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M A T E R I A L S  S C I E N C E

New mechanism and exact theory of superconductivity 
from strong repulsive interaction
Valentin Crépel* and Liang Fu*

We introduce a general mechanism for superconductivity in Fermi systems with strong repulsive interaction. 
Because kinetic terms are small compared to the bare repulsion, the dynamics of charge carriers is constrained by 
the presence of other nearby carriers. By treating kinetic terms as a perturbation around the atomic limit, we show 
that pairing can be induced by correlated multiparticle tunneling processes that favor two itinerant carriers to be 
close together. Our analytically controlled theory provides a quantitative formula relating Tc to microscopic parame-
ters, with maximum Tc reaching about 10% of the Fermi temperature. Our work demonstrates a powerful method for 
studying strong coupling superconductivity with unconventional pairing symmetry. It also offers a realistic new 
route to realizing finite angular momentum superfluidity of spin-polarized fermions in optical lattice.

INTRODUCTION
Superconductivity in conventional metals results from an effective 
attraction between electrons mediated by the exchange of phonons 
(1, 2). While this attraction is much weaker than the bare Coulomb 
repulsion (3), the latter is drastically renormalized downward by 
retardation effects (4). Thanks to the vast difference between Fermi 
and Debye energy, the phonon-mediated attraction can overscreen 
the Coulomb repulsion to enable electron pairing and super-
conductivity (5). On the other hand, this crucial retardation condi-
tion fails in systems with narrow bands or low carrier density. Yet, 
superconductivity has been found in a growing number of materials 
in such strong-coupling regime. Two famous examples are (i) 
strontium titanate, the most dilute bulk superconductor with Fermi 
energy as small as 1 meV (6), and (ii) magic-angle graphene with a 
record-low density n2D ∼ 1011 cm−2 and a very small bandwidth of 
∼10 meV (7–10). The ratio of superconducting transition temperature 
Tc and Fermi temperature EF/kB far exceeds typical values, reaching 
as high as 0.01  in strontium titanate (6) and 0.1  in magic-angle 
graphene (8). Finding electronic mechanisms for strong-coupling 
superconductivity in narrow band systems has long been a subject 
of great interest and challenge (11–18).

In this work, we introduce a new mechanism for super-
conductivity stemming from the strong repulsive interactions. 
Because kinetic terms are small compared to the bare repulsion, the 
dynamics of charge carriers is constrained by the presence of other 
nearby carriers. In this regime, pairing can be induced by correlated 
multiparticle tunneling processes that favor two itinerant carriers to 
be close together. To illustrate this physical phenomenon, we intro-
duce a simple two-band model of interacting spin-polarized fermions 
on a two-dimensional lattice. In our model, an insulating state occurs 
at the filling of n = 1 fermion per unit cell, and superconductivity 
emerges upon particle or hole doping. On the basis of a perturbative 
expansion around the atomic limit, we rigorously show that, despite 
the strong bare repulsion, a nonretarded short-range pairing inter-
action between doped fermions arises. It is generated by coupling to 
high-energy composite excitations, which mediate correlated-tunneling 
terms, effectively keeping pairs of carriers close to one another. The 

resulting superconductor is unconventional by all standards. It has 
f-wave pairing symmetry and changes from having a full gap to 
point nodes above a critical doping. Tc is controlled by the bare 
interaction strength and the bandgap, reaching as large as Tc ∼ 
0.1 EF/kB when they are of comparable magnitude. Our theory is 
analytically controlled by a small coupling constant that emerges in 
the narrow band limit. Our work demonstrates a reliable and robust 
mechanism for unconventional superconductivity from repulsion 
in narrow band systems.

Our model is broadly inspired by a recent work by Slagle and 
one of us (19), who proposed a mechanism for pairing from purely 
classical electrostatic repulsion in a doped charge transfer insulator. 
The essential ingredient there is a charge 2e excitation dubbed 
“trimer,” which is a composite object consisting of two doped elec-
trons tightly bound to a dipole. For certain extended Coulomb 
repulsion, a trimer is energetically more favored than two separate 
electrons. Under appropriate conditions, the presence of preformed 
trimers can lead to Wigner crystal or superconducting ground 
states at small doping.

