high risk scores have poor outcomes compared with patients
with low risk scores (Fig. 2D). Using these data, a nomogram combining the classifier with
clinicopathological features to predict the survival probability of patients with different
risk scores was prepared (Fig. 3A). The calibration chart demonstrated that predicted
three-year and five-year survival rates were very close to observed ratios (Fig. 3B).

Validation of twenty-gene signature for survival prediction in the
validation set
Subsequently, the validation set was used to assess the power of the twenty-gene signature
in predicting prognosis. OS of the low-risk group was superior to the high-risk group
(P < 0.05; Fig. 4A). Also, time-dependent ROC analysis is used to assess the effectiveness
of risk models in predicting outcomes. Areas under ROC was 0.81, 0.78, and 0.76 at
one, three and five years, respectively, suggesting that the twenty-gene signature displays
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Table 2 Twenty genes significantly related to the overall survival in the training set underlying the LASSOmodel.

Ensemble ID Gene Chromosome location Coefficient of lasso model HR p value

ENSG00000103274.9 NUBP1 chr16:10743786-10769351:(+) −0.2216 0.905 (0.86, 0.953) 0.000
ENSG00000163219.10 ARHGAP25 chr2:68679601-68826833:(+) −0.0503 0.795 (0.685, 0.924) 0.003
ENSG00000077420.14 APBB1IP chr10:26438203-26567803:(+) −0.0429 0.924 (0.88, 0.97) 0.001
ENSG00000162517.11 PEF1 chr1:31629862-31644896:(-) −0.0230 0.979 (0.966, 0.992) 0.002
ENSG00000102226.8 USP11 chrX:47232690-47248328:(+) −0.0123 0.982 (0.97, 0.994) 0.004
ENSG00000179163.11 FUCA1 chr1:23845077-23868294:(-) −0.0104 0.969 (0.949, 0.99) 0.003
ENSG00000189171.12 S100A13 chr1:153618787-153634092:(-) 0.0019 1.007 (1.004, 1.011) 0.000
ENSG00000132535.17 DLG4 chr17:7189890-7219702:(-) 0.0088 1.064 (1.021, 1.109) 0.003
ENSG00000158315.9 RHBDL2 chr1:38885807-38941799:(-) 0.0144 1.01 (1.006, 1.013) 0.000
ENSG00000176171.10 BNIP3 chr10:131966455-131981931:(-) 0.0170 1.009 (1.004, 1.014) 0.000
ENSG00000167549.17 CORO6 chr17:29614756-29622907:(-) 0.0425 1.054 (1.021, 1.088) 0.001
ENSG00000125337.15 KIF25 chr6:167996241-168045089:(+) 0.0570 1.148 (1.076, 1.224) 0.000
ENSG00000179262.8 RAD23A chr19:12945855-12953642:(+) 0.0741 1.005 (1.002, 1.008) 0.000
ENSG00000147378.10 FATE1 chrX:151716035-151723194:(+) 0.0862 2.217 (1.518, 3.238) 0.000
ENSG00000113739.9 STC2 chr5:173314713-173329503:(-) 0.0895 1.016 (1.005, 1.027) 0.004
ENSG00000197467.12 COL13A1 chr10:69801931-69964275:(+) 0.0910 1.021 (1.013, 1.029) 0.000
ENSG00000017483.13 SLC38A5 chrX:48458537-48470256:(-) 0.1003 1.008 (1.003, 1.014) 0.002
ENSG00000136997.13 MYC chr8:127735434-127741434:(+) 0.1635 1.003 (1.002, 1.005) 0.000
ENSG00000138028.13 CGREF1 chr2:27098889-27119115:(-) 0.2105 1.015 (1.009, 1.021) 0.000
ENSG00000241563.3 CORT chr1:10449719-10451902:(+) 0.2504 1.026 (1.016, 1.036) 0.000

Notes.
HR, Hazard Ratio; CI, Confidence Interval.

