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Abstract

Human infection by malarial parasites of the genus Plasmodium begins with the bite of an infected Anopheles mosquito.
Current estimates place malaria mortality at over 650,000 individuals each year, mostly in African children. Efforts to reduce
disease burden can benefit from the development of mathematical models of disease transmission. To date, however,
comprehensive modeling of the parameters defining human infectivity to mosquitoes has remained elusive. Here, we
describe a mechanistic within-host model of Plasmodium falciparum infection in humans and pathogen transmission to the
mosquito vector. Our model incorporates the entire parasite lifecycle, including the intra-erythrocytic asexual forms
responsible for disease, the onset of symptoms, the development and maturation of intra-erythrocytic gametocytes that are
transmissible to Anopheles mosquitoes, and human-to-mosquito infectivity. These model components were parameterized
from malaria therapy data and other studies to simulate individual infections, and the ensemble of outputs was found to
reproduce the full range of patient responses to infection. Using this model, we assessed human infectivity over the course
of untreated infections and examined the effects in relation to transmission intensity, expressed by the basic reproduction
number R0 (defined as the number of secondary cases produced by a single typical infection in a completely susceptible
population). Our studies predict that net human-to-mosquito infectivity from a single non-immune individual is on average
equal to 32 fully infectious days. This estimate of mean infectivity is equivalent to calculating the human component of
malarial R0. We also predict that mean daily infectivity exceeds five percent for approximately 138 days. The mechanistic
framework described herein, made available as stand-alone software, will enable investigators to conduct detailed studies
into theories of malaria control, including the effects of drug treatment and drug resistance on transmission.

Citation: Johnston GL, Smith DL, Fidock DA (2013) Malaria’s Missing Number: Calculating the Human Component of R0 by a Within-Host Mechanistic Model of
Plasmodium falciparum Infection and Transmission. PLoS Comput Biol 9(4): e1003025. doi:10.1371/journal.pcbi.1003025

Editor: Rustom Antia, Emory University, United States of America

Received May 23, 2012; Accepted February 25, 2013; Published April 18, 2013

Copyright: � 2013 Johnston et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: GLJ received funding from the National Science Foundation Graduate Research Fellowship Program. DLS and DAF are supported by separate grants
from the Bill and Melinda Gates Foundation (#49446 to DLS and OPP1040399 to DAF). DLS also acknowledges support from the RAPIDD program of the Science
& Technology Directorate, Department of Homeland Security, and the Fogarty International Center, National Institutes of Health (http://www.fic.nih.gov). Authors
also received funding from the Bloomberg Family Foundation (DLS, GLJ). Partial funding for this work was provided by the US National Institutes of Health (grant
R01 AI079709, to DAF). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: dlsmith@jhsph.edu (DLS); df2260@columbia.edu (DAF)

Introduction

Approximately 2.5 billion people live in areas whose local

epidemiology permits transmission of Plasmodium falciparum, the

parasite that causes the most life-threatening form of malaria [1].

Malaria has inflicted a severe toll in morbidity and mortality over

the course of human history. Nonetheless, recent studies, however,

document significant reductions in malaria mortality over the past

decade [2,3]. Given these encouraging results, public health

experts are planning campaigns to reduce or eliminate transmis-

sion from many areas of the world [4,5]. To help assess the

feasibility of eliminating malaria from an area, efforts are ongoing

to model and map the historical and current limits of this

transmission. These models and maps also help establish a baseline

to judge the success of these efforts [1,6,7]. The development of

these mathematical frameworks, however, is complicated by the

diversity of mosquito vectors, varying levels of human immunity,

and the extent to which control efforts are applied.

The development of mathematical models of malaria is

contingent on a detailed understanding of the parasite lifecycle.

This begins in humans when motile parasite forms, termed

sporozoites, enter the body through the bite of an Anopheles

mosquito and travel to the liver where they rapidly proliferate.

Upon emerging from the liver, parasites then enter the blood

stream as merozoites. These merozoites infect red blood cells

(RBCs), develop, replicate, burst from the infected cells, and repeat

the cycle of asexual blood stage infection that causes disease. These

asexual blood stages are able to avoid clearance in the spleen by

expressing surface ligands that enable parasitized red blood cells

(PRBCs) to adhere to endothelial cells in the microvasculature

[8,9]. This property of cytoadherence and sequestration results

from surface expression of P. falciparum erythrocyte membrane
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protein (PfEMP1). Because PfEMP1 presents a prominent

antigenic target for the immune system, P. falciparum has evolved

a sophisticated system of epigenetically-regulated antigenic vari-

ation, whereby individual parasites typically express only a single,

antigenically-distinct member of the multigene family var that

encodes PfEMP1 [8,9]. Expression continuously switches between

var genes as a mechanism to continually present new epitopes that

escape an already existing antibody response. Separate from the

pathogenic asexual blood stages, intra-erythrocytic parasites can

also differentiate into sexual stages known as gametocytes [10].

Once parasites have committed to becoming gametocytes, they

sequester in the bone marrow or microvasculature and develop

through four stages for 7–12 days [11]. They then reenter the

circulation to complete their maturation as Stage V gametocytes.

Mature Stage V male and female gametocytes are then primed to

form gametes and mate in the midgut of the definitive host, the

Anopheles mosquito, following blood meal ingestion.

Many models of malaria have been developed to describe this

cycle of transmission from the mosquito to the human host and

back. These models can be broadly classified into two categories:

compartmental and mechanistic. A compartmental model is any

type of transmission model that simulates populations of individ-

uals transitioning into different compartments at constant rates,

with each compartment representing a different state of disease/

non-disease. For example, an ‘‘SIR’’ model is a compartmental

model in which individuals are grouped into three populations,

namely susceptible (S), infectious (I), and recovered (R). Individuals

transition between compartments at a constant rate depending on

several factors that include the virulence of the disease and the

immune responses of hosts. More sophisticated models include

additional compartments that each represent a different disease

state. For example, the infective compartment may be separated

into multiple compartments (I1, I2, I3, etc.) each with different

levels of infectiousness, or other compartments may be added, for

example infected but not infectious hosts (known as the E

compartment) [12]. The basic units of analysis in compartmental

models are populations; the number of individuals within each

disease state is tracked over time, but individuals are categorized

only to the extent that they occupy one of the various

compartments.

In contrast, mechanistic malaria models incorporate the within-

host mechanisms that determine human infectiousness over time.

In such models, individual hosts are the primary units of analysis

[13,14]. Transitioning among different levels of infectivity occurs

because of individual clearance of infections, and parasite densities

are modeled at the individual level. Individuals differ in multiple

parameters including the intensity and duration of infection and

the timing of fever.

Each of these two frameworks has a useful role to play.

Compartmental models benefit from simplicity, identifiably, and

clarity, while mechanistic ones allow for simulations of control

measures that are highly non-linear. Regardless of the model type,

one of the most important mathematical quantities for theories of

disease control aimed at elimination is R0, the basic reproduction

number [15]. R0 is defined as the number of secondary cases that

an index case would generate in a population without previous

exposure to the disease. R0 serves as a threshold criterion for

transmission: if the R0 of an area is below 1, the disease will

eventually become extinct; if above 1, the disease will spread. For

malaria, R0 can be expressed as the product of the vectorial

capacity (the number of infectious mosquito bites that result from

mosquitoes taking blood meals on a fully infectious human in a

single day), the duration of the human infectious period, and the

efficiency of transmission from humans to mosquitoes.

Vectorial capacity can be estimated using a variety of

techniques [7,16–22]. However, the human component of malaria

transmission is difficult to quantify, in part, because the

transmissibility of an infection is affected by many competing

factors. Although a variety of mathematical models have been

built to simulate the progression of malaria infections, [13,23–27],

no model has yet produced an estimate of net human infectivity

over time.

Here, we report a stochastic, mechanistic, within-host model

that simulates the progression of Plasmodium falciparum infections

and human-to-mosquito infectivity. We built upon previously

published work by Molineaux and Dietz, who first developed the

asexual and gametocyte components of our model from malaria

therapy data, in which individuals with tertiary syphilis were

infected with P. falciparum to induce a fever and clear the syphilitic

bacteria [23–25]. This framework has been used to simulate the

effects of vaccines on transmission [13,23–26]. However, this

earlier work required that parameters be fitted to an individual

patient’s case history before simulation. We have extended these

earlier studies by choosing stochastic distributions for model

parameters, thereby allowing for within-host simulations that

generate an ensemble of infection dynamics that are consistent

with observed malaria therapy infections. We also included

additional components that enable simulations of human-to-

mosquito infectivity and onset of symptoms.

