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Abstract: Whereas the prevalence of several cancer types is decreasing, skin malignancies are growing
more common every year. Malignant melanoma is the most aggressive form of skin cancer with
high metastatic capacity. In most cases, malignant melanoma shows acquired therapy resistance.
We evaluated the ability of Ocoxin, a natural compound-based antioxidant and anti-inflammatory
nutritional complement, to exert an antitumor effect in melanoma. To do so, the cytotoxicity of
Ocoxin in a panel of BRAF-mutated murine and human melanoma cell lines was tested alone
and in combination with BRAF inhibitor Vemurafenib. Our results revealed a potent cytotoxic
effect of Ocoxin against melanoma cells and a synergic effect when combined with Vemurafenib,
reducing viability and increasing apoptosis. Besides, Ocoxin interferes with the cell cycle, impairs
the inherent and fibroblast-mediated melanoma cell migration, and reduces resistance to BRAF
inhibition. Proteomic analysis revealed reduced tumor secretion of inflammatory factors Galectin-1,
Osteopontin, CCL5, and CCL9 upon treatment with Ocoxin. Moreover, RNASeq showed that Ocoxin
downregulated the cell cycle and proliferation-related genes. In vivo, Ocoxin reduced the number
of lung metastasis of YUMM-1.7 melanoma cells. Therefore, Ocoxin arises as a good candidate for
clinical trials analyzing the beneficial effects in patients suffering from this cutaneous malignancy.

Keywords: melanoma; cancer nutrition; BRAF inhibition; fibroblasts; chemoresistance; adjuvant;
tumor microenvironment

1. Introduction

Cutaneous melanoma represents one of the most aggressive forms of melanoma and
shows a highly metastatic phenotype. Despite the efforts to control and prevent this pathol-
ogy, the incidence of this cancer is growing every year [1,2]. More than half of the newly
diagnosed melanomas present the activating BRAF mutation BRAF V600E [1,2], which
results in a dysregulated mitogen-activated protein kinase (MAPK) signaling activation.
This mutation leads to uncontrolled proliferation and evasion of apoptosis, facilitating
disease progression [1,3,4]. This mutation determines the treatment options for patients,
with BRAF inhibitors (BRAFi) being the first-line targeted therapy. However, it is common
for these patients to develop acquired resistance after a period of response. Therefore, there
is an increasing need to find new approaches that may improve the antitumor effect of
BRAFi while overcoming tumor resistance. Thus, combined therapy is being implemented
for melanoma patients, targeting different pathways simultaneously, such as BRAF and
MEK inhibition [5]. Moreover, due to the demonstrated antitumor effect of different phy-
tochemicals such as green tea, curcumin, genistein, and resveratrol, its application as a
coadjuvant therapy for cancer treatment has gained interest in recent years [6–8].
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In this respect, Ocoxin is a mixture of several biological compounds, such as epigallocatechin-
3-gallate, cinnamic acid, and vitamins B6, C, and B12, with demonstrated antitumor and im-
munomodulatory properties (Table 1). In this regard, Ocoxin reduces the tumor development of
breast cancer, acute myeloid leukemia, liver metastasis of colorectal cancer, pancreatic cancer, and
glioblastoma both in vitro and in vivo [9–13]. Moreover, clinical trials have revealed that Ocoxin
was effective in increasing the quality of life and survival of patients receiving chemotherapy and
radiotherapy while improving the tolerance to these treatments [14–16].

Table 1. Components and concentrations of Ocoxin nutritional complement mixture (Manufacturer’s
product label).

Average Values (per 100 mL)

Glycine 2.000 mg
Glucosamine 2.000 mg
Malic Acid 1.200 mg
Arginine 640 mg
Cysteine 204 mg

monoammonium glycyrrinate 200 mg
Ascorbic Acid 120 mg
Zinc Sulfate 80 mg

Green tea extract 25 mg
calcium pantothenate 12 mg

Piridoxine 4 mg
Manganese sulphate 4 mg

Cinnamon extract 3 mg
Sodium Benzoate 100 mg
Potasium Sorbate 100 mg
Maracuya Aroma 50 mg