While we also start with the problem of doping an insulator, our 
work differs fundamentally from (19). We find superconductivity 
without invoking trimers or any preformed pairs at low energy. 
Instead, pairing arises from correlated quantum hopping of doped 
fermions induced by virtual composite excitations at high energy. 
We demonstrate this novel mechanism by introducing and solving 
the simplest model of spin-polarized fermions interacting on a 
bipartite lattice. Last but not the least, our solution reveals distinct 
superconducting states at different ranges of doping and provides a 
quantitative formula for Tc in terms of microscopic parameters.

RESULTS
We consider spin-polarized fermions on a bipartite lattice with re-
pulsive interactions, described by the Hamiltonian

	​​

ℋ  = ​ ℋ​ 0​​ + ​ℋ​ t​​,

​  
​ℋ​ 0​​  =  V​ ∑ 

〈r,​r ′ ​〉
​​​ ​n​ r​​ ​n​ ​r ′ ​​​ + ​ ∑ 

r∈B
​​​ ​n​ r​​,

​  

​​ℋ​ t​​  =  − t​ ∑ 
〈r,​r ′ ​〉

​​​​(​​ ​c​r​ 
†​ ​c​ ​r ′ ​​​ + hc​)​​​
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where ℋ0 contains the nearest-neighbor interaction—the dominant 
interaction for spin-polarized fermions on a lattice—and the sublattice 
potential difference between the two inequivalent A and B sites, 
while ℋt describes tunneling between adjacent sites. Despite the 
simplicity of our model, in this work, we unveil its remarkably rich 
phase diagram as a function of filling and interaction strength. We 
shall derive the low-energy properties of the system with a fully 
controlled perturbative expansion in the narrow band limit t ≪ , 
which we further complement with field-theoretic analysis and 
extensive exact diagonalization (ED) studies. For concreteness, we 
thereafter focus on the honeycomb lattice.

In the strong coupling limit, the ground state of ℋ at n = 1 is an 
insulator with all A sites occupied and all B sites empty, as shown in 
Fig. 1. Its insulating property is ensured by the large gap ED = 2V + 
, which corresponds to the energy necessary to transfer an electron 
from an A site to B, or equivalently, creating a dipole. The inclusion 
of tunneling, small compared to ED, slightly decreases the charge 
transfer gap without any notable change to the insulating 
ground state.

Since ℋ is invariant under particle-hole transformation ​​c​ A​​  → ​
c​A​ † ​, ​c​ B​​  →  − ​c​B​ † ​​ combined with spatial inversion that interchanges 
the two sublattices, it suffices to consider n > 1 filling below. At fi-
nite doping n = 1 +  ( > 0), low-energy configurations of the system 
remain with all A sites occupied to avoid the large charge transfer 
gap. Because of the Pauli exclusion principle, the  additional fermions 
must live on the B lattice and, in the limit t = 0, form a highly degen-
erate manifold with an energy Ef =  + 3V per doped charge that we 
refer to as f-band.

Besides these fermions on B sites, there exist various types of 
composite excitations at higher energy, which involve holes on A 
sites, as depicted in Fig. 1. For example, a B fermion can bind with a 
neighboring dipole to form a charge e Fermi polaron, which has 
energy EP = Ef + V + . More interesting is the charge 2e trimer, 
which consists of three neighboring B fermions surrounding a hole 
on the center A site. It can also be viewed as two neighboring B fermions 
tightly bound to a dipole. A trimer costs energy ET = 2Ef + , which 
is greater than the energy of two separate B fermions by . These 
composite excitations—dipoles, polarons, and trimers—are hereafter 
collectively referred to as the charge-transfer complex.