Using this model, we have examined the levels of human-to-

mosquito infectivity over time and isolated the host-related

determinants of the basic reproduction number, R0. This novel

analysis of R0 made it possible to analyze overlooked aspects of

transmission relevant for elimination campaigns. We calculated

that net human infectivity is equivalent to 32 fully infectious days,

on average. Further, we calculated the distribution of infectious-

ness within human populations given the natural variability of

individuals’ immune responses to infection, as well as the mean

infectivity of a population over time. We found that infectiousness

from malaria persists for a long duration of time: mean

infectiousness is predicted to exceed five percent for 138 days

after infection. These results were then compared to outputs from

Author Summary

We report a new mathematical model of the progression,
within a human host, of a malaria infection caused by the
parasite Plasmodium falciparum. This model incorporates
probability distributions for the key parameters of infec-
tion and transmission so that model outputs match the
entire range of observed responses in patients, without
the requirement for fitting individual data. Further, we
simulate the daily densities of both the disease-causing
and transmissible forms of the parasite within an individ-
ual, as well as the onset of fever and the probability of
parasite transmission to mosquitoes. This model allows us
to reproduce aspects of infection that are critical for
malaria control modeling. As a first application, we
calculate the net infectiousness of humans to mosquitoes
and predict that net human infectivity from a single
infection is on average equal to approximately 32 fully
infectious days. This value has been used to help map the
worldwide intensity of malaria transmission. We also
predict that mean daily infectivity is greater than five
percent for approximately 138 days. Our modeling
framework, available as downloadable software, will allow
researchers to probe the effects of treatment and drug
resistance on malaria transmission in unprecedented
detail, helping to improve malaria control efforts.

A Mechanistic Model of Malarial Infectiousness
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compartmental models [12,28,29]. We propose that the modeling

work described herein provides the most careful estimate yet of the

distribution of human responses to malaria infection and the mean

human contribution to R0. Our model also provides a framework

to examine how antimalarials may affect malaria transmission,

given the complexities of host-parasite dynamics.

Methods

Defining a model of asexual parasitemia
The model used to calculate asexual parasitemia is a within-host

model that simulates the course of an infection one replication cycle

after merozoites have emerged from the liver. Asexual parasitemias

are modeled as a system of discrete (two-day time interval)

difference equations previously elaborated by Molineaux et al.

[13,23]. The model simulates parasite densities in 50 different

subpopulations differentiated by var gene expression type. In each

replication cycle, a fixed percentage of parasites in each subpop-

ulation switch into a different population. The switching probabil-

ities are structured such that certain var genes are expressed with

higher probability than others; immune pressure against variants

also plays a role (the switching phenomenon is described below).

Asexual parasitemia densities are regulated by three host immune

responses: an innate response that establishes an upper limit for

parasite density; a PfEMP1 variant-specific response that regulates

short-term periodic oscillations in density; and a variant-transcend-

ing response that causes a steady log-linear decrease in density over

time, clearing the infection. We do not simulate deaths from

malaria, as these are so few in proportion to the very large number

of total infections as to not significantly impact overall transmission.

Our model was fitted to data from malaria therapy patients, in

which individuals with tertiary syphilis and with no acquired

immunity to malaria were inoculated with single strains of P.

falciparum in order to induce a fever and clear the infection [30,31]

(see details below). Thus, our asexuals model best reproduces the

time course of asexual parasitemias in malaria-naı̈ve adult male

patients who exhibited effective immune responses.

1. Quantities modeled.

Pi tð Þ: The number of red blood cells infected by Plasmodium

falciparum parasites displaying PfEMP1 type i at time t

PC tð Þ: The cumulative number of number of red blood cells

infected at time t

2. Constants and parameters.

s: Proportion of isotype population that switches var expression

in each period; constant

v: Number of PfEMP1 variants (set to 50); constant

M: Minimum parasitemia simulated by model; constant

pi tð Þ: Probability that isotype population Pj will switch into

population Pi; variable, see description below in section on

antigenic variation

3. Equations determining asexual parasitemia.

Pi tz2ð Þ0~ 1{sð ÞPi tð Þzspi tð Þ
Xv

j~1

Pj tð Þ
 !

miSC tð ÞSi tð ÞSm tð Þ

Pi tz2ð Þ~ Pi tz2ð Þ0 if Pi tz2ð Þ0§M

0 if Pi tz2ð Þ0vM

(

PC tð Þ~
Xv

i~1

Pj tð Þ

Host immune response parameters
Our within-host model incorporates three types of immune

responses. An innate response SC tð Þ represents inflammation,

fever, and cytokine responses to parasite replication and is a

function of total parasite load, irrespective of PfEMP1 type. The

two other immune responses are acquired and are dependent on

antibody production. Si tð Þ represents the PfEMP1 variant-specific

immune response, with the response to each isotype denoted by

the subscript i. Sm tð Þ represents the acquired PfEMP1 variant-

transcending immune response. This immune response is

provoked by the conserved regions of PfEMP1 (since some

PfEMP1 variants have been shown to induce cross-reactivity) as

well as conserved surface proteins (such as MSP-1) and other

parasite antigens. Both of the antibody responses are assumed to

decay exponentially over time in the absence of new antigen

production in our model.

Each of these three responses has a characteristic effect on the

progression of parasitemia. The innate response controls the initial

densities of asexual parasitemia and is dominant during the initial

period of infection. The second response, the variant-specific acquired

response, controls the characteristic peaks and dips in parasitemia and

interacts with the var switching structure to determine the densities of

PfEMP1 variants over time. The third response is the variant-

transcending acquired response, which produces the roughly log-linear

decline in parasitemias over time and helps to clear the infection. We

assumed that the strengths of the innate and variant-transcending

immune responses vary among individuals.

1. Quantities modeled.

SC tð Þ: The innate immune response

Si tð Þ: The PfEMP1 variant-specific acquired response

Sm tð Þ: The PfEMP1 variant-transcending acquired immune

response

2. Constants and parameters.

P�C : Determines the parasite density at which the innate

immune response reaches 50% of maximum; stochastic (see below)

P�m: Determines the parasite density at which the PfEMP1

variant-transcending immune response reaches 50% of maximum;

stochastic (see below)

P�v : Determines the parasite density at which the PfEMP1

variant-specific immune response reaches 50% of maximum;

constant

kC: Determines functional form (Hill slope) of innate immune

response to total parasitemia; constant

km: Determines functional form (Hill slope) of variant-tran-

scending immune response to cross-reactive epitopes; constant

kv: Determines functional form (Hill slope) of variant-specific

immune response to individual PfEMP1 variants; constant

s: Decay rate of acquired immune response to PfEMP1 variant;

constant

dv: Delay in onset of acquired immune response to PfEMP1

variant; constant

t: Index variable used to sum over previous asexual parasitemia

levels

b: Affects levels of acquired variant-transcending immune

response; constant

dm: Delay in onset of variant-transcending acquired immune

response; constant

r: Decay rate of variant-transcending acquired immune

response; constant

C: Level of parasitemia above which variant-transcending

immunity does not increase; constant
P�C
kC

: Asexual parasite density at the first peak of parasitemia (the

maximum asexual parasitemia); stochastic following a truncated

A Mechanistic Model of Malarial Infectiousness
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log-normal distribution with a mean of 104.79 parasites per mL (this
was the median among malaria therapy patients from [23]) and a
scale parameter of 1.148 (from [32])

P�m
km

: First asexual parasitemia observation day minus the last

asexual parasitemia observation day; stochastic following a
Gompertz distribution (as reported in [33]) with shape parameters
(0.0311, 0.0004) chosen to fit the malaria therapy data from Sama
et al. [33]

3. Equations determining host immune functions.

SC tð Þ~ 1z
1

P�C
PC tð Þ

� �kC
 !{1

Si tð Þ~ 1z
1

P�v

Xt{dv

t~0

Pi tð Þe{s t{dv{tð Þ

 !kv
0
@

1
A

{1

Sm tð Þ~ 1{bð Þ 1z
1

P�m

Xt{dm

t~0

P̂PC tð Þe{r t{dm{tð Þ

 !km
0
@

1
A

{1

zb

P̂PC tð Þ~
PC tð Þ if PC tð ÞƒC

C if PC tð ÞwC

�

Antigenic variation
In our model, PfEMP1 variant densities are explicitly modeled.

The parasite population is partitioned into 50 different subpop-

ulations, each representing one antigenic isotype (i ). The

probability that a given isotype population Pj will switch into the

population Pi is given by the probability pi(t), which changes over

time (and is independent of j ). The probability pi(t) is designed to

incorporate three aspects of var switching leading to expression of

the antigenically distinct PfEMP1 proteins.

First, we assume that the PfEMP1 status of parasites is reset

during the mosquito stage such that infections start with a single

PfEMP1 variant [34]. Second, we assume that the probability of

switching into variants is not constant among the variants, but is

structured such the likelihood of switching into some variants is

greater than the likelihood for others [34–36]. This pattern may

reflect the distance of the var genes from the telomeric regions or

other types of inherent var structure and gene regulation [34–36].

Third, we assume that a PfEMP1 variant has a decreased

probability of appearing if the immune system has previously

mounted a response to that variant. The biological rationale for

this assumption is that a prior immune response will decrease the

probability of a variant appearing because parasites expressing this

variant are more likely to be cleared before reaching densities

detectable by smear.

