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ABSTRACT: Computational studies of ligand�protein binding are crucial for properly designing novel compounds of potential
pharmacological interest. In this respect, researchers are increasingly interested in steered molecular dynamics for ligand�protein
binding and unbinding studies. In particular, it has been suggested that analyzing the work profiles along the ligand�protein un-
docking paths could be fruitful. Here, we propose that small portions of work profiles, termed “local mechanical responses” of the
system to a steering force, could serve as a universal measure for capturing relevant information about the system under investiga-
tion. Specifically, we first collected a high number of steering trajectories using two biological systems of increasing complexity (i.e.,
alanine dipeptide and (R)-roscovitine/CDK5 complex). Then, we devised a novel postprocessing tool to be applied to the local
mechanical responses, to extract structural information related to the biological processes under investigation. Despite the out-of-
equilibrium character of the trajectories, the analysis carried out on the work profiles provided pivotal information about the
investigated biological processes. This could eventually be applied to drug design.

’ INTRODUCTION

Computational drug design has two major goals: (i) the accu-
rate estimation of ligand�protein binding free energy; and (ii)
the disclosure of the structural determinants responsible for
ligand�protein recognition and binding. In this scenario, mo-
lecular dynamics (MD)-based enhanced sampling methods play
an increasingly relevant role. As far as the ligand�protein binding
free energy (ΔGb) is concerned, the most widely used strategies
are based on alchemical transformations1 (double decoupling2,3

and related schemes), where the ΔGb is estimated using a ther-
modynamic cycle.1,4�7 Notwithstanding the impressive results
achieved, alchemical transformations8,9 do not explicitly account
for the dynamical events occurring upon ligand�protein recog-
nition and binding. Notably, such dynamical events can be of
paramount importance in drug discovery by providing funda-
mental drug design information.10 Moreover, simulations of the
unbinding process are relevant for the binding kinetics, and thus
for drug residence time within the target.11,12 Very recently, the
first promising attempt to obtain the kinetics from straightfor-
ward simulations appeared13 and required a collective computa-
tional effort through distributed networks. Therefore, for the
time being, umbrella sampling,14,15 metadynamics,16,17 and
steeredMD18 are the methods of choice to disclose the structural
determinants relevant to a ligand binding to a protein on the exit
pathways. In particular, metadynamics has proven to be rather
effective,17,19 but its computational cost is not a priori predictable
even in an exploratory regime (i.e., when convergence of the free
energy is not required). Steered MD is also becoming very
popular for studying biophysical processes.20�26 This is partly
due to its conceptual simplicity and integration in several
currently available MD codes. In steeredMD, a certain transition
(such as ligand�protein unbinding) is obtained via a tunable

restraining potential, which forces the system to move away
from its initial configuration (e.g., a bound state for ligand�
protein complexes) to a given position during an MD run.18 In
the case of an unbinding process, the target position may be
defined as an unbound state where the ligand�protein interac-
tions may be considered negligible. In steered MD, the simula-
tion time required to complete the transition is an input para-
meter, which can be reduced to an almost arbitrary small number,
making the technique particularly appealing in the drug discovery
process. Moreover, some recent attempts to obtainΔGb of bind-
ing have been reported,25 but these are limited to very simple
model ligands. Concerning more realistic cases, Colizzi et al.24

have demonstrated that steered MD can be applied to drug
design-related problems without requiring an accurate estima-
tion of the ΔGb. In particular, Colizzi et al. could discern active
from inactive enzyme inhibitors by a simple visual inspection of
the force profiles required for pulling ligands out of the protein
binding site. Increasing the number of steered MD pulling
trajectories provides a natural extension to improve the overall
reliability of this approach,26�28 and this is becoming accessible
due to the ongoing increase in CPU performance. Although
much recent effort has been devoted to analyzing configurations
generated by MD runs,29�31 it is not easy to extract relevant
structural information from an ensemble of steered MD work
profiles for a complex system. This is due to the lack of specific
and effective analysis tools.

Here, we report on a novel postprocessing strategy aimed at
analyzing steered MD trajectories and extracting the structural fea-
tures that are relevant to the biological process under investigation.
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We used the work profile calculated on the system in a limited
region of space, hereafter referred to as local mechanical response
(LMR), as a measure of the ligand�protein interaction strength.
The LMR profiles were analyzed via multidimensional scaling
(MDS),32 which allowed us to extract structural similarity/
dissimilarity over a large set of steered MD-derived LMRs. We
also report on using this postprocessing tool to correlate work
profiles with the relevant structural changes occurring during a
certain process (see Figure 1 for a schematic representation of
the overall process). In particular, we show that: (i) reasonably
fast pulling regimes can provide relevant information on structu-
rally different reactive pathways; (ii) by analyzing LMR patterns,
it is possible to point out the structural elements important for the
unbinding process; (iii) LMR emerges as a simple and system-
independent observable that has general applicability for ligand�
protein binding studies. To illustrate the usefulness of this
novel approach, two case studies of increasing complexity are
here investigated.