good predictive power (Fig. 4B). The C-index value is 0.944. The risk score (Fig. 4C) and
survival status (Fig. 4D) of patients with OS, and distribution of risk scores of twenty-gene
expression profiles are shown in a heat map of 53 patients in the validation set (Fig. 4E).
These results suggest that the twenty-gene signature shows good prognostic value for
patient survival. This finding is further validated since patients with high risk scores were
associated with poorer prognoses compared with patients with low risk scores. Previous
studies have investigated gene factors in an attempt to identify new prognostic OS markers
(Goh et al., 2019; Guan, Guan & Song, 2020). Hence, I have compared the prognostic gene
set for osteosarcoma, Cox univariate and multivariate analysis showed that BACE2, ING2
ALOX5AP, HLA-DMB, HLA-DRA, and SPINT2 were not the independent prognostic
factors for osteosarcoma (Table 3). Table 3 shows the determinants of BACE2, ING2
ALOX5AP, HLA-DMB, HLA-DRA, and SPINT2 for all the patients. In the univariate
analysis, These gene signatures exhibited a negative correlation with age, gender, specific
and primary tumor site, but illustrate a positive correlation with recurrence and risk
score. After multiple stepwise analysis, these biomarkers correlated independently with
Recurrence (hazard ratio (HR) 5.374, 95% CI [1.183–24.404], p= 0.029) and risk score
(HR 9.869, 95% CI [4.663–20.887], p< 0.001).

Qiu et al. (2021), PeerJ, DOI 10.7717/peerj.10633 7/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.10633


Figure 2 Multivariate Cox regression analysis was performed for the selected genes, and the risk
scores, survival status and risk heat maps of the 20 prognostic genes were distributed in the training
set. (A) Hazard ratio distribution for selected 20 key genes.distribution of risk scores, (B) overall survival
of 84 patients, and heatmap of 20 genes in prognostic classifier in the training set. The black dotted line
suggested the median cutoff divividing patients into low-risk and high-risk groups.

Full-size DOI: 10.7717/peerj.10633/fig-2

Figure 3 Nomograms to predict 1-year, 3- year and 5-year survival probability in osteosarcoma. (A)
Total points were obtained by incorporated the corresponding points of recurrence, metastasis, risk score
on the point scale. The total points were then converted into specific 1 year, 3- yearand 5-year associ-
ated survival probabilities. (B) Calibration plot underlying the nomogram. Dashes show the nomogram-
predicted probability for each group, as well as the respective confidence intervals.

Full-size DOI: 10.7717/peerj.10633/fig-3

Gene co-expression network analysis
The relationship between risk scores and gene expression profiles was evaluated using
the top 5000 genes in the variance filter for WGCNA analysis. The red line (cut height
= 8000) was used to remove the abnormal samples in the sample tree. TARGET-40-
PAUXOZ-01A was excluded after removing outliers (Fig. 5). The sample dendrogram
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Figure 4 Kaplan–Meier survival, time-dependent ROC curves, and risk score distribution, the over-
all survival status of 84 patients, and heat maps of the expression of 20 genes in the low and high risk
groups based on the validation set. (A) Kaplan–Meier curve of osteosarcoma patients with a low or high
risk of death.(B) Time dependent ROC curves at 1, 3, and 5 years for OS in the validation set. (C) Distri-
bution of risk scores for genes in the validation set, (D) overall survival of 53 patients, (E) and heat maps
of the expression of 20 genes in the low-risk and high-risk groups.

Full-size DOI: 10.7717/peerj.10633/fig-4

Table 3 Univariate andmultivariate Cox regression analyses genes signiture for patients with osteosarcoma in study cohort.

Univariate Multivariate

Characteristics HR p.value HR p.value

Gender (Female vs Male) 0.666 (0.317, 1.399) 0.283
Age (<18 vs ≥18) 0.909 (0.345, 2.393) 0.846
Recurrence (No vs Yes) 19.348 (4.589, 81.563) <0.001 5.374 (1.183, 24.404) 0.029
Primary tumor site (Arm/Hand OR Pelvis vs Leg/Foot) 0.487 (0.168, 1.413) 0.185
Specific tumor site (Femur vs Tibia or others) 0.642 (0.309, 1.337) 0.236
riskscore 13.915 (7.067, 27.398) <0.001 9.869 (4.663, 20.887) <0.001

and trait heat map placed selected samples into different sample clusters that provided
clinical trait information (Fig. 6A). Independence and average connectivity of coexpression
modules were determined by power (β) and scale R2 value. A series of soft thresholds and
corresponding performance power were plotted. The threshold for scale R2 value was set at
0.85. The power value of seven is the threshold that first reaches the scale R2 value, and was
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Figure 5 Sample cluster analysis to identify outliers underlying RNA sequencing data. The red line
suggested the cut-off data filtering in the data preprocessing step c.