It is also possible that more than one variant, even most or all

variants, are expressed at the onset of infection [37,38]. However,

the innate response controls the initial phase of infection (before

antibodies are developed), and this response is independent of the

PfEMP1 types present. During this early period of infection, there

is likely to be selective pressure from the host against some

isotypes, such that some isotypes are eliminated [38]. Thus, even if

all variants are expressed initially, only some will survive to the

period when antibodies are formed. The difference between a

model in which all variants are expressed initially and our model is

that the former relies entirely on variant cross-reactivity and/or

immunodominance to maintain infections [39,40], whereas ours

relies on both cross-reactivity and the appearance of less likely

variants to maintain infections.

In our model, we also assume that parasites expressing different

PfEMP1 variants proliferate at different rates. We assign each isotype a

growth rate mi chosen from a truncated normal distribution. This

assumption is based on experimental evidence that some PfEMP1

variants proliferate faster than others in vivo (specifically, some variants

that are associated with severe disease have been shown to propagate

faster than those that are not) [41]. Further, certain variants may be

better adapted to a host’s particular biology than others, resulting in

differences in net growth rates in vivo [38].

1. Quantities modeled.

pi tð Þ: Probability that a PRBC will switch to the ith PfEMP1

isotype at time t+2; units are in probability of switching per two

days

2. Constants and parameters.

q: Parameter for geometric distribution affecting isotype-

dependent switching probability; constant (set to 0.3)

I: Minimum immune response provoking var switching; constant

(set to 0.1)

mm, s2
m: Parameters for normal distribution describing isotype-

specific growth rates; constant

3. Equations describing PfEMP1 dynamics.

pi tð Þ~

0 if Si tð ÞvI

qiSi tð ÞPv
j~1

qjSj tð Þ
if Si tð Þ§I

8>>><
>>>:

. mi: Growth rates of different PfEMP1 variants; stochastic with

distribution N mm,s2
m

� �
truncated so that 1#mi#35

Modeling the onset of first fever
Because we are interested in utilizing this model to simulate

drug treatment in low-transmission areas, treatment-seeking

behavior is an important consideration. In the absence of

diagnostic testing, fever may serve as an indicator of infection

for both patient and clinician [42,43]. To predict when fever first

occurs, we utilize modeling by Dietz et al. [44] who used malaria

therapy data to fit probability distributions to the onset of fever. In

our model, all patients are assumed to be symptomatic and to

experience a fever that begins a variable number of days before

reaching maximum parasitemia. To determine the day of first

fever following one cycle of replication after emergence of

parasites from the liver into the blood stream (taken as time zero),

we use a uniform distribution based on an individual’s maximum

asexual parasitemia [13,44].

Specifically, we simulate the time course of an individual

infection from inoculation to clearance and record the maximum

parasitemia achieved (denoted PM ). We then take a random draw

(denoted d) from the distribution U(log10(0.0002), 0) = U(23.699,

0) and calculate P�f ~10d :PM [13,44]. The first day that an

individual’s parasitemia is greater than or equal to P�f is assumed

to be the first day of fever for that individual.

1. Quantities modeled.

feverday: The predicted first fever day of an individual, set to the

first day that an individual’s asexual parasitemia is greater than or

equal to P�f ; variable, depends on individual simulation

P�f : Fever threshold; variable, depends on individual simulation

A Mechanistic Model of Malarial Infectiousness
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2. Constants and parameters.

F: Lower limit of uniform distribution determining fever

threshold; constant (set to 0.0002)

PM : Maximum level of asexual parasitemia; variable, depends

on individual simulation

3. Equations determining first fever.

P�f ~PM
:10U log10 Fð Þ,0ð Þ, where U(a, b) is a draw from the uniform

distribution with lower bound a and upper bound b

Modeling gametocyte densities over time
Our gametocytemia model equations were first articulated by

Diebner et al. and Eichner et al. (the two models differ slightly; we

adhere to the formulation by Eichner et al.) [24,25]. In our model

gametocytes are produced by each wave of asexual parasitemia at a

stochastic frequency determined by the function c(). Gametocytes are

assumed to sequester for a variable number of days as they develop.

Once the mature gametocytes emerge into the blood stream, they are

cleared by the immune system, die naturally, or are transmitted to a

mosquito. Our gametocyte model simulates levels of circulating (Stage

V) gametocytes as well as numbers of gametocytes in the earlier stages

(Stages I–IV) on a daily timescale. Gametocyte lifetimes, in the absence

of immune response related to asexual parasitemia, are assumed to

follow a Gompertz distribution [24]. We assume that the degree of

anti-gametocyte immunity is related to the cumulative levels of

previous asexual parasitemia. We do not include any suppressive effect

of fever on gametocyte densities, as reported in [45].

As in the asexual model described above, the original gametocyte

modeling work [24,25] fitted model parameters to each individual

patient’s malaria therapy data. We modified their model by choosing

model parameters from probability distributions such that the resulting

outputs matched the observed variability in the malaria therapy data.

1. Quantities modeled.

G(t): The number of mature gametocytes circulating in the

bloodstream. Gametocyte gender is not modeled (see section on

infectivity below).

2. Constants and parameters.

DS: Sequestration time for gametocyte maturation in days;

stochastic with truncated normal distribution (m = 7; s = 1.5); the

truncation interval is set so that DS[ 4,12½ �
c: Asexual to sexual conversion probability, peak specific;

stochastic following log-normal distribution with location param-

eter of 26 and a scale parameter of 4 in natural log space

aG: Rate at which age affects gametocyte mortality; stochastic

with uniform distribution between .06 and 1

b: Effects of previous levels of asexual parasitemias on

gametocyte death rates; constant

m0: Initial age-related component of total gametocyte mortality

rate; constant

t: Index variable used to sum over gametocyte ages (in number

of days old)

3. Equations determining gametocyte density.

G tð Þ~
Xt

t~DSz1

c t{DSð Þ:

PC t{DSð Þ:e
{

m0
aG

eaG t{tð Þ{1
� �

{b
Pt
s~t

ln PC sð Þz1ð Þ
� �

Human-to-mosquito infectivity parameters
In the original Ross-Macdonald model, the infectivity of

humans to mosquitoes was parameterized by a constant, c [46].

In our model we estimate the probability of human-to-mosquito

transmission (defined as production of an oocyst [47]) as a function

of gametocyte levels. For our baseline simulations, we utilize the

nonlinear relationship between gametocytemia and infectivity

described by Stepniewska et al. based on mosquito feeding studies

on malaria therapy patients [47–49]. Net infectivity for an

individual is quantified by taking the area under a curve generated

from predicted infectivity over time; this quantity is equivalent to

the number of fully infectious days.

Our model of infectivity is not mechanistic in the same way

that our asexual and gametocyte models are. We use the

sigmoidal curve reported in [48] to force high gametocyte

densities to be substantially less infectious than would be

predicted by a proportional model of infectivity. We do not

model why this nonlinearity occurs. Two main hypotheses could

explain the reduced infectivity of gametocytes at high densities.

The first is that gametocytes themselves regulate their infectious-

ness in a density-dependent manner [50–53] such that high

densities are proportionally much less infectious than low

densities. The second hypothesis is that host factors (antibodies,

cytokines, fever) affect the infectivity of gametocytes [27,54–57],

though fever was not found to influence the infectivity of

gametocytes in malaria therapy [58]. In our model, we do not

include these possible additional factors in the calculation of

human-to-mosquito infectivity; however, we did conduct a

sensitivity analysis to examine the effects of different density-to-

infectivity relationships on our model outputs.

A final note regarding infectivity is that of Jeffery and Eyles in

their original 1955 study of mosquito feedings on malaria therapy

patients [47]. These authors observed that, in the first two to four

days after gametocytes were observable in the bloodstream of

infected patients, individuals were not infectious to mosquitoes.

They attributed this phenomenon to the fact that, when

gametocytes are first becoming microscopically detectable, they

are immature and are thus unable to infect mosquitoes. We

account for the observed non-infectivity of gametocytes appearing

very early in the course of infection by adjusting modeled

infectivity profiles slightly. Specifically, if the difference between

the first observable asexual and sexual parasitemias was 15 days or

less for a simulated individual, then this individual becomes

infectious two days after gametocytes were first observed. For

individuals with larger differences between asexual and gameto-

cyte patency, or that never have an observable gametocytemia, we

assume that individuals are not infectious until more than 17 days

after asexual blood stage parasites are first detectable. This

adjustment roughly corresponds to the feeding study data reported

by Jeffery and Eyles [47].

1. Quantities modeled.

c(x): The infectivity of humans to mosquitoes (i.e. the percent

chance that a mosquito blood meal will result in oocysts in the

mosquito midgut), where x is the gametocyte density per mL.

2. Constants and parameters.

mintrans: Minimum gametocyte density that allows for transmission

3. Equations determining gametocyte infectivity.

c xð Þ~1:08:e{e{0:86 log10 xð Þ{1:48ð Þ
.