In the presence of small quantum tunneling t ≪ , doped carriers 
in the f-band constitute the only low-energy excitations in our sys-
tem. They virtually couple to the charge-transfer complex at high 
energy. This coupling results in a narrow dispersive f-band of doped 
carriers and induces short-range interactions between them. We 
shall show that the induced interaction leads to pairing within the 

f-band. To that purpose, we analytically carry out a Schrieffer-Wolff 
transformation ℋ′ = eiSℋe−iS to decouple the f-band from high-
energy degrees of freedom (20, 21). As detailed in the Supplementa-
ry Materials, this procedure accounts for all possible virtual 
processes (see Fig. 1) and leads to the following effective Hamiltonian 
for doped fermions, which is exact to second order in t/ and at any 
f-band filling

	​​  
​​ℋ ′ ​  = ​  ∑ 

〈i,j〉
​​​ ​t​ f​​​(​​ ​f​i​ 

†​ ​f​ j​​ + hc​)​​ + ​V​ f​​ ​n​ i​​ ​n​ j​​​
​   

​+ ​  ∑ 
(ijk)∈

​​​​(​​ ​f ​i​ 
†​ ​n​ j​​ ​f​ k​​ + ​P​ ijk​​​)​​ + ​U​ 3​​ ​n​ i​​ ​n​ j​​ ​n​ k​​​

​​	 (2)

The fi fermionic operators denote the doped fermions on the tri-
angular B lattice, and their vacuum is the n = 1 insulating state 
described above. The sums labeled by 〈i, j〉 and (i, j, k) ∈ △, respec-
tively, run over all bonds and all upper triangles of the B lattice, 
while Pijk stands for the inclusion of ​​f ​i​ 

†​ ​n​ j​​ ​f​ k​​​ with all possible permu-
tations of the indices i, j, and k.

The effective Hamiltonian ℋ′ for doped fermions consists of 
single-particle tunneling, correlated (density-dependent) tunneling, 
and two-body and three-body density interactions. Their origins 
can be understood as follows. The tunneling from k to i in the upper 
triangle (ijk) arises from two consecutive hopping processes. The 
virtual intermediate state involved is either a polaron or a trimer, 
depending on the occupation of site j (see Fig. 1). The resulting tun-
neling amplitude is thus t2[(1 − nj)/(EP − Ef) + nj/(ET − 2Ef)], from 
which the expression of tf and  are derived

	  ​​t​ f​​  = ​   ​t​​ 2​ ─ 
 + V ​ ​	 (3a)

	​   = ​  ​t​​ 
2​ ─ 


 ​ − ​  ​t​​ 2​ ─ 
 + V ​ ​	 (3b)

The interaction coefficients Vf and U3 come from processes 
where an A fermion hops back and forth between neighboring sites 
(see Fig. 1). For example, Vf measures the difference of energy 
between two neighboring doped charges on B sites and two well-
separated ones. The former configuration can couple to a trimer 
state whereas the latter cannot, thus leading to an attraction −t2/. 
Accounting for all processes, we find

	​​ V​ f​​  =  − ​ ​t​​ 
2​ ─ 


 ​ + ​  4 ​t​​ 2​ ─ 
 + V ​ − ​  3 ​t​​ 2​ ─ 

 + 2V ​ ​	 (3c)

	​​ U​ 3​​  = ​  3 ​t​​ 2​ ─ 


  ​ − ​  6 ​t​​ 2​ ─ 
 + V ​ + ​  3 ​t​​ 2​ ─ 

 + 2V ​ ​	 (3d)

In Eqs. 3a to 3d, the denominators ,  + V, and  + 2V are the 
energy costs of intermediate states involving trimer, polaron, and 
dipole, respectively. When longer-range interactions are included, 
these denominators are tuned accordingly. Higher-order correc-
tions to the effective Hamiltonian ℋ′ are small provided that the 
narrow band condition t ≪  is satisfied, regardless of interaction 
strength V.