Sucralose 24 mg

Ocoxin does not only exert a direct anticancer effect by increasing apoptosis and
slowing down the cell cycle of tumor cells but also potentiates the cytotoxicity of sev-
eral chemotherapeutic agents [9–13,17]. This synergistic effect may improve the action of
anticancer drugs that lose effectiveness in vivo due to cancer cell intrinsic and acquired
resistance. In this last process, the tumor microenvironment (TME) arises as the main
player, where tumor cell/stromal cell interactions lead to treatment resistance [18,19]. The
TME is composed by cancer cells, cancer-associated fibroblasts (CAFs), tumor-associated
macrophages, recruited immune populations, the extracellular matrix (ECM), and growth
factors, cytokines, and extracellular vesicles secreted by different cell types [20]. CAFs
represent the main cell type in the TME and are under the spotlight due to their ability
to promote tumorigenesis by means of chemoresistance, increased tumor cell prolifera-
tion, migration, and ECM remodeling. In fact, CAFs have been proposed as a target for
anticancer therapies [21–23]. Besides, previous studies of this group revealed that Ocoxin
reduced the migratory capacity of CAFs and the infiltration of hepatic stellate cells (HSCs)
into the liver metastatic foci of colorectal cancer (CRC) in vivo [10]. HSCs are liver resident
cells that become myofibroblast-like cells upon activation, and their relations with cancer
progression are widely recognized [24]. Moreover, Ocoxin reduced the chemoresistance
induced by fibroblasts-derived secretomes in pancreatic cancer cells [9].

Thus, due to the wide spectrum of antitumor capacities demonstrated by Ocoxin, we
aimed to evaluate the antitumor potential of this compound in the progression of metastatic
melanoma, its possible synergic effect with the BRAF inhibitor Vemurafenib, and its ability
to modulate melanoma-CAF crosstalk driving to chemoresistance and disease progression
in vitro and in vivo.
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2. Materials and Methods
2.1. Cell Lines

A panel of 4 melanoma cell lines was analyzed in this study. The novel BRAF mutated
mouse metastatic melanoma cell line YUMM-1.7 (ATCC, Manassas, VA, USA) was grown in
RPMI-1640 medium (Life Technologies, Carlsbad, CA, USA). Human metastatic melanoma
cell lines HT-144, RPMI-7659 (ATCC, Manassas, VA, USA), and COLO-800 (Sigma-Aldrich,
St. Louis, MO, USA) were cultured in, McCoy´s, DMEM, and RPMI-1640 mediums,
respectively. Murine 3T3 and human lung MRC-5 fibroblasts (ATCC, Manassas, USA)
were cultured in DMEM and RPMI-1640, respectively. All cell lines were supplemented
with 10% FBS, penicillin (100 U/mL), streptomycin (100 µg/mL), and amphotericin B (0.25
µg/mL) (ThermoFisher Scientific, MA, USA). Cells were cultured at 37 ◦C in a humidified
atmosphere in the presence of 5% CO2.

2.2. Animals

We obtained 6–8-week-old male mice from C57BL/6 background from Charles Rivers
(Barcelona, Spain). Mice maintained in line with institutional guidelines and national
and international laws for experimental animal care. The experimental procedures were
approved by the Basque Country University Ethical Committee (CEID) and by institutional,
national, and international guidelines regarding the protection and care of animals used
for scientific purposes (Reference M20-2018-114).

2.3. Cell Viability Assay

For cell viability assays, 5 × 103 tumor cells were cultured in 96-well plates in complete
medium for 18 h. Then, melanoma cells were treated with several dilutions of Ocoxin
(Catalysis S.L., Madrid, Spain) ranging from 1:1000 to 1:50 (V/fV) in 1% FBS supplemented
medium. For BRAF inhibition, cells were treated with 0.1, 1 and 10 µM Vemurafenib
(Euroasian Chemicals, Mumbai, India) in 1% FBS supplemented medium. Finally, to
analyze the potential of Ocoxin as a coadjuvant therapy for BRAF inhibition, cells were
treated with Ocoxin (1:50) in combination with different concentrations of Vemurafenib.
Control cells were cultured with 1% FBS supplemented medium containing antibiotics,
and antimycotics. Cell viability was measured after 24 and 48 h using Prestoblue Viability
Reagent (Thermo Fisher Scientific, MA, USA) following manufacturer‘s indications. Briefly,
cells were incubated with Prestoblue Viability reagent diluted 1:10 in fresh medium for 2 h.
To obtain cell viability percentage, the obtained absorbance was converted to percentage of
control and compared to treatment concentration.