The functional relationship between gametocyte density and

infectivity used here is taken from [48]. Note that c(x) is set to 0 for a

variable period during the onset of gametocyte appearance (as

reported in [47]). Our default model also assumes that infectivity is 0

if gametocyte density is below 2/3 gametocytes per mL, due to the

need for 2 gametocytes to be present per blood feed (assuming 3 mL

of blood per feed); we call this threshold mintrans. We vary these

assumptions in the sensitivity analysis.

A Mechanistic Model of Malarial Infectiousness
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Fitting our model to malaria therapy data
Prior information on parameter distributions. In the

initial formulation upon which we built our asexuals model [23],

two parameters (infection duration and maximum density) were

fitted to individual patient case histories. To develop our

mechanistic model, we found distributions from the published

literature to inform our choice of both parameters. For the

duration of infection model parameter, a study found that the

durations of infection in malaria therapy were Gompertz

distributed with a mean duration of patent parasitemia of 210.7

days [33]. For the distribution of maximum parasitemias, a

previous within-host model parameterized to malaria therapy data

used a log-normal distribution [32]. For the mean of this

distribution, we used the median (104.79 asexual parasites per

mL) observed among 35 malaria therapy patients [23]; to set an

upper bound, we used the maximum observed parasitemia (105.66

asexual parasites per mL) from [23].

In the original formulation of our gametocyte model, five

parameters were fitted to individual patient case histories [24,25].

After a literature review we found data that determined two of the

five distributions. Eichner et al. reported that the sequestration

delay DS roughly followed a normal distribution [25] with a mean

of 7.4 days. Eichner et al. also reported that �gg, the average asexual-

sexual conversion probability, roughly followed a lognormal

distribution with a mean of 0.0064; this information informed

our choice of c, the asexual-sexual model conversion distribution.

The other three gametocyte model parameters (aG, b, and m0) had

insufficient information to determine their distributions.

Fitting asexual parasitemias and gametocyte

densities. The first component that we fitted to data was the

asexuals model. For our simulation target data, we used the

distribution of durations of infection from malaria therapy [59] as

well as the minimum, median, and maximum of 9 clinical

indicators from malaria therapy data. These malariometric indices

were derived by Molineaux et al. from 35 malaria therapy patient

charts [23]. We note that these 35 charts were selected from a total

of 334 patients because this subset was classified as ‘spontaneous

cures’ given their treatment history (although some of the 35 did

receive low-dose suppressive treatments). Note also that we defined

a ‘local maxima’ in asexual parasitemia as a parasitemia a) greater

than the 6 values preceding it and b) greater or equal to the 6

values following [23].

With the target data defined, we then fitted the model to these

data. For a measure of the goodness-of-fit, we used the relative

errors between model outputs and the min, median, and max of

the 9 indices, as well as the distances between the modeled and

observed durations of infection (as measured from the cumulative

distribution functions). We used the log-normal distribution for

maximum parasitemias with a mean of 104.79 asexual parasites per

mL to set P�C , which determines the parasite density at which the

innate response reaches 50% of maximum [23,32]. To fit the

duration of infectivity and the min, med, and max of the nine

indices from malaria therapy, we varied kC, which determines the

relationship between asexual density and level of innate immune

response, s, the decay rate of the variant-specific response, and

P�m, which determines the parasite density at which the variant-

transcending response reaches 50% of maximum. We also

truncated the isotype-specific growth rates mi to have a maximum

value of 35 [23]. Choosing these four parameters to fit to data

allowed us to decrease the overall model degrees of freedom but

still have control over all three types of immune response.

To fit the gametocyte model parameters we first needed to

define our target data. We used DS, the average duration of

gametocyte sequestration, �gg, the average asexual to sexual parasite

conversion probability, and L, the average length of time that

gametocytes are observed in the circulation, as our target indices.

These indices were derived for the malaria therapy data by

Eichner et al. [25]. For a measure of the goodness-of-fit, we used

the differences between the geometric mean, minimum, and

maximum values from malaria therapy and model outputs. When

calculating gametocyte densities from asexual parasitemias we

assumed that asexual parasitemias were local maxima only if they

satisfied the two criteria above as well as were c) greater than or

equal to 100 PRBC/mL (as in [25]).

We had three gametocyte model parameters to fit for which we

had insufficient prior information: aG, b, and m0. As for the asexual

model, there were too many degrees of freedom to test model

outputs against malaria therapy data using all possible combina-

tions of model parameters. We used the reported quantiles for

these three parameters from Diebner et al. [24] to help inform our

choice of initial values. After experimenting with model outputs,

assuming a variety of different distributions for the parameters, we

found that we could reproduce the range of observed variation

with b and m0 being fixed at their population means (as reported in

[24]) and aG varying according to a uniform distribution. Table 1
provides the best-fit values and distributions for these asexual and

gametocyte model parameters; parameters that are not listed in

Table 1 remain unchanged from their previously published values

[23–25].

Assessing the goodness-of-fit. We first consider the good-

ness-of-fit of the asexual component of the model. Table 2
compares the minima, medians, and maxima of the malaria

therapy data to bootstrapped values from the model outputs using

the best-fit parameters. From this table, we see that the geometric

means of the temporal intervals between local maxima are shorter

in the model than observed in the data (Table 2, index 2–5). In

other words, the ‘peaks’ of asexual parasitemia occur closer

together in the model than in the data (though the total number of

peaks in the model and the data are approximately the same). This

difference may indicate that some var switching rates need to be

reduced in our model, or that shared epitopes among variants

repress densities for longer in vivo than in the current model.

Further, the model slightly overestimates the mean proportion of

positive observations in both halves of patency, indicating that the

model predicts that infections are more often observable during

their duration of patency than are observed clinically (Table 2,

indices 2-7, 2-8). The model also overestimates the variability of

the height of the peaks associated with PfEMP1 variants (Table 2,

index 2-6). The model does fit data quite well for density at first

maximum, as well as last positive day, with very low relative errors

for those indices (Table 2, indices 2-2, 2-9).

For the gametocyte model, we were able to set the delay of

appearance parameter DS directly given prior information [25],

and so there is little error between modeled and observed mean,

minimum, and maximum values. For the observed average

asexual-to-sexual conversion probability �gg, this is driven mostly

by the parameter c, and so we were also able to match the

observed variation with little absolute error (Table 3). The

average length of time that gametocytes are circulating in the

bloodstream (index L) is controlled in the model by the immune

parameters aG, b, and m0. By setting b and m0 to their population

means and allowing aG to vary uniformly between 0 and 1, we

could generate the entire range of malaria therapy variation.

However, having individuals with average gametocyte circulation

times of 22 days yielded a model that was difficult to reconcile with

other data sets [60]. We thus set aG,U(0.06, 1) such that the

maximum average gametocyte circulation time was set to be

approximately 14 days (Table 3).
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Of note, we did not explore the entire parameter space for the

asexual and gametocyte models, given computational limitations.

Our final parameters were chosen as best-fits when the model

outputs were qualitatively judged to be acceptably close according

to the goodness-of-fit described above. We thus cannot provide

precise point estimates with confidence intervals for our param-

eters. Nevertheless, sensitivity analyses were performed for certain

parameters, as described below.

As a further check of our model outputs, we also compared our

model outputs to other data not explicitly used in the model fitting.

The modeled arithmetic mean duration of time between first fever

and first gametocytemia detectable by smear among gametocyte-

positive individuals was ,12.9 days. This compares closely to the

measured value from malaria therapy patients (10–11) [45]. Also,

Jeffery and Eyles in their original 1955 study of mosquito feedings

on malaria therapy patients reported that gametocytes generally

become observable 10–15 days after parasite patency [47]. We

found similar values (mode ,11 days; median ,11 days), although

the model also generated larger values (,20% of gametocyte

positive individuals had differences between the first day of asexual

patency and the first day of gametocyte patency $20 days).

Results

Development of a mechanistic model of within-host
malarial infection

We have developed a mechanistic model of the progression of

malaria within a human host, parameterized such that the model

reproduces the median and extremes of the dynamics of infection

observed in malaria therapy. For the asexuals model, we fitted five

model parameters to the minimum, medians, and maxima of nine

different malariometric indices derived from malaria therapy data.

For the gametocyte model, we fitted five model parameters to the

minima, geometric means, and maxima of three different indices

derived from the gametocytemias of malaria therapy patients.

Table 1 illustrates those model parameters that were changed

from published reports. A mathematical formulation of the model,

as well as a description of how it was fitted to data, is described in

the Methods. Standalone versions of the model for Macintosh or

PC platforms are provided in the Supporting Information (see

MACmodel.zip and PCmodel.zip), along with user manuals (Text S1)

and an illustration of the graphical user interface (Figure S1).