At small V ≪ , the effective interactions in the f-band are found 
to be ​​V​f​ 

0​  =  2 ​(t / )​​ 2​ V,  ​​​ 0​  = ​ (t / )​​ 2​ V​, and ​​U​3​ 0​  =  0​ to first order in 
V/. These values simply correspond to the projection of the bare 
repulsion V into the f-band, whose wave functions have small 

Fig. 1. Model and virtual processes. Low-energy fermions added above the n = 1 
insulating background live on the B lattice. Excitations above this f-band are di-
poles, polarons, and trimers (solid circles), whose virtual occupation leads to the 
effective model Eq. 2 (dashed circles).
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amplitudes ∼t/ on A sites. As V increases, interband mixing quickly 
becomes important and our exact results (Eqs. 3a to 3d) reveal a 
dramatic departure of the “dressed” interaction from the projected 
interaction. As opposed to the projected interactions, Vf starts to 
decrease at V ≈ 0.29 and changes sign from repulsive to attractive 
at V = . Similarly,  and U3 show manifest deviations from the 
projected estimates for V > 0.1 and saturate at large V/ (see the 
Supplementary Materials). In the rest of this work, we shall mainly 
consider the case V < , where the induced Vf,   , and U3 turn out 
to be positive and small compared to the single-particle bandwidth 
W = 9tf.

To reveal the tendency toward pairing, we study the formation 
of two-particle bound states, the analog of “Cooper problem” in a 
doped insulator. Pair formation is evidenced by the positivity of the 
pair binding energy

	​​ ​​ b​​  =  2 [ E(1 ) − E(0 ) ] − [E(2 ) − E(0 ) ]​   
= 2E(1 ) − E(2 ) − E(0)

  ​​	 (4)

with E(m) being the ground state energy of a system with m charges 
added above n = 1 filling. As detailed in the Supplementary Materi-
als, we analytically solve the lattice Hamiltonian Eq. 2 in the case of 
two doped fermions and obtain b as a function of V/ as shown in 
Fig. 2. It is found positive in the entire range V/. This result shows 
an effective pairing interaction between low-energy fermions. It is 
worth noting that the two-particle bound states cannot be captured 
by the projected interaction ​​V​f​ 

0​  =  2 ​​​ 0​​, which proves that pairing is 
induced by virtual interband excitations. We further confirm the 
formation of pairs in the original model Eq. 1 with ED (see the Sup-
plementary Materials). Pairs are already present for V <  despite a 
repulsive induced nearest-neighbor interaction (Vf > 0). This 
highlights the essential role of correlated hopping  in the effective 
model for pairing.

The two-particle bound state we found has zero total momen-
tum, is symmetric under threefold rotation, and changes sign under 
reflection that flips one of the primitive vectors aj, i.e., it has f-wave 
pairing symmetry. The size of the bound state shrinks with increas-
ing V/, as shown in the inset of Fig. 2 for V/ = 0.5 and 100. At 
small V/, the pair wave function is highly extended over many lattice 
sites, while in the opposite limit V/ → ∞, two nearest-neighbor 
fermions form the most tightly bound pair “resonating” within a 
single upper triangle (see the Supplementary Materials). Our solution 
of the two-particle problem suggests a crossover between Bardeen–
Cooper–Schrieffer (BCS) and Bose–Einstein condensate (BEC) states 
at small particle density, tuned by V/.

The presence of a two-particle bound state is a striking feature of 
our mechanism, distinct from the Kohn-Luttinger one (22), and 
relies on the presence of a filled Fermi sea to mediate an effective 
attraction between electrons. Here, on the contrary, pairing is already 
present for two doped fermions and is induced by the virtual exci-
tations of the insulating state.