2.4. Cell Cycle Analysis

For cell cycle analysis, 3 × 105 melanoma cells were cultured in 6-well plates for
18 h in complete medium. Cells were treated with 1:50 dilution of Ocoxin for 48 h in
1% FBS supplemented medium. Control cells were cultured with 1% FBS supplemented
fresh medium without Ocoxin. Cells were then trypsinized, washed once with phosphate-
buffered saline (PBS), and fixed with 70% ethanol for 30 min at 4 ◦C. Afterward, cells were
washed with PBS twice and incubated with propidium iodide (PI) containing FxCycle
PI/RNase Solution (Thermo Fisher Scientific, MA, USA) following the manufacturer’s
indications. Finally, changes in the cell cycle were studied by flow cytometry using the
Gallios cytometer (Beckman Coulter, Brea, CA, USA).

2.5. Apoptotic Cell Detection

3 × 105 melanoma cells/well were cultured in complete medium for 18 h in 6-well
plates. The medium was replaced by fresh medium supplemented with 1% FBS for the
control condition or treated with Ocoxin 1:50, Vemurafenib 1 µM or the combination
of both treatments for 48 h. Then, cells were washed with PBS, trypsinized, pelleted
by centrifugation, washed 2 times with PBS, and double stained with the annexin V/IP
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apoptosis detection kit following manufacturer’s instructions (Thermo Fisher Scientific).
Finally, apoptosis was determined by the Gallios cytometer (Beckman Coulter).

2.6. Generation of Tumor Cell and Tumor-Stimulated Fibroblast-Derived Secretomes

Tumor-derived secretomes were obtained after culturing 2 × 105 cells/mL in 24 well
plates for 18 h in 10% FBS supplemented RPMI medium. Then, that medium was changed
for serum free medium and 24 h later secretomes were collected. Tumor-stimulated
fibroblasts derived secretomes (TS-fibroblast secretomes) were obtained from murine 3T3
and human MRC-5 cell lines. Briefly, cells were cultured on 24-well plates at a concentration
of 2 × 105 cells/mL in 10% FBS supplemented RPMI medium. After 18 h, the medium
was replaced for tumor-derived secretomes diluted 1:2 in fresh serum-free medium and
incubated for another 24 h. Afterward, the medium was changed for serum-free RPMI
medium and incubated for 24 h. All the obtained secretomes were collected, centrifuged
for 5 min at 4000 rpm and stored at −20 ◦C.

2.7. Transwell Migration Assay

The melanoma cell migration assay was carried out using Modified Boyden chambers.
First, 1 × 104 cancer cells were cultured onto 8 µm-diameter pore membranes (Greiner
Bio-one, Kremsmünster, Austria) and allowed to adhere and spread for 3 h before the
addition of different treatments. Then, the medium was changed without disturbing the
top layer of the insert for fresh medium or TS-fibroblast secretomes diluted 1:2 in fresh
medium supplemented with 1% FBS with or without Ocoxin diluted 1:50. After 20 h, the
migrated cell numbers were quantified in the insert membranes by means of 4% formalin
fixation, Cristal Violet staining (0.4%) (Sigma-Aldrich, St. Louis, MO, USA) or DAPI
staining (COLO-800 and HT-144) and mounted for the quantification under the microscope.
Ten fields using 200× magnification were counted per membrane. Data are expressed
relative to the migration of untreated melanoma cells.

2.8. YUMM-1.7 Melanoma Cell Secretome Analysis

The YUMM-1.7 cell secretomes were obtained as previously described. Briefly,
2 × 105 cells/mL were cultured in 24-well plates for 18 h in complete medium. Then,
YUMM-1.7 cells were treated with 1:50 Ocoxin dilution for 24 h, followed by incubation
with serum free medium for another 24 h. Finally, the medium rich in YUMM-1.7 secreted
mediators was collected and centrifuged for 5 min to 4000 rpm and stored at −20 ◦C. The
secretome of YUMM-1.7 was analyzed using Mouse Cytokine Antibody Array Membrane
kit (Abcam, UK) following manufacturer’s instructions. The obtained spot intensities were
normalized to positive controls and relativized regarding Ocoxin treated cell viability vs.
Control cell viability.

2.9. RNASeq for COLO-800 Melanoma Cell Gene Expression Analysis

To study the changes promoted by Ocoxin in human melanoma cells, 3 × 105 COLO
800 cells were cultured in 6-well plates in 10% FBS for 18 h. Afterward, cells were treated
with 1:50 Ocoxin dilution in 1% FBS supplemented medium for 48 h. Finally, dead cells
were discarded through PBS washing and the RNA of adhered cells was isolated. Three
sample replicates were analyzed for each treatment.