Full-size DOI: 10.7717/peerj.10633/fig-5

chosen as the soft threshold to construct and identify coexpression modules (Figs. 6B and
6C). The expression matrix was converted to an adjacency matrix, and subsequently into
a topology matrix. Based on TOM, genes are clustered based on criteria of mixed dynamic
shear trees using average connection–level distance. Theminimumnumber of genes in each
module was set at 7. Finally, a total of 11modules were identified with theWGCNA package
(Fig. 6D). Statistics of gene numbers in each module are shown in Table 4. Associations
of these modules with clinical characteristics (including sex, age, relapse, OS, metastasis,
major cancer sites, specific cancer sites, and risk scores) are shown in Fig. 6E. T module
showed the highest correlation with the risk score. Further, the magenta module also was
negatively correlated with sex and OS and positively correlated with major cancer sites.
GSEA analysis between high-risk and low-risk groups can better illustrate the risk-score
related to the biological process. But GSEA analysis between high-risk and low-risk groups
only considers the expression level of gene sets. Analysis of WGCNA is based on the clinical
relevant factors, which makes it sense, although its risk-score is low.

Functional enrichment analysis in the gene coexpression network of
the magenta module
GO andKEGG enrichment analysis was used to characterize biological functions of genes in
themagentamodule as they related to risk scores. GO analysis showed that key genes related
to OS were mainly enriched in peptide–antigen binding, clathrin-coated endocytic vesicle
membrane, peptide binding, and MHC class II protein complex (Fig. 7A). KEGG analysis
showed that the key genes related to OS were mainly enriched in antigen processing
and presentation, phagosome, cell adhesion molecules, Staphylococcus aureus infection
(Fig. 7B). Subsequently, the interaction network for enrichment pathways in the magenta
module was visualized (Fig. 7C). Moreover, an interaction network was constructed to
visualize genes in the coexpression magenta module (Fig. 7D).

DISCUSSION
OS is a disease involving complex interactions among many factors. Overall, OS disrupts
cell signaling pathways, causing loss of bone tissue homeostasis (Otoukesh et al., 2018).
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Figure 6 Overview of co-expressionmodules identified from the osteosarcoma RNA-seq dataset based
on the training set. (A) Sample dendrogram and trait heat map underlying gene expression data and clin-
ical information.(B) Scale independence and (C) average network connectivity with different soft thresh-
old powers (Îš). Select a soft threshold power of 7 to achieve maximum model fit. (D) Cluster dendrogram
of the co-expression modules of the 20 genes identified. Each differentially expressed gene represents a
leaf, and each of the six modules consists of a branch. The lower panel displays the colors assigned to each
module. Note that the gray blocks indicate unassigned genes.(E) Weighted correlation of module features
between the identified modules and clinical features and corresponding P-values. The color scale on the
right represents the correlation of module features from -1 (blue) to 1 (red). Green represents perfect neg-
ative correlation, and red represents perfect positive correlation.

Full-size DOI: 10.7717/peerj.10633/fig-6

The urgent need to obtain better clinical results highlights the related need for better
diagnostic, prognostic, and predictive biomarkers (Ludwig & Weinstein, 2005). Presently,
no specific markers are available for OS diagnosis. To reduce mortality and increase limb
salvage, biomarkers are needed for early identification of disease (Smida et al., 2017).
Possible genetic biomarkers to address this need were identified in the present study. Lasso
regression screened in twenty-gene in a training set. These genes have certain prognostic
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Table 4 Relationship between risk score of the 20-marker-based prognostic classifier with os and clinical characteristics in the training set.

Characters Level Low risk High risk P value

n 42 42
Gender Female (%) 16 ( 38.1) 21 (50.0) 0.379

Male (%) 26 ( 61.9) 21 (50.0)
Age <18 (%) 32 ( 76.2) 34 (81.0) 0.791

≥18 (%) 10 ( 23.8) 8 (19.0)
Overall survival Alived (%) 42 (100.0) 13 (31.0) <0.001

Dead (%) 0 ( 0.0) 29 (69.0)
Recurrence No (%) 32 ( 76.2) 13 (31.0) <0.001

Yes (%) 10 ( 23.8) 29 (69.0)
Metastasis No (%) 37 ( 88.1) 26 (61.9) 0.011

Yes (%) 5 ( 11.9) 16 (38.1)
Primary tumor site Arm/Hand OR Pelvis (%) 3 ( 7.1) 5 (11.9) 0.713

Leg/Foot (%) 39 ( 92.9) 37 (88.1)
Specific tumor site Femur (%) 13 ( 31.0) 25 (59.5) 0.015

Tibia or others (%) 29 ( 69.0) 17 (40.5)

value in time ROC, risk factor, and Kaplan–Meier plots. Results were verified with a
validation set.