’METHODS

Work Estimate in Steered MD Simulations. In the thermo-
dynamic integration formalism,33 the free energy difference
associated with the continuous change of the system from an
initial state described with an Hamiltonian H(λ0) to a final one
H(λ1) obtained by changing the parameter λ is given by

ΔG ¼
Zλ1

λ0

∂HðλÞ
∂λ

� �
dλ ð1Þ

One possible way to achieve the transition is to add to the
standard Hamiltonian a harmonic potential Ubias(t,r) acting on a
descriptor s(r) (e.g., the ligand�protein distance or the mean
square deviation with respect to a given structure), which holds
the following time dependency:

Uðt, rÞ ¼ kðsðrÞ � s0 � vtÞ2 ð2Þ

where s0 is the value of the descriptor in the initial state H(λ0), t is
the time, and k is a numerical constant. Thus, whenever time is
considered in place of the parameter λ, the partial derivative of the
Hamiltonian turns out to be the instantaneous value, and the integral
in eq 1 (which can be easily calculated via quadrature or trapezoidal
rule) corresponds to the work ΔW exerted on the system:

ΔW ¼
Zt1
t0

∂HðtÞ
∂t

� �
dt ¼ � 2kv

Zt1
t0

ðsðrÞ � s0 � vtÞdt ð3Þ

After a predetermined amount of time, the center of the harmonic
constraint will be located in its final position:

s1 ¼ s0 þ vt1 ð4Þ
Therefore, whenever the spring constant k chosen is large

enough (stiff-spring regime), it is reasonable to assume that, at
the final time t1, the system has approximately reached the point
s1.Moreover, when theUbias(t,r) is applied in a quasistatic regime
(slow growth), the calculated work is equivalent to the free
energy estimate obtained by thermodynamic integration:28

ΔWðt1, t0Þ = ΔGðs1, s0Þ ð5Þ
This is a translation of the classical result, which states that the

work exerted by an external potential to move a system quasis-
tatically from an initial to a final state is equal to the free energy
difference between these two states.
Froma practical standpoint, Crooks theorem27,34 or Jarzyinski27

equality are better suited to evaluate free energies from out-of-
equilibrium trajectories, since the quasistatic limit is practically
never reached. Thus, in such cases the work profile turns out to
be rather different from the actual free energy landscape. Here,
we explore the hypothesis that, even in a non-quasistatic regime,
the work profiles retain some information about the structural
events associated with the mechanical response induced by the
steering procedure. Hereafter, this will be referred to as the
“mechanical response” profile.
To better understand the effects of the application of a steering

potential, it is useful to consider the limiting case where the
transition is carried out in a single step. During such a time span
(typically 2 fs for a classical MD simulation), the system can be
considered frozen, and therefore the estimated work will be

ΔW ¼ kðs1 � s0Þ2 ð6Þ
In this case, the path followed by the system (e.g., ligand and

protein in the case of an undocking experiment) becomes irrel-
evant, and all of the contribution to the work comes from the
restraint position. Moreover, being system independent, the esti-
mated work cannot be by any means similar to the free energy of
binding, which, in contrast, is strongly system dependent. This
conceptual experiment shows that, although the requirement of
quasistatic transformation can be somewhat relaxed, the simula-
tions should nevertheless be performed with a steering velocity
that can capture the mechanical response of the system subjected
to the typical relaxation time of the variables implied in the
investigated process. In accordance with this limit, the ligand acts
as a probe for ligand�protein interactions, and the trajectories
may retain some physicochemical relevance. This pulling velocity
range is worth exploiting. This is because it is computationally
affordable and preferable to both very fast steering regimes
(which are not sensitive to the ligand�protein rearrangement)
and very low velocities (which are required whenever accurate

Figure 1. A sketch of the general workflow used in this study. Steered
MD simulations are carried out (A), work profiles are subsequently
generated (B), and a set of matrices that record the similarity among
profiles are produced (C). The matrices are then postprocessed, and the
similarities in the work curves are correlated with structural elements (D).
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free energy estimations are needed). The latter case in particular
must meet a stricter requirement: Whenever multiple paths are
competing, the correct free energy is obtained only when the
relative occurrence of different pathways is at convergence. This is
particularly unlikely when each path is separated from the others
by a large barrier. In the present study, we show that structurally
relevant information about the different paths can be gathered
even without obtaining full convergence on the statistics among
competing pathways. This results in a large computational saving.
MDS Analysis. Since a detailed analysis of a considerable

number of trajectories may be cumbersome, we want to test the
hypothesis that adopting a postprocessing technique for the
mechanical response profiles W(s) may be helpful in capturing
the principal structural trends in the collected ensemble of
trajectories. The rationale is that structural features are expected
to affect the resistance that the system opposes to the external
force and, in turn, the mechanical response profiles W(s).
Although reasonable, this assumption must be kept in mind while
postprocessing two similar work profiles, since this does not ex-
clude the possibility that they represent two different pathways.
In the stiff spring regime we can assume that s(t1)≈ s1 and can

define the n-th mechanical response profile18,28 as

Wnðs1Þ = Wnðt1Þ ¼ � 2kv
Zt1
t0

ðsðrÞ � s0 � vtÞdt ð7Þ

A portion of the mechanical response within a certain interval
of s, of width Δ, is termed here “local mechanical response”
(LMR). The distance between two LMRs obtained from two
steered MD trajectories within a certain interval of s, of width Δ,
may be defined as

dnmðs0,ΔÞ ¼
Zs0 þ Δ

s0

½WnðsÞ � ÆWnðsÞæΔ �WmðsÞ

þ ÆWmðsÞæΔ�2ds ð8Þ
with ÆWn (s)æΔ being the average work over the interval:

ÆWnðsÞæΔ ¼

Zs0 þ Δ

s0

WnðsÞds

Δ
ð9Þ

This defines a set of distance matrices along the pulling
coordinate that can be exploited to monitor different families
of LMRs along the steering pathway. A brief sketch of this step is

represented in Figure 2A and B. One valuable outcome of
calculating the local difference between two profiles over blocks
of fixed sizeΔ (instead of calculating it on the work profile over the
whole transition) is the crucially important possibility of detecting
branching in themechanical response intersection among different
realizations. To avoid irregular behaviors at the borders between
adjacent blocks, some degree of overlap between them is allowed.
Clearly, the window sizeΔmust be properly tuned in accordance
with the scales of the events involved in the transition. For the
ligand unbinding event investigated here,Δwas optimally sized to
identify hydrogen (H)-bonding breaking/formation or local con-
formational rearrangements, while much finer thermal motions
were chosen to be averaged out.
For the sake of completeness, we note that the same informa-

tion could be obtained by averaging the exerted forces rather than
using work. Here, we prefer to consider the work profiles because
they may provide an interesting view of the dissipative work
produced and a useful hint concerning the appropriateness of the
pulling parameter as well as the amount of orthogonal degrees of
freedom interfering with the pulling direction.
Once the set of matrices dnm(s, Δ) is obtained, there are two

possible ways to postprocess them. One approach relies on stan-
dard clustering techniques. Because of the intrinsic need for a
clustering threshold value whose choice in the case of the work
curve realizations would be arbitrary and far from simple, we
decided to adopt aMDS approach29,32 so as to have a direct grasp
over the topology of the LMR pattern. Hence, we term this
analysis LMR-MDS.
MDS is a standard pattern-recognition technique32 that can

detect the intrinsic dimensionality from a distance matrix by
searching for the lowest dimensional possible manifold that can
preserve the reciprocal neighbor distances and produce a repre-
sentation that resembles the original topology in the original
high-dimensional space.
The simple MDS algorithm used here initially picks a random

entry dnm(s,Δ) (i.e., the distance between the n and m work
profiles over an interval of width Δ centered in a given point s
along the steering coordinate) in the high M-dimensional
original distance matrix d(s,Δ) and creates two fictitious points
in a low D-dimensional Euclidean space at the same distance
dnm
MDS(s,Δ). Then, another entry on the same row n but at a
different column l is picked (dnl(s,Δ)) and used to constrain the
distance from n when a new point representing l is placed in the
D-dimensional space. Since this operation is not univocal, a
Monte Carlo (MC) procedure is used to satisfy as much as
possible all the distances with respect to the already projected
elements. The procedure is iterated until the entire original
distance matrix d(s,Δ) is spanned. At the end, the positioning of

Figure 2. Schematic representation of the postprocessing analysis of the work curves. The first step (A) is the calculation of the distance between
mechanical responses recorded on a small portion of the order parameter s (blue-shaded region). The second step (B) is the collection of the distance
matrices along the order parameter, and the last step (C) is the retrieval of a fictitious representation viaMDS in a reduced dimensionality for each of the
matrices. MDS1 and MDS2 are the fictitious coordinates produced by the MDS algorithm.
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the last points is subject to a larger number of constraints than
the initial ones. To reduce the residual strain, we therefore
applied a MC annealing procedure, adopting the merit function
EMC(s,Δ), also called “stress” function in MDS terminology, to
all the points in the D-dimensional representation. The stress
function EMC(s,Δ) is the squared difference in the representa-
tion of the two matrices, the M-dimensional and its fictitious
D-dimensional representation:

EMCðs,ΔÞ ¼ ∑
N

n < m
½dnmðs,ΔÞ � dMDS

nm ðs,ΔÞ�2 ð10Þ

In order to evaluate the appropriateness of the choice of D, the
preservation of an order relation within the distance matrices is
verified. In the negative case, the dimension is increased, and the
entire procedure is repeated.
The postprocessing procedure consists of applying the above

procedure for each interval Δ along the steering coordinate. The
final outcome is thus a set of reduced representations for this
degree of freedom (see Figure 2C).
At the end of the procedure, one gets an intuitive representa-

tion of the different families of steering processes that may occur.
By inspecting the structural differences between representative
members of different families, we obtain a picture of the different
processes occurring at the molecular level during ligand unbind-
ing. This final step is represented in Figure 1C and D.
We note that a similar postprocessing tool can be applied to

any set of distance matrices. Therefore, when studying the alanine
dipeptide, we also appliedMDS to theCartesian coordinates of the
atoms. In this case, each entry of the matrix dnm