2.10. Transcriptomic Analysis of Human Samples

The analysis of human transcripts in skin cutaneous melanoma (SKMC) (n = 461) and
normal tissue (558) was carried out through the GEPIA Database (http://gepia.cancer-pku.
cn (accessed on 12 December 2020)). The expression of Galectin-1 (LGALS1), Osteopontin
(OPN), CCL5 and CCL15 (the human homolog of mouse CCL9) was compared between
SKCM and normal tissue using boxplot analysis (Expression DIY, Log2FC| Cutoff: 1,
p-value cutoff: 0.01, Log scale and Jitter Size 0.4). TCGA normal and GTEx data were
selected as matched normal data. Data are expressed as transcripts per million (TPM).

http://gepia.cancer-pku.cn
http://gepia.cancer-pku.cn
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2.11. In Vivo Lung Metastasis Procedure

For the in vivo development of lung metastasis, 1 × 106 YUMM-1.7 cells diluted in
PBS (100 µL) were injected through the tail vein of C57BL/6 mice, and the animals were
randomly divided in 4 groups (Figure S1). As the development of lung metastasis is slow in
this model [25], treatments started 4 months after tumor cell inoculation. Control mice were
treated with vehicle solution (4% DMSO, 5% Tween-100, 30% Polyetilenglycol, 61% distilled
water). The second group was treated with daily oral administration of Ocoxin (100 µL).
The third group received intraperitoneal injections of Vemurafenib every other day, 3 days
a week (50 mg/Kg diluted in 4% DMSO, 5% Tween-100, 30% Polyetilenglycol and 61%
distilled water). The combination group received the combination of both treatments. The
Control group and Ocoxin group received intraperitoneal injections of vehicle solution
every other day, 3 days a week. After 30 days of treatment, mice were sacrificed, and lungs
were fixed for paraffin histological analyses.

2.12. Immunohistochemical Analysis

In order to analyze the tumor development on the lung, we performed an immunohis-
tochemical staining for microphthalmia-associated transcription factor (MITF), which is
expressed in YUMM 1.7 melanoma cells (Figure S2). To do so, first, antigen retrieval was
carried out in citrate buffer pH 6.0. Then, endogenous peroxidase and nonspecific proteins
were blocked by incubating the samples for 40 min with 3% of H2O2 and 40 min with 3%
FBS. Then, lung tissue slides were incubated overnight with a specific MIFT antibody (1:500
Thermo Fisher Scientific; Waltham, MA, USA). Next, sections were washed, and the sec-
ondary antibody was added. Finally, the antigen expression was revealed by a horseradish
peroxidase (HRP)-conjugated streptavidin (Life Technologies) and 2-Solution DAB kit (Life
Technologies) following the manufacturer’s instructions. Antigen expression levels were
quantified by ImageJ software (NIH, Bethesda, MD, USA). Results were expressed as the
mean percentage MITF positive area for each group (n = 12).

2.13. Statistical Analysis

The statistical analysis was carried out using the Student’s 2-tailed unpaired t-test. All
the in vitro experiments were performed in triplicate, and the in vivo assay was carried in
duplicate with at least 6 animals in each group for each replicate. Data are expressed as
the mean value (+/− standard deviation [SD]). The RNASeq assay was performed with
3 replicates for each treatment, and the statistics were analyzed with the multiExperiment
Viewer version 4.9.0 (http://www.tm4.org/mev/ (accessed on 24 October 2019)).

3. Results
3.1. Cytotoxic Effect of Ocoxin in Human and Murine Melanoma Cell Lines

The antitumor potential of Ocoxin was studied in foru BRAF-mutated melanoma cell
lines, including the murine YUMM-1.7 and the human COLO-800, HT-144, and RPMI-7951.
All the tumor cells were exposed for 24 h and 48 h to different dilutions of the natural
compound Ocoxin. After these incubation periods, cell viability was measured. As shown
in Figure 1, Ocoxin exerted an antitumor effect in three out of four melanoma cell lines by
means of reduced cell viability in a dose-dependent manner. The 1:50 dilution showed the
highest cytotoxic effect, ranging from 30% decreased viability in YUMM 1.7 and HT-144 to
60% in COLO-800. However, no effect was observed in RPMI-7951 cells after the exposure
to Ocoxin.