We now extend our analysis to finite, but small, doping concen-
trations  above n = 1. In this regime, the physics of dilute doped 
fermions is governed by long-wavelength properties that transcend 
the details on the lattice scale. This motivates us to derive a low-
energy theory by taking the continuum limit of the lattice Hamilto-
nian. This is achieved by rewriting the lattice Hamiltonian in terms 
of fermionic fields in momentum space and retaining only modes 
near the bottom of the f-band. The band dispersion ​(k ) = 2 ​t​ f​​ ​
∑ j=1​ 3 ​​  cos (k · ​a​ j​​)​ with tf > 0 has two degenerate minima located at 
the ±K points of the Brillouin zone. Therefore, low-energy degrees 
of freedom are described by two long-wavelength fermionic fields 
(q) = f(K + q) with qa ≪ 1, distinguished by the valley index  = ±. 
In the Supplementary Materials, we find the following continuum 
Hamiltonian for 

	​​ ​   ℋ​  =  ∫ dx ​ ∑ 
=±

​​​ ​​​ 
†​​[​​ ​ − ​∇​​ 2​ ─ 2m ​​]​​ ​​ ​​ + g ​​+​ † ​ ​​ +​​ ​​−​ † ​ ​​ −​​​​	 (5)

where the effective mass and interaction strength are entirely deter-
mined from the lattice parameters

	​​
m  =  2 / (3 ​t​ f​​ ​a​​ 2​ ) ,

​  
g  =  6 ​a​​ 2​(​V​ f​​ − 2 ) <  0

​​	 (6)

The resulting quantum field theory describes a two-flavor fermion 
gas in the continuum with attractive contact interaction. The two 
flavors correspond to the valley degree of freedom associated with 
the underlying lattice, from which the field theory is derived. This 
theory is asymptotically exact in the low doping limit where s-wave 
scattering between fermions of opposite valleys is the dominant 
interaction.

This attractive interaction leads to the formation valley-singlet 
two-particle bound states, which exactly correspond to the f-wave 
pairs observed on the lattice (see Fig. 2). The pair amplitude f(+K)f(−K) is 
odd under the reflection that interchanges the two valleys. To verify 
the validity of our continuum model, we calculate the two-particle 
binding energy b in the field theory and, using the parameters m 
and g given by Eqs. 3a to 3d and 6, compare it with the exact solu-
tion of the lattice model. The expression for b is

A

B

Fig. 2. Doped charges form bound pairs. (A) The transition from weakly to tightly 
bound pairs, depicted for V/ = 0.5 (left) and 10 (right), constitutes a probe of the 
BCS-BEC crossover at low doping. (B) Pair binding energy b and bound state size 
as a function of V/ from the exact solution of the two fermion problem. The pre-
diction of the continuum model (dashed line) perfectly matches the full-fledged 
lattice calculation, a stringent test of our derivation.
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	​​
​ ​​ b​​ ─ ​​ uv​​ ​  = ​ [​e​​ 1/​g​ 0​​​ − 1]​​ 

−1
​,
​  

 ​g​ 0​​  = ​  9 ─  ​ ​ 
2 − ​V​ f​​ ─ W  ​  = ​  6 ─  ​ ​ 

​V​​ 2​ ─ 
( + 2V) ​ 

​​	 (7)

with uv = W/9 being an energy cutoff that we fix with the exact 
binding energy at V → ∞ (see the Supplementary Materials). The 
exponent g0 in Eq. 7, defined by the ratio of effective pairing inter-
action g and the bandwidth, only depends on the ratio V/ in the 
narrow band regime t ≪ . A perfect agreement between continuum 
theory and the lattice model is found at all values of V/ (see Fig. 2). 
This proves the accuracy of our mapping from the lattice model to 
continuum theory.

Let us summarize our achievements so far. We have transformed 
the strongly repulsive model (Eq. 1), where the repulsion V far ex-
ceeds the single-particle bandwidth, into an effective Hamiltonian 
for doped particles featuring attractive interaction. The nature of 
the ground state at low density depends on the strength of this 
attraction, measured by the dimensionless coupling constant g0. If 
g0 is small, the binding energy is small compared to the Fermi energy 
and the doped charge forms a weakly attractive Fermi gas. On the 
other hand, a large g0 will produce tightly bound pairs. One can 
tune between these two regimes by increasing the ratio V/, as 
shown Fig. 2A.