Figure 1 graphically illustrates the important features of our

model by presenting three individual simulations. Figure 1A
illustrates the P. falciparum lifecycle for reference. Figure 1B shows

simulated asexual parasite densities over time, expressed as log10

PRBC per mL of blood. The black line illustrates the lower limit of

detectability by microscopy (10 PRBC/mL) [45,61]. The individ-

ual depicted in green has patent parasitemias for a period of ,50

days, lapses into sub-patent parasitemia for ,60 days, then has a

short period of patency before relapsing permanently into sub-

patent parasitemias. The infection is completely cleared by ,day

400, post emergence of parasites from the liver. The characteristic

peaks and dips apparent in the densities are associated with

PfEMP1-based antigenic variation. The individual in purple

displays three separate periods of patent parasitemia, whereas

the individual in blue also has four periods, with the first lasting

nearly 100 days. The inset in Figure 1B shows the first 50 days of

infection along with the first fever day for each individual (onsets of

fever are indicated by triangles). Fever is simulated to occur on day

7 post emergence for the individual depicted in green, day 11 for

the blue individual, and day 12 for the purple.

Figure 1C shows the daily gametocytemias of the simulated

individuals from Figure 1B. Note that the x-axis scale has been

reduced from 700 to 600 for clarity. For the green individual,

,10% of the first wave of asexual parasites converts to

Table 1. Best-fit model parameter constants and distributions.

Model Parameter Reference value Revised value/distribution3 Description

Asexual kc 0.21 0.164 Affects levels of innate immune
response to total parasitemia

Asexual s 0.021 0.15 Decay rate of acquired immune
response to PfEMP1 variant

Asexual Pc*/kc Fitted to case history 1 truncated lnN(m,s2), m = ln(104.79),
s = 1.148, truncation point = 5.5

Asexual parasite density at the first peak
of parasitemia

Asexual Pm*/km Fitted to case history 1 Gompertz(a,h), a = 0.0311, h = 0.0004 First day with observed asexual
parasitemia minus last observed day

Asexual mi truncated N(m,s2), m= 16,
s= 10.4, truncation point = 11

truncated N(m,s2), m = 16, s = 10.4,
truncation points = 1, 35

Growth rates of different PfEMP1
variants

Gametocyte Ds Fitted to case history2 round(truncated N(m,s2)), m = 7, s = 1.5,
truncation points = 4, 12

Sequestration time for gametocyte
maturation

Gametocyte c Fitted to case history 2 truncated lnN(m,s2), m = 26, s = 4,
truncation point = 0.189

Asexual to sexual conversion
probability, peak specific

Gametocyte aG Fitted to case history 2 U(0.06,1) Rate at which age affects gametocyte
mortality

Gametocyte b Fitted to case history 2 0.0013 Effects of previous asexual parasitemias
on gametocyte death rates

Gametocyte m0 Fitted to case history 2 0.03 Initial age-related component of total
gametocyte mortality rate

1See ref [23].
2See ref [24].
3The best-fit parameters for the asexual and gametocyte components of our mechanistic model are shown for those parameters that have been modified from their
original values [23,24]. All other model parameters not provided above remain equal to their values in [23,24]. ‘Fitted to case history’ indicates that the model was run
with this parameter as a free parameter and the best-fit value was chosen after fitting outputs to the case history of an individual treated using malaria therapy.
doi:10.1371/journal.pcbi.1003025.t001
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Table 3. Comparison of gametocyte model outputs to malaria therapy data.

DS �gg L

Malaria
therapy1 Simulated2 Malaria therapy Simulated

Malaria
therapy Simulated

Minimum 4.0 4.0 2.7 E-04 6.5 E-05 1.3 3.2

Geometric Mean 7.4 6.9 0.0064 0.0066 6.4 5.6

Maximum 12.0 10.8 0.135 0.111 22.2 13.9

1See ref [25]. Three properties of within-host gametocyte dynamics were imputed from malaria therapy data. The properties are DS, the gametocyte sequestration time
in days; �gg, the average gametocyte conversion probability; and L, the length of time gametocytes persist in circulation. The first column for each parameter lists the
value from 113 malaria therapy patients [25].
2Gametocyte properties were calculated from the mechanistic malaria model outputs using best-fit gametocytemic parameters. Model values are from 50 samples of
113 runs each, from a total of 1,000 runs. The end time for all runs was 800 days.
doi:10.1371/journal.pcbi.1003025.t003

Figure 1. Illustration of asexual, sexual, and infectivity outputs. Our mechanistic P. falciparum infection model was used to simulate three
individuals’ host-parasite dynamics. (A) Schematic representation of the P. falciparum life cycle. The parasite is transmitted to humans though the bite
of an infected mosquito. Motile forms (sporozoites) travel to the liver where they proliferate as liver stage parasites that and are then released into the
blood. Parasites then adopt ,48 hr cycles of red blood cell (RBC) invasion, asexual blood stage replication, and egress. Some intra-erythrocytic
parasites differentiate into sexual forms (gametocytes) for uptake by further mosquito bites. Asexual parasites avoid immune capture by antigenic
variation, primarily PfEMP1 cycling. (B) Individual log10 asexual parasitemias presented as a function of the number of days post emergence of
parasites from the liver into the bloodstream. The inset depicts the first 50 days of infection; triangles above indicate the first day of fever. The black
line is the level of detectability by microscopy (10 parasitized red blood cells (PRBC)/mL). (C) Daily gametocytemias of the same three individuals. (D)
Estimated probability of human-to-mosquito transmission. Areas under the infectivity curves are equivalent to the number of fully infectious days.
Although the model predicts the persistence of long-lived low-level and sub-detectable infections (as observed in malaria therapy), this panel
illustrates how the bulk of infectivity usually occurs early in the course of infection.
doi:10.1371/journal.pcbi.1003025.g001
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gametocytes. However, the later waves of asexual parasitemia have

much lower asexual-to-sexual conversion probabilities, resulting in

sub-patent gametocytemias after ,day 60 and essentially no

gametocytes after day 340. The asexual-to-sexual conversion

probability is chosen stochastically for each wave of asexual

parasitemia for each individual according to the distribution

observed from malaria therapy (the geometric mean probability of

conversion is approximately 0.7%). For the blue individual, the

first asexual wave has a lower conversion probability than the

second, resulting two gametocyte peaks of roughly equal height;

gametocytes disappear from microscopic detection near day 140

and are completely cleared by day 600. For the purple individual,

conversion probabilities are so low that gametocytes are patent

only for a very short period between days 20 and 40 post

emergence and are cleared completely near day 400.

Figure 1D illustrates the daily probabilities of human-to-

mosquito transmission (i.e. the probabilities that a mosquito bite

on these individuals would produce oocysts). The x-axis scale is

now reduced from 600 to 250 days. To calculate the infectivity

curves in Figure 1D, the gametocyte densities in Figure 1C were

transformed using a sigmoidal relationship derived from feeding

studies on malaria therapy volunteers [48] (see section below on

gametocyte densities and their relationship to human-to-mosquito

infectivity). Net infectivity is calculated by integrating the daily

human-to-mosquito infectivity curves over time (shaded areas).

The peaks of patent gametocytemia for the green, blue, and purple

individuals in Figure 1C are clearly mirrored in Figure 1D,

though the peaks of infectivity are exaggerated due to the

transformation from density to infectivity.

Assumptions concerning antigenic variation
As illustrated in Figure 1, an important feature of within-host

malaria dynamics is antigenic variation. This variation is governed

to a considerable extent by the nature of var gene switching leading

to the expression of antigenically distinct PfEMP1 variants. In our

model, we assumed that var is reset during infection so that only

one variant is expressed after emergence from the liver. We then

assumed that a fixed percentage of parasites switch into a new var

type per replication cycle, with certain var variants more likely to

appear than others. Further, we assumed that immune pressure

against a given variant would reduce its likelihood of appearing.

Figure 2 illustrates the var (PfEMP1) expression patterns for a

representative simulated individual. Figure 2A decomposes the

total parasitemia over time into the various var subpopulations,

such that each color corresponds to the proportion of parasitemia

for each given type. Individual var types are counted as expressed

only if their corresponding parasite populations reach 0.02

parasites per microliter, the assumed threshold for detection by

polymerase chain reaction [62]. Figure 2B shows the total

number of var variants expressed at any given time post

emergence, and Figure 2C shows the cumulative number of var

variants that have been expressed during the course of the

infection (some variants are removed by the immune response).

This particular simulation has a maximum of 10 variants

simultaneously expressed within the first few days of infection,

and this level decreases over time because of immune clearance.

Because the switch rates for some variants are assumed to be faster

than others (following a geometric series with a common ratio of

1/3), simulations exhibit a substantial var variation early in the

infection, with only a few less-favored variants appearing later.

Figure 2D illustrates the total parasitemia over time, which is

affected not only by the var switch rate but also by the three types

of host immune response (innate, variant-specific, and variant-

transcending).