RMSD(s,Δ) was ob-
tained using the root mean square deviation (RMSD) of the heavy
atoms of two structures along the steering path, obtained after
optimal alignment through the Kearsley algorithm.35We term this
analysis “Cartesian-MDS” to differentiate it from the work-based
LMR-MDS. Their comparison (see Results Section) is instru-
mental in verifying the connection between the local mechanical
response and the structural changes of the system.
It is worth noting that theMDS implementation here described

was intentionally rather unsophisticated, and for this specific
problem that included a data set with relatively modest size, our
MDS approach could be basically equivalent to other more
advanced methods, like classical Torgerson multidimensional
scaling. The latter approach has to be highly recommended when
a larger data set has to be analyzed.32

Simulation Details. All the MD simulations in the present
work were carried out with NAMD2.7 code.36 The simulations
in the NVT ensemble were performed using the Langevin
thermostat,37 and additional steering forces were introduced
via the PLUMED38 plugin integrated in the NAMD code.
For alanine dipeptide (see Figure 3A for a molecular sketch),

we used CHARMM27 force field,39 a time step of 0.2 fs without
constraining the covalent-bond length involving hydrogen atoms
so as to maximize the number of degrees of freedom involved.
A Langevin thermostat at 300 K with relaxation time of 8 ps was
used tomaintain the average temperature during out-of-equilibrium
runs. We performed steered MD simulation using mean square
displacement (MSD) of the heavy atoms with respect to C7ax

configuration as a pulling coordinate. Optimal alignment was
obtained using the Kearsley algorithm.35 A number of tests were
performed to choose the speed for pulling and themagnitude of the
spring constant. A limited dissipative workwas obtainedwith a value
of 2000 kcal/(Å4

3mol) for the spring constant and 0.005 Å2/ps

for the pulling speed (Supporting Information, Figure S1). Unless
specified, all the molecular representations were generated using
VMD.40

For (R)-roscovitine/CDK5 complex, the starting geometry
used in the simulations was obtained after removing the p25
activator from the X-ray structure retrieved from the Protein
Data Bank (PDB code: 1UNL).41 The Amber parm99SB42 force
fieldwas used for the protein, while the (R)-roscovitinewas treated
with the general Amber force field for organic molecules43 and the
charges were derived according to the restrained electrostatic
potential (RESP) procedure.44 Prior to the steered MD simula-
tions, the system was minimized and equilibrated in a box with
10 371 TIP3P45 water molecules and pressurized for 2 ns in the
NPT ensemble using a Langevin thermostat37 and a Langevin
piston barostat.46 Long-range electrostatic interactions were
treated with the particle mesh Ewald (PME) method.47 Short-
range nonbonded interactions were calculated using a cutoff

Figure 3. Structural and free energy features of alanine dipeptide. (A)
Ball and stick representation of alanine dipeptide along with theΦ and
Ψ dihedrals used in the Ramachandran plot are shown. (B) Free energy
landscape of alanine dipeptide as a function of the Φ and Ψ dihedrals
produced via umbrella sampling. The isoline separation is of 1.0 kcal/mol.
Both C7eq and C7ax minima are connected by three different pathways
denoted with three different colors (black, red, and blue). (C) Stick
representation of the two metastable conformers C7eq and C7ax (heavy
atoms only).
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radius of 12 Å for both Coulomb and van der Waals poten-
tials. A 2 fs time step was used, and covalent-bond lengths in-
volving hydrogen atoms were constrained using the SHAKE
algorithm.48

Undocking experiments were performed by means of steered
MD. The pulling variable was the distance between the center of
mass of the residues belonging to the binding site of the protein
and the center of mass of the ligand (see Supporting Information,
Figure S2 for a pictorial view of the binding pocket). The pulling
parameters (spring constant, pulling velocity, and maximum ex-
tension)were determined by performing different trial simulations
in different conditions and by comparing the calculated work
values. In particular, 12 steered MD runs were performed using a
spring constant of 10, 100, 1000 kcal/(mol 3Å

2) and pulling
velocities of 0.5, 0.2, 0.1, and 0.01 Å/ps. In the end, a spring con-
stant of 100 kcal/(mol 3Å

2) alongwith a pulling velocity of 0.01Å/ps
were chosen, since they provided the lowest work values in stiff
spring regime. The target distance for the steered MD simula-
tions was chosen to be 22 Å. This is because preliminary runs
showed that, at this distance, the ligand was completely detached
from the target (Supporting Information, Figure S3). Moreover,
this pulling velocity was shown not to irreversibly disrupt the
secondary structure (Supporting Information, Figure S4).