3.2. The Antitumor Effect of Ocoxin is Mediated by Apoptosis and Cell Cycle Arrest in
Melanoma Cells

In order to uncover Ocoxin-mediated tumor cell viability reduction, apoptosis and
cell cycle arrest were analyzed. Interestingly, the viability decrease seems to be partly
mediated by apoptotic cell death as observed through Anexin V/PI assay in cancer cells
incubated for 48 h with Ocoxin 1:50 dilution (Figure 2). Ocoxin increased apoptotic cell

http://www.tm4.org/mev/
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counts in three out of four cells studied. YUMM 1.7 cell apoptosis increased three-fold upon
Ocoxin treatment, while COLO-800 and HT-144 apoptotic cell counts increased two-fold
(Figure 2A,C,E). To evaluate the ability of this compound to interfere with cancer cell
cycle, tumor cells were incubated for 48 h with 1:50 dilution. Afterward, the cell cycle was
analyzed using the FxCycle™ PI/RNase Staining Solution. The treatment with Ocoxin
drove the accumulation of tumor cells in the G0/G1 phase and decreased the S phase cell
number in COLO-800 melanoma cells and slightly in YUMMM-1.7 cells. However, the
HT-144 cell cycle was not affected upon Ocoxin treatment. In detail, the G0/G1 population
increased from 63.05% to 66.5% in YUMM-1.7 cells, 66.3% to 74.4% in COLO-800 cells, and
74.1% to 76% in HT-144 melanoma cells (Figure 2B,D,F).
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3.3. Vemurafenib Mediated Cell Death Increases in Combination with Ocoxin Treatment

The inhibition of BRAF is the main strategy to treat melanoma patients with BRAF
mutation. Interestingly, the effect of Vemurafenib, a BRAF inhibitor, was significantly
increased in combination with Ocoxin in vitro. Melanoma cell viability was reduced
after 24 h and 48 h when treated with the combination of Vemurafenib 1 µM and 1:50
dilution of Ocoxin compared to the single treatment viability (Figure 3A,C,E). Moreover,
BRAF inhibition-mediated apoptotic cell death was increased when combined with Ocoxin.
Treatment of YUMM-1.7 with 1 µM led to an 87.2% of viable cells, along with an 11.5%
apoptotic cells. However, the combination of 1 µM Vemurafenib with the 1:50 dilution
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of Ocoxin reduced the viable cell counts down to 69.4% with 29.8% of apoptotic cells
(Figure 3B). In this case, Ocoxin alone showed a similar effect as the combined treatment,
as observed in Figure 3B with overlapped lines. Vemurafenib 1 µM treatment resulted in
64% viability of COLO-800 with 20.3% of apoptotic cells, while cotreatment with Ocoxin
reduced viability down to 37.9%, increasing apoptosis up to 46.3% (Figure 3D). The same
effect was reported in the HT-144 cell line upon Ocoxin cotreatment, with a 20% reduction
in cell viability and 2.5-fold apoptosis increase compared to that of Vemurafenib alone
(Figure 3E,F) (Figures S3–S5).
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3.4. Fibroblast-Mediated Chemoresistance to Vemurafenib Is Partially Reverted by Ocoxin

The role of TS-fibroblasts during tumor progression involves increased chemoresis-
tance of cancer cells to different anticancer drugs [26,27]. It has been shown that TS-
fibroblasts mediate resistance upon BRAF inhibition in melanoma [28]. Here, we show
that TS-fibroblasts-derived secretomes reduced the cytotoxic effect of Vemurafenib 1 µM in
melanoma cells (Figure 4). TS-fibroblast secretomes diminished Vemurafenib cytotoxicity in
YUMM 1.7 cells and partially abrogated antitumor effect of BRAF inhibition in COLO-800
and HT144 cells. Interestingly, Ocoxin cotreatment with Vemurafenib partially overcame
TS-fibroblast-mediated resistance in melanoma cells, boosting the anticancer activity of
BRAF inhibition (Figure 4).
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as * p < 0.05 and ** p < 0.01 between untreated cells and Ocoxin- or Vemurafenib-treated cells by one-way ANOVA test.
# p < 0.05 between Vemurafenib treatment alone and Vemurafenib and Ocoxin combination treatment.