Figure 2. Illustration of model var dynamics. The members of the
PfEMP1 family of P. falciparum erythrocyte membrane proteins are
encoded by var genes, present at ,60 copies per genome and each
expressing a different PfEMP1 type. (A) Total asexual parasitemia as a
function of time post emergence from the liver was modeled and the
proportion filled by each PfEMP1 variant is shown in a different color.
The number of colors and their respective levels at a given time
indicates the diversity of isotypes present. Results are shown from a
single model output. (B) The number of isotypes circulating in the
blood over time. Isotypes are ‘expressed’ only if the density of that
isotype is greater than or equal to 0.02 parasitized red blood cells
(PRBC) per mL (the assumed threshold for PCR detection). (C) The
cumulative number of isotypes that have been expressed over time
(modeled from a single infection). (D) Levels of total asexual parasitemia
over time for the illustrated run, in log10 PRBC per mL.
doi:10.1371/journal.pcbi.1003025.g002
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Relationships between gametocyte density and parasite
infectivity to mosquitoes

Another important determinant of human infectivity is the

assumed relationship between gametocyte density and parasite

infectivity to mosquitoes (also referred to as human-to-mosquito

infectivity). A variety of functions relating gametocytes to

infectivity have been described and proposed in the literature

[48,56,63,64]. All of these relationships share two features: a)

infectivity increases monotonically with density, and b) high

gametocyte densities are proportionally less infectious than low

densities. However, the exact shapes of the curves differ. For our

best-fit parameterization, we relied upon the functional form fitted

by Stepniewska et al. [48] from human feeding studies conducted

from malaria therapy patient volunteers. Figure 3 illustrates this

sigmoidal relationship (in red, denoted ‘Median Infectivity, Stage

V’), as well as a scatterplot of density versus infectivity data from

Carter and Graves [63,64] (blue circles) and from a meta-analysis

by Bousema et al. [56] (purple squares).

Goodness-of-fit of modeled durations of asexual
infection and gametocyte densities

Figure 4 provides a graphical illustration of two measures of

model fit using the best-fit parameters. Figure 4A illustrates a

measure of goodness-of-fit for our asexuals model, specifically the

cumulative distributions of the durations of infection for both our

model and the malaria therapy data [33]. The grey horizontal line

illustrates the median durations of infection: our within-host model

has a slightly shorter median duration (196 days) than the malaria

therapy data (215 days) [33]. The slope of the cumulative

distribution function from our model outputs is slightly steeper

than that from the malaria therapy, indicating less variation in our

modeled durations of infectivity compared to the malaria therapy

data. However, the maximum durations of infectivity between

model and malaria therapy are very similar. Figure 4A also shows

the cumulative durations predicted by the two other models (in

pink and green; see below).

For our model of gametocyte densities, we visually examined a

total of 262 malaria therapy charts provided by Diebner et al.

[24,65] and recorded the maximum observed gametocytemia from

each patient (data were recorded as log10 values to the nearest

tenth). We then compared these data to the maximum gametocy-

temias from 1,000 runs of our model using the best-fit parameters.

Because the Diebner et al. study only includes individuals who

recorded at least four gametocyte-positive observations [24], we

censored out model runs in which gametocyte levels never exceeded

10 per mL, leaving 988 runs remaining.

Figure 3. Relationships between gametocyte density and probability of human-to-mosquito infectivity. The scatterplot data (blue
circles) were collated by Carter and Graves from multiple studies [63,64]. The blue line is a logistic regression through the Carter and Graves data. The
Bousema data indicate the relationship between infectivity and density from skin feeding studies with predominantly African volunteers in endemic
settings [56]. The red line indicates the infectivity of malaria therapy volunteers (‘Median Infectivity, Stage V’) [48]; this parameterization is assumed to
be the default. The red dotted lines illustrate the ‘High’ (maximum) and ‘Low’ (minimum) infectivity curves used in the model. The light blue solid and
dotted lines indicate the relationships between gametocyte density and infectivity, assuming only Stage VB gametocytes are infectious (see
Methods). All infectivity relationships included in the model are truncated at 1 (i.e. 100% probability of infection).
doi:10.1371/journal.pcbi.1003025.g003
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Figure 4B provides the empirical cumulative distributions of

the durations of gametocytemia for the two data sets after log-

transformation, i.e., the proportion of data that are less than or equal

to a given level of log10 gametocytemia. The malaria therapy values

are slightly higher on average initially, with a median of 3.10 for

malaria therapy versus 2.95 from the model (grey horizontal line).

Our model had a broader tail than the malaria therapy data, with

more elevated gametocytemias than observed in the therapy data.

The mean from the malaria therapy data was 3.01, whereas the mean

from the model was 2.98. However, in our model, we estimated

gametocytemias every day (i.e., we captured every maximum

possible), as opposed to the sparser sampling of the malaria therapy

data. Further, some of the individuals included in the patient charts

from [24] were treated with chloroquine, chlorguanide, or quinine to

terminate the infection after the initial period of continuous patent

asexual parasitemia [23]. This treatment may have slightly biased

downward the recorded malaria therapy maxima.

Classical description of host contributions to R0

Once we were able to generate malarial infections in silico that

resembled malaria therapy data across a variety of indices, we then

attempted to quantify the distribution of human infectivity over

time. The basic reproduction number R0 is one of the most

important parameters for quantifying the infectivity of a disease

[15]. The classical expression for the R0 of malaria was derived by

Macdonald and can be formulated with four terms [46,66,67].

Potential transmission by a mosquito population is described by its

vectorial capacity, V0, which describes the number of infectious bites

that would arise from all the mosquitoes that bite one fully infectious

individual on a single day. Two parameters, b and c, describe the

proportion of blood meals that successfully cause an infection: b is

the probability that an infected mosquito will infect an uninfected

human upon biting; c is the probability than an infected human will

infect an uninfected mosquito during a blood meal. In the Ross-

Macdonald model, the infectious period of humans is exponentially

distributed, with a daily clearance rate of r and a mean duration of

infection of r21 days. The basic reproduction number of malaria is

then described by the classic formula:

R0~
bcV0

r

The Ross-Macdonald model [46,66,67] assumes that c is a constant

over this period, so the ratio c/r describes the net infectiousness of a

simple human infection. This net infectiousness fraction can be

interpreted as the number of days that a person is fully infectious.

Mean human infectivity over time
In reality, neither V0, b, c, nor r are constant among individuals

over time and R0 is only the first moment of a complicated

multivariate distribution. Consider a population of N individuals,

none of whom have been previously exposed to malaria. These

individuals will differ in their responses to malarial infection,

including onset of first fever relative to the initiation of blood stage

infection, immune responses to asexual and sexual parasite densities

over time, and the time to clearance of infection. We let Di(t) denote

the probability that individual i will infect a mosquito upon being

bitten at time t; this function takes values between 0 and 1. With our

mechanistic model, one can simulate the full variability of Di(t) for

populations with no acquired immunity.

If we first consider the mean of Di(t) within a population using

the formula

D tð Þ~

PN
i~1

Di tð Þ

N

Figure 4. Comparison of model and malaria therapy cumula-
tive distributions for two indices. (A) These line curves show the
cumulative distributions of the durations of infection for the malaria
therapy data, as well as those of our mechanistic model and the
compartmental models of Lawpoolsri et al. [29] and Okell et al. [12]. The
distribution from the malaria therapy data comes from fitting a
Gompertz probability distribution to the durations of infection from 54
patients, as reported by Sama et al. [33]. The cumulative distribution
function of the best-fit Gompertz distribution is plotted in red. The
mechanistic model cumulative distribution was generated by calculat-
ing the durations of infection for 1,000 runs and plotting their empirical
cumulative distribution function. The distributions from Lawpoolsri et
al. and Okell et al. were generated by running those compartmental
models according to their mathematical assumptions. The malaria
therapy and mechanistic model distributions show relatively tight fits
throughout the distribution. The durations of infections for the malaria
therapy data and our mechanistic model are defined as the last
observable day by smear minus the first observable day; the durations
for the compartmental models are defined as the durations of time in
infectious compartments. (B) We reviewed a total of 262 malaria
therapy charts and recorded the maximum observed gametocytemia
from each patient (data were recorded as log10 values to the nearest
tenth) [24,65]. We then recorded the maximum gametocytemias from
1,000 runs of our model. Because the malaria therapy data only include
individuals who recorded at least four positive gametocyte observa-
tions, we censored out model runs in which gametocyte levels never
exceeded 10 per mL (N = 988) [24]. Illustrated are the empirical
cumulative distributions for the two data sets after log-transformation,
i.e., the proportion of data that are less than or equal to a given level of
log10 gametocytemia.
doi:10.1371/journal.pcbi.1003025.g004
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the resulting function D(t) is a function of time only. We call this

function the mean human infectivity over time. Mean human

infectivity is an important function for elimination in many

contexts. Calculation of D(t) allows for a determination of how

likely malaria will be able to persist through droughts or intensive

antimalarial campaigns. The function D(t) for our mechanistic

model is shown in Figure 5 under best-fit model parameters. In

Figure 5A, the simulated asexual parasitemias from 1,000 runs of

the model are illustrated. A large diversity in responses can be

observed, with asexual parasitemias differing among individuals by

many orders of magnitude post emergence. These differences in

asexual parasitemias are also mirrored in large differences among

individuals in both gametocyte densities and human-to-mosquito

infectivity over time (not shown). Figure 5B illustrates the 25th

and 75th percentiles of daily infectivity for these simulated

individuals, as well as the mean infectivity over time (in red).