’RESULTS AND DISCUSSION

The content of this section is here briefly outlined. First, the
postprocessing technique was tested on a set of steered MD runs
using alanine dipeptide in vacuum.This is a widely used test case for
benchmarking variousMD-based simulation techniques. Then, the
procedure was applied to the pharmacologically relevant complex
(R)-roscovitine/CDK5, which is currently being investigated in the
search for novel drug candidates to treat Alzheimer’s disease.
Alanine Dipeptide.Our prototypical case study is the alanine

dipeptide in vacuum (see Figure 3A), a system widely used as a
benchmark for enhanced sampling schemes.15,16,49�52 Alanine
dipeptide, in a lower dimension, recapitulates most of the fea-
tures that are relevant to the free energy landscape of ligand�
protein recognition and binding. In particular, it displays two
minima: a wider basin that can resemble a ligand in the bulk of
the solvent, and a much narrower basin that can be similar to a
ligand�protein complex. These two minima are connected by
multiple reactive pathways with sizable free energy barriers (see
Figure 3B). The two main metastable states are usually denoted
as C7eq and C7ax (see Figure 3C), and the transition from one to
the other is generally represented in terms of the dihedral angles
phi (Φ) and psi (Ψ) (Figure 3A and B). Due to the periodic
nature of these descriptors, three distinct pathways connect C7eq

to C7ax, and two different free energy barriers can be identified
(8.5 and 10.5 kcal/mol; see Figure 3B). Furthermore, alanine
dipeptide represents an ideal test case since it allows steered MD
to be performed in a fully reversible work regime. This situation is
highly desirable as it allows us to minimize the effects of energy
dissipation. In contrast, protein�ligand unbinding processes
display a large number of degrees of freedom that are only partly
orthogonal to the pulling direction, thus showing a much larger
relaxation time. As a result, one usually observes a significant
increase in the amount of dissipative work, with respect to the
alanine dipeptide case study, and the distribution of work values
is broader.
Alanine dipeptide was initially investigated by simple MD,

which allowed us to generate an ensemble of starting structures in

C7eq basin to be used for subsequent steered MD runs. MSD
was then used (see Methods Section) as the steering variable s to
drive the system from C7eq to C7ax within the targeted MD
framework.53 About 500 simulations were carried out starting
from initial configurations to provide a fairly large initial data set
of trajectories for building a robust statistics for all three path-
ways. Since each of the possible paths from C7eq to C7ax may start
from a different point in the C7eq basin (Figure 4), the trajectories
displayed variable length. To consistently compare them, the
steered MD of the shorter trajectories was elongated in a back-
ward direction to cover the same MSD range (overall 2.8 Å2) as
the longest one. These additional steered MD trajectories are
represented by red arrows in Figure 4. This allowed us to produce
a set of mechanical response profiles spanning homogeneously
from 0.0 to 2.8 Å2, corresponding to the C7ax and C7eq confor-
mation, respectively. The ensuing profiles covered all three pos-
sible pathways from C7eq to C7ax. Of these, we considered just 60
work profiles (20 for each pathway) to minimize redundancy
within the set. We could thus check the ability of our postproces-
sing tool to detect the structural features relevant to each reactive
pathway and control the reliability of the results. This was pos-
sible because structural differences along the C7eq�C7ax transi-
tion path are well-known and can easily be traced within the
Ramachandran plot.54

The work profiles were then used to compute distance matrices
along the path (see Methods Section and Figures 1 and 2). The
window size Δ was set to 0.80 Å2 in MSD space. This value was
chosen by visually inspecting the mechanical response profiles and
selecting the MSD interval in which sizable structural motions
occurred. A series of matrices (dnm(s,Δ)) was generated by cal-
culating pair-wise distances between two work profiles (in the
LMR space) from amaximum of 2.80 Å2 to a minimum of 0.04 Å2

by steps of 0.28 Å2 (roughly equal to Δ/3). These matrices were
then processed by theMDS technique, as reported in theMethods
Section. Here, a single dimension was sufficient. This is because
additional dimensions did not significantly reduce the difference
between the reduced and the full dimensionality distancematrices.
Figure 5A shows the projections of the steeredMD trajectories

over the Ramachandran plot. One representative path for each
family is highlighted with different symbols and color codes.
From the plot, it is evident that path 3 (blue path) started
very close to path 2 (red path) in the upper left corner (around
Φ ≈ �2.0 andΨ ≈ 3.1 in Figure 5A). By crossing the periodic
image, it joined path 1 (black path) at Φ ≈ �1.0 and Ψ ≈ 0.0,
finally ending up in C7ax. This sequence of events is fully