One current study showed that inhibition of BNIP3 expression by baicalein treatment
could inhibit cell apoptosis (Ye et al., 2015). Moreover, the MYC gene is also reported to be
amplified in a subset of OS (Ladanyi et al., 1993). MYC promotes the proliferation of OS
cells through the autophagy pathway (Mo et al., 2019). Cross-species genomics identified
DLG2 as a tumor suppressor in OS (Shao et al., 2019). Further, depletion of KIF25 leads
to the formation of actin stress fibers, which may be due to the changes of Rho signaling
observed before microtubule destabilization (Wittmann &Waterman-Storer, 2001). In
addition to the above studies of genes related to OS, relationships between other genes
screened in this study and malignancies have been reported in the literature but have not
been reported in OS. A lack of related research reports to help assess the potential of these
genes as targets for the treatment and diagnosis of OS currently exits.

The current study also explored the relationship between risk scores and gene expression
profiles using WGCNA analysis. Important genes related to OS were enriched in 11
different modules. Results showed that pathways related to inflammation and immunity
were primarily enriched in the turquoise module. The gray and turquoise modules share
the most pathways among all pairwise comparisons. Genes in these modules may play
similar roles in OS.

LASSO is a method of shrinking and variable selection linear regression model. The
purpose of LASSO regression is to obtain a subset of the predictors to minimize the
prediction errors of the quantitative response variables. The lasso does this by constraining
the model parameters, making the regression coefficients of some variables approach 0.
‘‘Coxnet’’ fits a lasso penalty, and its adaptive forms, such as adaptive lasso. Moreover, it
treats the number of non-zero coefficients as another tuning parameter and simultaneously

Qiu et al. (2021), PeerJ, DOI 10.7717/peerj.10633 12/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.10633


Figure 7 Functional enrichment analysis andWGCNAweighted network analysis of magenta module.
(A) GOplot indicated the correlation between magenta module genes and their related GO terms. (B) GO-
plot indicated the correlation between magenta module genes and their related KEGG terms. (C) KEGG
pathway analysis of magenta module genes based on clusterprofiler. (D) WGCNA weighted network dia-
gram of magenta module.

Full-size DOI: 10.7717/peerj.10633/fig-7

selects with the regularization parameter ‘‘lambda’’. And Xiong et al. (2020) established
a 13 gene-based survival score for prognostic prediction of Lung adenocarcinoma. They
filtrated the relevant gene by LASSO and identified the wide applicability of these genes.

Previous studies report that CXCR3 may be an independent prognostic risk factor,
suggesting a possible benefit of immunotherapy for OS (Tang et al., 2019). The
susceptibility and severity of OS may also be related to functional polymorphism of
inflammatory genes (Oliveira et al., 2007). Another study has shown that increased
expression of MIF indicates an increased risk of metastasis, and MIF is related to
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angiogenesis and cell infiltration of OS. MIF can be used as a prognostic marker of
OS and a potential therapeutic target (Kim et al., 2008). Therefore, clarifying molecular
mechanisms of OS may facilitate the identification of novel therapeutic and prognostic
targets. Limitations to the study exist. First, although these twenty-gene were identified
to have certain prognostic value for OS, all data analyzed in the study were retrieved
from the online databases. Thus, further experimental evidence, such as real-time PCR,
western blot, immunohistochemistry assays, is required to fully elucidate the role of
20-gene signatures. Second, to determine the diagnostic accuracy of gene associations, a
larger sample size would be useful for additional internal validation. Third, assessment
of all clinically relevant influencing factors for OS was not included, and more clinical
information and PFS-related data are needed. Finally, differentially expressed genes were
not evaluated and nor was the need to add a normal control group and joint verification
of multiple tumor sites.In conclusion, the current study proposes a 20-gene signature for
diagnostic and prognostic purposes for OS. The twenty-gene signature is independently
related to prognostic parameters of OS classification. Also, the signature is a good classifier
for different subtypes of patients with OS. This signature may provide a new perspective on
the prognosis of OS. The biological functions and pathways enriched in specific modules
will be beneficial to the development of new therapeutic methods for the treatment of
OS.
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