The mean infectivity D(t) is skewed due to the presence of some

individuals exhibiting long-lived infectious periods. One important

prediction from our model is that mean infectiousness is greater

than five percent for 138 days after infection (see Discussion).

If we integrate Di(t) over time, rather than over individuals, we

obtain

Di~

ð?
0

Di tð Þdt

We call Di the distribution of net infectivity within a population.

This distribution describes how individuals vary in infectiousness

given the natural variability in host-parasite interactions. Our

model-predicted Di is shown as a violin plot in Figure 5C. The

infectivity of most individuals is clustered around the mean value

(32 fully infectious days); however, there are an appreciable

number of individuals who are predicted to be much more

infectious than the mean individual. The maximum observed

infectivity is 125.2 fully infectious days.

If we integrate either the mean human infectivity over time D(t)

with respect to t, or the distribution of net infectivity Di over a

population, we arrive at what we call the mean net human

infectivity, D. The quantity D was first described in the supplement

to [1]; this malaria map made use of preliminary results from the

model described here. D can be calculated in one of two ways:

D~

ð?
0

D tð Þdt~
XN

i~1

Di

N

For our mechanistic model D ranges between approximately 31–

34 when averaged over a population of 1,000 individuals (the

mean of 5,000 runs was 32.4). The units of D can be considered as

fully infectious days, i.e., the number of days in which an

individual has a probability of 1 of infecting a mosquito. This value

represents the human contribution to R0, and we note here that D

is invariant across time, space and ecological setting.

Comparison of infectivity over time and net infectivity
among malaria models

Once we had computed Di, D(t), and D, we then compared our

calculations to values imputed from three other models: those of

Lawpoolsri et al. [29], Okell et al. [12], or Dietz et al. (known as

the ‘Garki model’) [28]. The former two models were designed to

simulate the effectiveness of antimalarials at reducing malaria

transmission and are the focus of our comparisons. The model of

Lawpoolsri et al. was fitted to data from a low-transmission region

of Thailand (PfPR,0.0–1.5) [29] while the model of Okell et al.

was fitted to three regions of medium intensity transmission in

Tanzania. Both are compartmental models (Lawpoolsri et al. has

one infectious compartment and Okell et al. has four infectious

Figure 5. Mechanistic model predicted human infectivity over
time and within a population. We calculated daily human infectivity
to mosquitoes, as a function of time post emergence, for 1,000
simulated individuals. (A) Asexual parasitemias from 1,000 model runs.
The wide diversity of host-parasite dynamics was fitted to malaria
therapy data. (B) The mean daily infectivity of 1,000 simulated
individuals for the first 300 days post emergence is shown as the red
curve, and the area between the 25th and 75th daily infectivity
percentiles is shown in blue. (C) Net infectivity for each of 1,000
individuals. The distribution of net human infectivity is represented as a
violin plot, which extends to the maximum infectivity. The red cross
illustrates the arithmetic mean infectiousness, and the green box shows
median infectiousness.
doi:10.1371/journal.pcbi.1003025.g005
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compartments varying in infectivity and clearance rate), and both

papers employ their models to predict the constant equilibrium

prevalence in untreated and treated cases.

We first compared the D(t) predicted from our model with those

from Lawpoolsri et al. [29] and Okell et al. [12]. Lawpoolsri et al.

assume that the mean rate of clearance in infectious individuals is

1/188 day21 with a constant daily human-to-mosquito infectious-

ness (c) of 0.5. In the model of Okell et al. [12], each of the four

infectious compartments in this model had different clearance

rates (1/10.5, 1/10.5, 1/31.5, 1/157.5 day21) and each compart-

ment had a different proportional infectivity (1.90, 3.08, 1.53,

0.28) of the average daily infectivity c = 0.05. We did not weight

these durations of infectivity for age or body surface area, i.e. we

calculated the unweighted D(t).

Figure 4 illustrates the cumulative distributions of the

durations of infection and infectiousness for these two models as

well that of the mechanistic model. We see that our mechanistic

model matches the malaria therapy curve closely compared to the

compartmental models. These latter models have significantly

heaver tails, indicating that individuals are infected for longer

periods of time in those models.

We can derive D(t) for the compartmental models [12,29], using

the curves from Figure 4A and the c values for each

compartment. Figure 6A shows D(t) for both of these models as

well as our mechanistic model; Figure 6B illustrates the first 200

days of this function for closer inspection. We see that the model of

Lawpoolsri et al. predicts that mean infectivity is above 5% for 433

days, the output from Okell et al. is above this threshold for only

45 days, and our mechanistic model output is above this value for

138 days (or until ,153 days after emergence of parasites from the

liver, discounting the initial period when infectivity is near zero).

The differences in D(t) among the models may have to do with

model structure. Lawpoolsri et al. is constrained functionally by

the assumption of only one infectious compartment. Okell et al.

uses four infectious compartments and thus encompasses a much

larger class of distributions (the hypoexponential distributions) for

the lifetimes of infection. Further, by weighting the infectivity of

each of the duration of infectiousness compartments differently,

Okell et al. increase the degrees of freedom of D(t), allowing them

to more closely fit their target data. Further, these two models

differ in the data sets being fitted: the endemicity of the regions

being modeled at equilibrium in Lawpoolsri et al. are much lower

than those in Okell et al. It is possible that individuals in low-

endemicity areas are infectious at higher levels for longer periods

than individuals in high-endemicity areas, because acquired

immunity may limit the severity and density of repeated P.

falciparum infections. This effect may provide a means of identifying

the effects of immunity on transmission. However, we would need

to fit a variety of endemic equilibria with hypoexponential models

such as that of Okell et al. to test such a hypothesis. We cannot

generate quantitative conclusions from comparing the models of

Lawpoolsri et al and Okell et al directly, given their different

model structures.

Integrating over time, we find that the D values for these three

models are 7.2 fully infectious days for the model of Okell et al.,

,32 days using the current model, and 94 days in the model of

Lawpoolsri et al. We can also compare these values to an older

field-tested compartmental model, known as the ‘Garki model’

because it was fitted to data from a malaria-endemic site in Garki,

Nigeria [28]. This model includes compartments for immunity

such that immune individuals clear infections faster than non-

immune individuals.

To calculate the net human infectiousness D for this model, let

V0 be the vectorial capacity of an area. For malaria, V0
:D~R0.

Further, let V be the critical vectorial capacity below which

transmission is unstable, i.e., V:D~1. Thus, D = 1/V. As derived

in the Garki model, V~
a1zd

g
, where a1 is the clearance rate of

infectivity, d is the death rate, and g is the probability of becoming

infected by the bite of an infected mosquito; thus D~
g

a1zd
[28].

Using the values derived from Garki, we find that D = 45.5 fully

infectious days. For the Garki estimate, the values of a1 and d
were assumed and only g was fitted to data; thus essentially D

itself was fitted to data as a single parameter [28]. This fitted

Figure 6. Comparison of mean infectivity over time, D(t). The
mean human infectivity to mosquitoes was calculated as a function of
time for three models: our mechanistic model as well as the stochastic
representations of the models of Lawpoolsri et al. [29] and Okell et al.
[12]. For each model, the mean daily infectivity of 1,000 untreated
individuals was simulated. (A) Mean infectivity for the first 800 days for
the three models. (B) Mean infectivity for the first 200 days only. (C)
Infectivity curves for the three models, scaled so that mean infectivity is
equal to that of the mechanistic model.
doi:10.1371/journal.pcbi.1003025.g006
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value for D accords relatively well with the value generated by

our model [28].

Given our calculations of D, we can rescale the plots of D(t) by

multiplying each curve by a scaling factor so that models of

Lawpoolsri et al. and Okell et al. share the same mean net

infectivity as the mechanistic model; these results are shown in

Figure 6C. Once the models are rescaled, we can see more

clearly that the models of Okell et al. and the mechanistic model

predict that infectiousness is cleared at very similar rates

throughout the population, whereas Lawpoolsri et al. predict a

much more gradual loss of infectiousness. The closeness of D(t) for

the scaled stochastic representation of Okell et al. and the

mechanistic model is somewhat surprising, although Okell et al. do

parameterize some of their model parameters from malaria

therapy data.