Figure 4. A sketch of the extension procedure adopted for the steered
MD experiments in alanine dipeptide. The starting ensemble is repre-
sented in orange (C7eq), while the targeted ensemble is in green (C7ax).
The starting configurations may assume different positions in the MSD
variable. So as not to be limited by the shortest pulling experiment (black
arrows), the pulling was extended to the highest MSD value occurring in
the equilibrium ensemble (red arrows).
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represented in the LMR-MDS of Figure 5B: path 2 and path 3
initially overlapped, and at MSD≈ 1.00 Å2, path 3 joined path 1.
We performed the same analysis using a Cartesian-MDS. It is

important to note here that the comparison between Cartesian

and LMR spaces is instrumental in verifying the connection
between structural features and mechanical response. Addition-
ally, we can test the ability of the MDS algorithm to reproduce
multidimensional topologies without introducing aberrations in
the context of molecular simulations.
In the Cartesian-MDS (Figure 5C), we observed a very similar

pattern of events and a remarkably similar distinction in the three
pathways. This strengthened our hypothesis that local mechan-
ical response analysis can point to different structural features
along several dynamical paths. Indeed, LMR-MDS enhances the
distance in those points where the difference in terms of mean
force is higher. In our example, two different downhill access
routes to C7eq in the mean force space (Figure 5B) emerged as
two distinct routes, even though their structures were similar at
low MSD values, as reported in Figure 5C. Furthermore, small
distances in LMR could recognize two paths as identical, even
though they may display different structural features (around
1.0 Å2 in the MSD space).
In summary, although LMR-MDS does not produce an

identical representation to that of Cartesian-MDS, it can convey
the same information in terms of pathway topology. This implies
that the raw information from the mechanical response contains
relevant details of the structural rearrangement acting on the
system. This could be of paramount importance for drug design.
By reverting this procedure, one can postprocess the raw infor-
mation contained in the work profiles so as to highlight different
classes of unbinding pathways, which should point to different
structural features.
In fact, in contrast with the alanine dipeptide case study,

ligand�protein systems usually show a complex and dynamical
network of interactions. This is because the atoms involved in the
exiting pathway change along the route. As such, the structural
clustering of the ligand alonemay not provide enough information
about the unbinding mechanism (see Supporting Information,
Figure S5 for a Cartesian-MDS for ligand�protein unbinding
case). Therefore, we suggest that LMR (an atom-independent
observable) could be exploited to point to structural differences
between trajectories for complex undocking studies.
(R)-roscovitine/CDK5 Complex. Our protocol was then ap-

plied to the cyclin-dependent kinase 5 (CDK5) in complex with
the inhibitor (R)-roscovitine.CDK5 is an important kinase protein
that regulates various processes in developing adult neurons. It is
associated with several neural functions.55�58 Increased CDK5
activity has been implicated in certain neural disorders,59�61 in-
cluding Alzheimer’s disease.59 For these reasons, we chose the
(R)-roscovitine/CDK5 complex as a pharmaceutically relevant
system for the application of our postprocessing technique.
Fifty steered MD runs were performed, using as a steering

coordinate the distance between the center of mass of the CDK5
binding site (the backbone heavy atoms of the residue repre-
sented in cyan in Figure 6) and the center of mass of the ligand
(see Methods Section and Figure 6). The data set of 50 work
profiles was then postprocessed using the LMR-MDS analysis
described above. In the distance range 8�22 Å, a window size Δ
of 1.5 Å and a shift factor of 0.5 Å were used to generate the
matrices for MDS. As with previous calculations, a monodimen-
sional MDS was sufficient to obtain an acceptable error in the
reduced representation. In Figure 7, we show the MDS position
of the points as a function of the steering coordinate. All the
members in Figure 7 are color-coded according to the difference
of calculated work in the considered interval Δ (see the caption
of Figure 7 for further details). In particular, all the trajectories

Figure 5. Analysis of alanine dipeptide trajectories. Projections of the
steered MD trajectories on the Ramachandran plot (A), LMR-MDS
as a function of the steering coordinate (B), and Cartesian-MDS as a
function of the steering coordinate (C). Arbitrary units are used for the
ordinate in the MDS representation because the coordinates from the
MDS representations are fictitious. To guide the eye, in all plots, single
representative trajectories for each of the three pathways are shown in
black, red, and blue.



3374 dx.doi.org/10.1021/ct200324j |J. Chem. Theory Comput. 2011, 7, 3368–3378

Journal of Chemical Theory and Computation ARTICLE

seemed to follow a similar stream, and the work exerted to pull
the ligand out of the pocket was primarily spent in the early stages
of the unbinding process (red dots at low pulling distance in
Figure 7).
In the initial structure of the complex, the NH group of Cys83

donated a H-bond to the purine nitrogen in position seven of the
ligand, whereas nitrogen of benzylamino group acted as anH-bond
donor to the main chain oxygen of Cys83 (Supporting Informa-
tion, Figure S2 and Figures 6B and 8A). The chiral hydroxyethyl
substituent of (R)-roscovitine interacted with Gln130 via H-bond,
while the ethyl group engaged two hydrophobic interactions with
Ile10 and Val18. The bulky benzyl substituent protruded into a
hydrophobic pocket lined by Ile10 and Phe82 and toward the bulk
of the solvent.41

During the steered MD simulations, we first observed that the
interactions of the ligand with Cys83 could be lost by rotating the
purine ring toward the glycine-rich loop so as to disrupt the
H-bond with the protein backbone in the initial stage of un-
binding. By color coding the ligand configuration according to
the LMR values (see Figure 8C), we realized that this particular
rotation was associated with a lower LMR, as compared to those
trajectories that retained these tight interactions in the early un-
binding stage. This rupture was compensated for by the forma-
tion of H-bonds between the hydroxyethylamine group of (R)-
roscovitine and the backbone oxygens of different residues (i.e.,
Ile10, Glu12, Gln130, and Asp86), depending on the generated
unbinding trajectories.Moreover, the oxygen of the hydroxyethyl
group was found to H-bond with Lys89, Gln85, and Gln130.