3.5. Promigratory Effect of TS-Fibroblasts on Tumor Cells Is Diminished by Ocoxin

Tumor migration is a critical step during metastasis and tumor progression. Fibroblasts
are one of the main components of the tumor microenvironment and promote different
protumorigenic processes. We found that TS-fibroblast-derived secretomes stimulate the
migration of all melanoma cells analyzed after 20 h. In fact, TS-fibroblasts secretomes
enhanced the migration of YUMM-1.7 up to 50% compared to untreated tumor cells
(Figure 5A). The same trend was observed in human cells lines, with 100% increased
migratory potential in COLO-800 and 50% in HT144 cells (Figure 5B,C). Interestingly, tumor
cell treatment with Ocoxin led to 30% reduced migration in YUMM 1.7, 60% in COLO-800,
and 50% in HT144 melanoma cells. Moreover, Ocoxin reverted the promigratory and
stimulatory effect of TS-fibroblast secretomes in tumor cells, reducing tumor cell migration
to basal levels (Figure 5). It is to note that this reported reduced migration may be also
related to Ocoxin cytotoxicity and not only to impaired migratory effect of this compound
in melanoma cells.
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Figure 4. Ocoxin impairs TS-fibroblast-mediated resistance to BRAF inhibition in vitro. Melanoma cells were treated with
fresh medium or TS-fibroblast-derived secretomes for 24 h. Afterward, cells were treated with BRAF inhibitor Vemurafenib
(1 µM) alone or in combination with Ocoxin 1:50 concentration diluted in fresh medium or TS-fibroblast-derived secretomes
for 48 h and cell viability was measured. The results show the mean of three independent experiments ± SD. Statistical
differences are represented as * p < 0.05; ** p < 0.01 by one-way ANOVA test.

3.6. Ocoxin Alters the Secretome of YUMM 1.7 Melanoma Cells

The creation of a favorable tumor microenvironment is a prerequisite for successful
metastatic growth. Soluble factors secreted by tumor cells mediate the recruitment and
activation of nontumoral cells. We found that Ocoxin treatment reduced the secretion of
several proinflammatory mediators by melanoma cells. In detail, Ocoxin suppressed the
secretion of LGALS1, OPN, CCL5, and CCL9 up to 20%, 25%, 37%, and 40%, respectively
(Figure 6A) (Figure S6). Interestingly, we found that the expression of LGALS1, OPN, and
CCL5 was significantly overexpressed in cancerous tissue (T) compared to normal samples
(N) in patients suffering from skin melanoma (Figure 6B), while no differences were found
for CCL15, the homolog of mouse CCL9 in humans.

3.7. RNASeq Analysis of Human COLO-800 Melanoma Cells

The effect of Ocoxin was studied by means of genetic alterations of the expression
patterns of human melanoma COLO-800 cells. Treatment of melanoma cells with Ocoxin
1:50 dilution for 48 h upregulated the expression of 1406 genes, while Ocoxin treatment
downregulated the expression of 1673 genes. Interestingly, most of the genes silenced by
Ocoxin were related to proliferation and the cell cycle (Figure 7A). As observed in Figure 7A,
7 out of 10 most significantly downregulated GO pathways were directly related to the
cell cycle and mitosis. In fact, the heatmap for altered genes revealed that Ocoxin altered
the expression of several genes directly related to malignant phenotype of cancer cells
(Figure 7B).
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Figure 5. Ocoxin reduced TS-fibroblast secretomes-mediated melanoma migration in vitro. Melanoma cells were tested
for migration upon treatment with TS-fibroblast secretomes and Ocoxin. Melanoma cells were treated with fresh medium
or TS-fibroblast-derived secretomes supplemented with 1:50 dilution of Ocoxin for 20 h. Afterward, inserts were fixed
and stained for the quantification under light and fluorescence microscope. (A) YUMM 1.7 cells (B) Colo 800 cells (C) HT
144 cells. The results show the mean of three independent experiments ± SD. Representative images for one 200× field for
each treatment are shown. Statistical differences are represented as * p < 0.05 and ** p < 0.01 by one-way ANOVA test.