Comparison of individual variability in human-to-
mosquito infectiousness among malaria models

In the previous section we calculated the mean responses of

individuals over time for the models of Lawpoolsri et al. [29] and

Okell et al. [12]. However, since these models are both

compartmental, they can readily be formulated as stochastic,

individual-based models by assuming that individuals are in each

infectious compartment for exponentially distributed times. We

thus computed the distribution of net infectiousness within a

population, Di, for both models. Figure 7 compares the

distributions Di for these two compartmental models to the

distribution generated by our mechanistic model. As implied by

the D(t) curves, Figure 7A illustrates that the model of Lawpoolsri

et al. predicts that some individuals have very high D values,

whereas the distribution Di generated by the model of Okell et al.

is much more centered about its mean. If we scale the distributions

Di to all have the same mean as the mechanistic model, we see that

Di for Lawpoolsri et al. is still much more dispersed than the

mechanistic model; however, Di for Okell et al. matches quite well

to that of the mechanistic model (Figure 7B).

Sensitivity analyses
We ran a variety of sensitivity analyses by varying the model

parameters and observing the changes in model output. For the

asexuals model, we adjusted P�m such that the mean duration of

infection varied between 183 and 237 days (,95% confidence

interval as reported by Sama et al. [59]). We found that the net

infectivity for the model varied from 29.9 to 37.4 net infectious

days, versus 32.4 for the best-fit parameters [1].

For the gametocyte model, we examined the effects of varying

the aG parameter. For our best-fit parameterization, we assumed

that aG,U(0.06, 1). If we assumed that aG followed the U(0, 1)

distribution, then the maximum average circulation time increased

to 24.0 days (close to the 22 recorded in malaria therapy; Table 3).

The average maximum circulation time was increased because the

lower bound of the uniform distribution was changed from 0.06 to

0.0, i.e., in some individuals gametocyte age had no effect on

gametocyte longevity. The average infectivity of the population

was increased by a small amount to 34.6 using the wider bounds

for aG, versus 32.4 for the model with aG,U(0.06, 1). Further, the

maximum number of net infectious days for aG,U(0, 1) was 181.5,

versus 125.2 for aG,U(0.06, 1). Thus, aG,U(0, 1) produced a very

heavy tail in the distribution of infectivity among individuals.

Regarding the relationship between gametocyte density and

human-to-mosquito infectivity, our default model outputs assumed

the relationship from Stepniewska et al. as fitted from malaria

therapy [48]. We also simulated the effects of assuming different

types of gametocyte density to infectivity relationships. Specifically,

we simulated 14 different types of possible functional relationships

between gametocyte densities and infectivity (Figure 3). Our

default assumption was called the ‘Median, Stage V’ relationship

(solid red line in Figure 3); we also assumed both ‘High’ and

‘Low’ Stage V relationships (illustrated as dashed red lines in

Figure 3). These latter relationships were chosen to capture much

of the observed variation in the Carter and Graves data [63,64].

Further, we ran a logistic regression through the Carter and

Graves data to develop another functional relationship (dark blue

line in Figure 3); this logit fit was similar to the data reported in the

meta-analysis of Bousema et al. [56]. Each of these four

relationships relates observable (Stage V) gametocytes to infectiv-

ity, and for each of these four relationships we could apply the

Jeffery-Eyles observation that gametocytes are not infectious at the

onset of gametocyte appearance [47] to generate a total of eight

density-to-infectivity relationships.

To develop the six other possible relationships between

gametocyte densities and infectivity, we utilized additional

information regarding the biology of P. falciparum. Not all

gametocytes that are observable are infectious; once gametocytes

enter the circulation, they still need a brief number of days to

mature further before becoming infectious [47,68,69]. Circulating

Stage V gametocytes can be further discriminated into two

categories: Stage VA gametocytes and Stage VB gametocytes [68].

Stage VA gametocytes are circulating but are not infectious; Stage

VB gametocytes are both circulating and infectious. Thus we

generated three additional functional relationships by assuming

Figure 7. Comparison of distributions of net human infectivity,
Di . The distributions of net human infectivity were calculated for three
models: our mechanistic model as well as the compartmental models of
Lawpoolsri et al. [29] and Okell et al. [12]. (A) The infectivity for each of
1,000 individuals was integrated over time for each model. The
distributions of net infectivity among individuals are represented as
violin plots (vertical histograms); the plots extend to the maximum
infectivity. (B) Scaled distributions of net infectivity. The distributions in
panel (A) were rescaled by multiplying by a scaling factor such that all
three distributions had the same mean as that of the mechanistic
model. The red crosses illustrate the arithmetic mean infectivity, while
the green boxes show the median infectivity.
doi:10.1371/journal.pcbi.1003025.g007
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that observable gametocytes were infectious only after two

additional days of maturation. These three relationships were

designed to parallel the ‘Median,’ ‘High,’ and ‘Low’ relationships

from above but assuming only Stage VB gametocytes are

infectious; these are illustrated in light blue in Figure 3. We then

modified each of the three Stage VB assumptions by assuming that

there is a short period at the beginning of infections in which

gametocytes are not infectious, as above [47], for a total of 14

possible functional relationships between gametocyte density and

infectivity.

The mean net infectivity values for seven of the parameteriza-

tions are 70.0, 41.1, 23.6, 64.1, 33.3, 16.2, and 36.3 net infectious

days for the Stage VB, High; Stage VB, Median; Stage VB, Low;

Stage V, High; Stage V, Median; Stage V, Low; and Carter &

Graves parameterizations, respectively (without the Jeffery-Eyles

corrections and with mintrans = 0). If we include the effects of the

Jeffery-Eyles correction, these seven parameterizations yield 68.2,

40.2, 23.1, 61.2, 32.0, 15.6, and 35.0 mean net infectious days,

respectively (assuming mintrans = 0). Each mean is from 1,000 runs.

Varying the assumed relationship between gametocyte density and

infectivity will also affect other aspects of transmission by altering

the duration between parasite emergence and infectivity and/or

the total duration of positive infectivity.

Also of note, our model calculated P. falciparum infection

dynamics only among adults, as there are no malaria therapy data

for children and it is not well-understood how children differ in

their overall levels of infectivity from adults. In a companion paper

(Johnston et al., in prep) we discuss how our results concerning

infectivity among adults may translate to children and the

implications of using our model results for malaria control

planning.

Discussion

Here we describe the development of a novel, stochastic, within-

host model of the progression of malaria in patients with no

acquired malarial immunity. This model utilizes the difference

equations originally developed by Molineaux and Dietz to

simulate the progression of asexual and sexual parasitemias [23–

25]. We have parameterized these equations so that the entire

range of observed responses in malaria therapy can be reproduced

without needing to fit parameters to individual case histories. We

also extended the modeling framework from [23–25] to include

components for simulating the onset of first fever and human-to-

mosquito transmission.

Once our mechanistic model was formulated, we revisited the

analytic Ross-Macdonald model to examine how human infec-

tiousness enters into the formula for the basic reproduction

number R0. We then analyzed human infectiousness in three ways,

calculating the mean human infectivity over time D(t), the

distribution of net infectivity Di, and the mean net human

infectivity, D. We found that D in our mechanistic model is

approximately 32 fully infectious days. This quantity is invariant in

a population over time and plays a crucial role in determining R0.

We have utilized this value in recent malaria mapping work [1],

although a full mathematical treatment of this quantity was left

until the present.

Our study included a review of the mathematical literature to

determine whether we could impute these quantities from other

modeling work to provide a baseline for comparison. We

examined the models of Lawpoolsri et al. [29], Okell et al. [12],

and the Garki model [28], and found them to vary widely in their

calculation of D, D(t) and Di. We propose that our new estimate of

D is the most appropriate one for R0, because R0 assumes no

acquired immunity and our model is parameterized solely from

malaria therapy studies with individuals that were non-immune.

The other models cannot easily disentangle the effects of acquired

immunity, multiplicity of infection, and control efforts from the

effects of immunity acting on a single infection, though we have

described how future efforts might begin to separate these

quantities.

In addition to our calculation of the invariant D and its

importance for R0, we also predict that human infectiousness

persists for a long period of time at levels sufficient to promote

transmission in areas of high vectorial capacity. While these

calculations are for populations with no acquired immunity, they

are relevant for malaria elimination efforts because antimalarial

immunity wanes rapidly in the absence of infection [17,70]. As this

immunity wanes, the responses of individuals to infection can be

expected to approach those observed in malaria-naı̈ve individuals

[28,66]. Of note, a recent study in Senegal found that persistent

infectiousness prevented interruption of transmission even when

incidence had been reduced to very low levels through insecticide-

treated bed nets and usage of ACTs [17]. Our model confirms the

relevance of persistent low-level infectiousness for elimination

efforts.

In addition to the usefulness of these results for mapping and

control efforts, the modeling platform and analytic framework

described herein will help clarify the different assumptions among

malaria models. Further, because we calculate asexual and sexual

parasite densities daily, and because the model reproduces the

entire variability of host-parasite dynamics observed in malaria

therapy, our modeling framework provides a powerful new tool for

exploring the effects of antimalarial treatments on transmission. As

malaria decreases worldwide, our model results will become more

relevant to more regions of the world, thus helping to improve

targeting of control efforts.
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