Figure 6. Three-dimensional structure of the CDK5 binding pocket bound with (R)-roscovitine inhibitor. (A) The hinge region is highlighted in green,
while the glycine-rich binding loop is highlighted in orange. (R)-roscovitine (stick representation) is highlighted in a C-yellow, O-red, N-blue, and
H-white color scheme. The part of the binding pocket highlighted in cyan comprises all the atoms used in defining the pulling variable. The black arrow
approximately indicates the steering direction. A 2D sketch of the interactions occurring between (R)-roscovitine and CDK5 at the initial step of the
steering procedure is also reported (B) and was produced using PoseView.65

Figure 7. MDS representation of the LMR plotted against the steering coordinate obtained from the (R)-roscovitine/CDK5 system. The work curves
are shown according to a BWR color scheme, where the color of each MDS point reflects the work difference within Δ size interval. Labels refer to
particular points corresponding to frames selected along the steering variable, which have been analyzed further.
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Here too, the residues that interacted with roscovitine depended
on the unbinding trajectories being investigated.
Conversely, we detected higher LMR values at the initial stage

whenever the interactions with Cys83 were retained for a longer
time. In this case, the ligand was found not to rotate but to favor
a closer interaction with the hinge region. Here, the hydrogen
donor of the benzylamine group interacted with Asp84, while
charged nitrogen of Lys20 could form a cation�π interaction
with the benzyl substituent of (R)-roscovitine. Additionally, the
phenyl ring of the Phe82 was found to occasionally form
T-stacking interactions with the benzyl substituent. On the other
side, the H-bond interaction, between the hydroxyethyl group
and the backbone oxygen of Gln130, was lost and replaced by
new temporary polar interactions with the side chain of Asp86
(see Figure 8C) or backbone oxygen of Ile10 (depending on the
trajectory). By coloring the ligand according to the LMRs values
and aligning the configurations corresponding to a given dis-
tance, we produced an intuitive description of the energetics
involved in the various interactions between the ligand and the
target (Supporting Information, Figure S6 for an enhanced
version of the picture).
In a later stage of the unbinding process, while the ligand

approached the solvent, the amount of work decreased (blue dots
at high pulling distance in Figure 7 and blue lines for conforma-
tions in Figure 8E and F) due to unspecific solvent interactions.
Then, we analyzed in depth the outlier configurations, which

were labeled with red circles in Figure 7. These corresponded to
values of extremely low or high LMR with respect to the central
stream of the trajectories. According to our hypothesis, these
outliers in the LMR space should correspond to peculiar con-
formations, showing specific (de)stabilizing contributions to
the unbinding process that would otherwise be overlooked. As
expected, most of the structurally relevant outliers were observed
at small distance values, when the ligand started to move out of
the protein entrance.
At a distance of 8.00 Å, the point labeled with A (see Figures 7

and 9) was characterized by a significantly well-directed H-bond
pattern with Cys83. This is in agreement with the fact that

removing such a well-directed H-bond network has a large
energetic cost. At a subsequent stage, the formation of anH-bond
with Cys83 and the coincidental interaction of hydroxyethyla-
mine with Asp86 were detected (point B in Figure 7 and
Figure 9). This seemed plausible since the formation of this
interaction induced a rotation of the ligand that could more
tightly interact with the pocket, thus preventing the unbinding
from taking place. Conversely, a relevant decrease of LMR
seemed to be associated with a conformational rearrangement
in the hinge region of the protein (see point C in Figures 7 and
9). This could be ascribed to steering induced protein deforma-
tion, which facilitated the ligand unbinding. This highlights an
additional feature of our postprocessing approach, namely the
possibility of detecting the mechanical response of both the
protein and the ligand, thus highlighting the induced rearrange-
ment that occurs upon ligand unbinding.
To prove this, we repeated an identical simulation by applying

an RMSD harmonic restraint on those residues involved in
such rearrangements on the protein backbone. In this way, the
decrease of LMR was not observed anymore, and the trajectory
displayed a profile very similar to the one observed in the
majority of cases (Supporting Information, Figure S7).
Similarly, the point denoted with D was characterized by a

remarkably low LMR with respect to the majority of the
trajectories. This seemed to be connected to the favorable
pattern of release of the ligand, which lost the interaction with
Cys83 and favored the interaction with Asp86 toward the
glycine-rich loop.
Proceeding further, at a distance of 11 Å, two contrasting

binding patterns emerged (see points E and F in Figures 7 and 9).
These were characterized not only by a distinct pattern in the
ligand�protein interactions but also by a sizable and opposite
rearrangement of the hinge region of the protein.
Finally, while moving toward the solvent, several residual

possible interactions were still detectable and sizable (see point
G in Figures 7 and 9).
From a drug design perspective, it is potentially important to

identify the outliers using local mechanical response analysis.