3.8. Ocoxin Administration Reduces Lung Metastasis In Vivo

The metastatic spread of the primary lesion is the worst scenario when dealing with
melanoma. In fact, melanoma is the most aggressive skin malignancy, giving rise to lung
and brain metastasis in most of the patients suffering from distant lesions [29,30]. To study
the antitumor effect of Ocoxin, we analyzed the lung metastasis of YUMM-1.7 melanoma
upon different treatment routines. We observed decreased metastatic burden in mice
treated with Ocoxin and Vemurafenib compared to vehicle-treated mice (Figure 8A,B). The
combination of both treatments showed a reduction trend but did not show a significant
relation compared to both treatments alone. It should be noted that the overall state of the
mice receiving the combination regimen was better than that of mice receiving Vemurafenib
alone. We found that a low number of mice exhibited metastatic cells in the lung after
intravenous injection of YUMM 1.7 (Figure S7), which is in line with previous studies [25].
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Figure 6. Coxin treatment modulated the secretome of YUMM 1.7 cells in vitro. We analyzed the
changes in a wide array of secreted cytokines and growth factors upon Ocoxin stimulation in YUMM
1.7 cells. (A) YUMM 1.7 cells were treated for 24 h with Ocoxin. Afterward, the medium was
changed for fresh medium. After 24 h, the secretome was collected, analyzed through cytokine array
assay, and compared to that of untreated cells. The results show the mean of two replicates ± SD.
Representative images for cytokine array membranes are shown. (B) The gene expression of the
proteins downregulated by Ocoxin were analyzed in melanoma patients and compared to healthy
tissue. Statistically significant differences are represented as * p < 0.05 by one-way ANOVA test.Nutrients 2021, 13, x FOR PEER REVIEW 12 of 17 
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Figure 7. Gene expression changes in COLO-800 human melanoma cell line. COLO-800 melanoma
cell line was treated with Ocoxin for 48 h. Changes in RNA levels were measured through RNASeq in
control and Ocoxin-treated COLO-800. (A) Most significantly downregulated pathways. (B) Heatmap
of the most significant gene changes in RNASeq of untreated vs. Ocoxin-treated cells.
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Figure 8. Effect of Ocoxin in an experimental model of melanoma lung metastasis. Mice were intravenously injected with
1 × 106 YUMM 1.7 melanoma cells. After 4 months, mice were treated with different regimens for 30 days. Afterward,
lungs were collected and fixed for their analysis. (A) A representative image of MITF expression in lungs of each group is
shown. (B) The mean area occupied by MITF positive YUMM 1.7 cells under different treatment regimens is represented.
Statistically significant differences are represented as * p < 0.05 by unpaired t-test.

4. Discussion

Cutaneous melanoma is one of the most aggressive cancers due to its high capacity
to disseminate. However, due to the increasing knowledge of the molecular and cellular
mechanism underlying this malignancy, several treatment options, such as immunotherapy
and targeted therapy, have been developed in recent years with improved clinical outcomes.
BRAF and MEK inhibitors are the first-line treatment when the activated BRAF mutation
is detected in melanoma patients [31,32]. Nevertheless, the resistance to these treatments
produced by intrinsic tumor mechanisms or external factors is a common adverse scenario
in several cases [33–35]. Thus, the new alternatives to cope with this malignancy are
imperative. Ocoxin, a mixture of several biological compounds such as green tea polyphe-
nols, ascorbic acid, and vitamins, has demonstrated antioxidant, anti-inflammatory, and
antitumoral properties in several cancer types [9–13,17,36]. In this regard, previous studies
demonstrated that antioxidants inhibited the growth of cancer cells without affecting the
normal cells [37]. Here, we found that Ocoxin exerted antitumor cytotoxicity and interfered
with the cell cycle in three out of four tested melanoma cell lines. These results uncover
the variability among cell types when dealing with the same treatment. Moreover, Ocoxin
reduced the tumor area of BRAF-mutated melanoma metastasis in the lung in vivo. The
antitumoral effect of Ocoxin is in part mediated by the modulation of the gene expression
pattern of cancer cells. In this way, our previous studies reported that Ocoxin reverted
the expression of several genes, some of which had been previously related to pancreatic
carcinoma [9]. Regarding to melanoma, BRAF V600E mutation deregulates the MAPK
signaling pathway that promotes cell proliferation and apoptosis evasion [1,4]. Interest-
ingly, most of the genes downregulated by Ocoxin are related to proliferation and cell
cycle regulation. Ocoxin also downregulates the MAPK signaling proteins implicated in
cancer development, such as MAP3K9 and MAP4K3 [38–41]. In this regard, Xia et al. (2018)
reported that MAP3K9 activated the MEK/ERK and NF-kB pathways, which promoted