Figure 8. Representative snapshot of the exit route of the ligand from the binding pocket. The ligands represented in stick correspond to the central
pose along the MDS coordinate in Figure 7. The thin lines represent the heavy atoms of the ligand, colored according the LMRmeasured and displayed
in Figure 7.
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This is because it allows for: (i) the identification of the most
relevant structural features responsible for ligand recognition and
binding; and (ii) the identification of the key interactions that can
be exploited to address chemical modifications aimed at improv-
ing the ligand affinity for both its biological counterpart and
residence time.11 In practice, this could be achieved by selectively
suppressing the low LMR pathways and enhancing the high
LMR pathways through specific modifications on the scaffold of
the drug.
A crucial aspect of this work is that MDS representations of

LMR allow us to group together trajectories that display an
analogous mechanical response along the unbinding pathway.
This is of great help in focusing the structural analysis on a limited
number of representative configurations, which can be crucial
when large statistics of trajectories are produced. Additionally,
the analysis of outliers in LMR can further strengthen the hypo-
thesis of specific unbinding mechanisms, thus saving a large
amount of work in terms of human time. Although the robust-
ness of the results can be improved by increasing the statistics, we
have here shown that even a limited statistics of unbinding events
can lead to important structural insights.
Moreover, while for this case the use of one single MSD

dimension was sufficient, additional dimensionsmay provide an a
further source of flexibility helping to track different exit routes
displaying a different mechanical signature.

’CONCLUSIONS

In this work, we developed a postprocessing tool for out-of-
equilibrium steered MD simulations to identify distinctive

structural features of particular relevance for a specific biological
event. Steered MD is nowadays becoming very attractive. Many
MD programs now include native routines to perform it.36,62 It
can also be made available through external plugins.38 One of the
major limitations to a wide application of steered MD for proper
free energy difference calculations is related to the applicability of
the Jarzynski equation, which requires huge computational re-
sources for realistic cases. This is prohibitive in the drug design
field, where a major trade-off between speed and accuracy is
usually required. We have here shown that very useful structural
information can be retrieved from a relatively small statistics
of pulling trajectories obtained in a non-quasistatic regime. In
particular, in the alanine dipeptide case study, the structural
features observed and the topological differences in paths have a
clear correspondence in themechanical response of the system to
the external pulling force. The conformational transition of the
alanine dipeptide is relevant because of the following points: (i)
alanine dipeptide can exist in two well-defined energy minima;
(ii) three different paths connect the twominima; (iii) the transi-
tions among minima are usually affected by a very low dissipative
work; and (iv) the representation of the conformational transi-
tion in the local mechanical space can be straightly converted into
a transition in the Cartesian space. Remarkably, while points (i)
and (ii) also apply directly to a ligand�protein unbinding, (iii)
and (iv) do not. In fact, the ligand unbinding from a protein via
steered MD experiences a non-negligible dissipative work, and
local mechanical space cannot be directly transformed into a
Cartesian space. This is because the protein atoms involved in the
unbinding change along the reactive path. Despite this, local

Figure 9. Structural features of the configurations corresponding to the outliers in LMR. The structures highlighted with letters correspond to the circles
in Figure 7.
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mechanical response can still be very informative from a struc-
tural standpoint, as we have here demonstrated by investigating
biological systems of increasing complexity. Our second case
study was the unbinding of (R)-roscovitine from CDK5. Here,
the steering coordinate was intentionally chosen to be of general
applicability, with the consequent increase in the dissipative
work. Nevertheless, even in this regime, many structural details
could be obtained. Additionally, from a drug design standpoint,
such an approach could also be used in discriminating the
understanding of the energetic relationships among alternative
docking poses. By adding the nontrivial step of the mechanical
response pattern analysis, it could be possible to discriminate
those poses that, bringing completely different pathways, are
structurally and energetically more or less stable than others.

In conclusion, we have shown that the analysis of the local
mechanical response of the system to a forced unbinding can be
very informative with respect to the unbinding process itself.
Moreover, from a drug design standpoint, it captures the relevant
structural events that can be directly exploited to design novel
ligands with a potentially increased affinity for and residence time
at the biological counterpart. In addition, a large amount of work
in terms of human time is saved. This is because researchers need
to analyze only the most promising regions where structural
dissimilarities are evidenced byMDS. Although the quality of the
results can be improved by increasing the statistics, we have
shown here that even limited statistics can lead to important
insights, which complement a more computationally demanding
accurate free energy calculation. In our opinion, this is remarkably
important because, as more computer power becomes available
and more extended MD studies become possible,63 new analysis
techniques29�31 as well as new data selection strategies must be
devised to optimize storage usage and human effort by directing
the action to a smaller but more relevant set of data drawn from a
consistent statistics. Additionally, such approach is not limited to
ligand�protein binding problems but can be directly applied in
simulations of single-molecule force spectroscopy experiments.64
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