Nutrients 2021, 13, 686 13 of 16

pancreatic cancer cell proliferation and the inhibition of apoptosis. The blockade of this
kinase with a miR-7 resulted in the inhibition of these pathways, leading to a suppres-
sion of cancer cell proliferation and the induction of apoptosis [42]. Regarding to small
cell lung carcinoma (NSCLC), the blockade of MAP4K3 inhibited tumor progression [41].
Moreover, Ocoxin downregulated the apoptotic inhibitor BIRC5, which was previously
found to be upregulated in uveal and conjunctival melanoma [43,44]. Furthermore, the
disruption of BIRC5 by CRISPR inhibited the progression of other malignancies, such as
Acute Myelocytic Leukemia [45]. Therefore, it is tempting to hypothesize that Ocoxin may
favor melanoma cell death through genetic modulation of the mentioned proteins.

As previously shown, the combination of Ocoxin and Vemurafenib increased the cyto-
toxicity of the BRAFi-targeted therapy by increasing the apoptosis of cancer cells in vitro.
In line with these findings, Yang et al. (2017) reported that ascorbic acid or vitamin C, a
component of Ocoxin, exhibited a potent cytotoxicity against melanoma cells and that it po-
tentiated the effect of Vemurafenib [46]. Moreover, a sesquiterpene lactone plant derivative
(DETD-35) had no effects on the wild-type MeWo and normal melanocytes but suppressed
melanoma cell growth by increasing the apoptosis while overcoming Vemurafenib resis-
tance in vivo [47]. This resistance is mainly facilitated by the components of the tumor
microenvironment. It is known that the tumor microenvironment comprises predominantly
CAFs, immune cells, and ECM, among other elements that interact closely with tumor cells.
This crosstalk promotes tumor development and chemoresistance, thus offering potential
therapeutic targets [48–50]. According to our results, TS-fibroblast secretomes increased the
migration of the metastatic melanoma cells. This may be due to the epithelial to mesenchy-
mal transition promoted by CAFs in tumor cells as reported previously [51]. Interestingly,
Ocoxin reverted the promigratory effect produced by TS-fibroblasts in tumor cells, pos-
sibly partly due to Ocoxin cytotoxicity. The reported antitumor effect of Ocoxin may, in
part, account for observed reduced migration. TS-fibroblast secretomes also increased the
viability and resistance of cancer cells to Vemurafenib. As described by Hesler et al. (2016),
the ECM protein CYR61 produced by CAFs induces chemoresistance to gemcitabine by
downregulating nucleoside transporters [52], which may occur in this melanoma model.
Even more, CAFs could activate MAPK and PI3K-AKT signaling pathways in cancer cells,
promoting the resistance to RAF inhibitors by secreting HGF [28]. It is remarkable that
Ocoxin sensitizes melanoma cells to targeted therapy by reducing the chemoresistance
produced by TS-fibroblasts. Besides, Ocoxin reduces the secretion of proinflammatory
mediators LGALS1, OPN, CCL5, and CCL9 chemokines by melanoma cells, which could
result in a reduction of the recruitment and differentiation of mesenchymal stem cells into
CAFs and decreased resistance to anticancer drugs of cancer cells [53,54]. Regarding to
the modulation of the tumor microenvironment, our previous studies demonstrated that
Ocoxin in vivo reduced the macrophage and hepatic stellate cell (HSC) migration into
the liver metastatic foci of colon carcinoma [10,17], both known to play a central role on
tumor progression [24,55]. In this regard, although Ocoxin alone reduced the metastatic
development in the lung, it did not increase the effectiveness of the targeted therapy
in vivo.

In summary, on the one hand, Ocoxin acts directly against tumor cells by reducing
viability, increasing apoptosis, slowing down the cell cycle, and modifying the expression
of protumoral genes. On the other hand, Ocoxin reduces fibroblast-mediated tumor
progression by means of overcoming resistance against targeted therapy with the BRAF
inhibitor and impairing fibroblast-mediated tumor cell migration. Thus, cotargeting both
the tumor and TME elements may be effective strategy to deal with this malignancy [56,57].
Therefore, Ocoxin may constitute an effective coadjuvant agent for targeted therapy by
directly acting upon metastasis tumor cells and by increasing BRAF inhibitors’ cytotoxicity
while impairing tumor microenvironmental support.
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