The attractive Fermi gas in two dimensions is known to be super-
conducting at low temperature and exhibits a BCS-BEC crossover 
as the ratio between pair binding and Fermi energies changes from small 
to large values (23–25). In the region of weakly bound pairs b ≪ EF, 
the critical temperature is given by ​​k​ B​​ ​T​ c​​  = ​ e​​ −1​ ​√ 

_
 2 ​E​ F​​ ​​ b​​ ​ / ​, with  ≃ 

0.577 being Euler’s constant (26, 27). In terms of the dimensionless 
coupling constant g0 (Eq. 7), we obtain the explicit formula for Tc

	​​ k​ B​​ ​T​ c​​ = ​ e​​ −1​ ​√ 
_

 ​ 2 ​E​ F​​ W ─ 9  ​ ​ ​e​​ −1/(2​g​ 0​​)​​	 (8)

where the Gorkov-Melik-Barkhudarov corrections have been included 
to correctly describe the strong coupling nature of the superconducting 
state (28, 29). As an example, this formula safely applies at  = 0.1 if 
V < 0.7, where we both have exp (1/g0) > 10 and b ≲ EF/2 (24), as 
confirmed thereafter by ED.

On the other side of the crossover b ≫ EF, the physics depends 
on the interaction between the bosonic pairs. When these bosons 
repel, the system exhibits a Berezinskii–Kosterlitz–Thouless tran-
sition toward a BEC at low temperature (30), while it collapses if 
bosons attract (31, 32). Between the extreme BCS and BEC limits, the 
critical temperature satisfies the very general bound kBTc ≤ EF/8 (33), 
which limits the largest achievable Tc.

The BCS-BEC crossover of the two-dimension Fermi gas can be 
achieved by tuning either carrier density or the interaction strength 
g0, which is controlled by V/ in our model. We plot in Fig. 3 the 
critical temperature Tc as a function of doping concentration  and 
V/. At very low doping where EF < b, the system lies in the BEC 
regime and Tc increases rapidly with . At some critical concentra-
tion, the system undergoes the BEC-BCS crossover and finally 
follows Eq. 8.

It is worth emphasizing that our exact BCS formula Eq. 8 ap-
plies provided that the dimensionless coupling constant g0 is 
small, even when the bare repulsion V far exceeds the bandwidth 
W. This is because doped fermions at the conduction band bottom 
±K reside entirely on B sublattice and therefore avoid the direct 
nearest-neighbor repulsion V. In the weak-coupling regime V ≪ , 
the attraction g0 ∝ (V/)2 between low-energy carriers is induced 
by virtual interband particle-hole pairs or excitons and leads to 
exponentially small Tc. However, our expression of g0 is non-
perturbative in V and remains exact at V ∼  ≫ W, where strong-
coupling superconductivity and maximum Tc are attained. For 
instance, at doping  = 0.1, Tc reaches 0.1EF ≃ 0.032t2/ around 
V = 0.43, which is about 0.5% of the quasiparticle bandwidth 
W = 9tf ≃ 6.3t2/.

Fig. 3. Critical temperature. Critical temperature of the continuum model in the 
exact BCS (solid line; Eq. 8) and BEC (dashed line) limits, as a function of doping and 
V/. A gray horizontal line highlights the bound kBTc < EF/8. The self-consistent 
lattice mean-field solutions (dots) agree with the continuum theory for small dop-
ing, but differ when the ±K pockets merge (inset).

A B

C

Fig. 4. Numerical evidence of superconductivity. (A) The ground state energy 
exhibits the characteristic flux dependence of a superconductor, as shown here for 
V =  and six particles on an 8 × 6 lattice. (B)The charge stiffness divided by the 
Fermi energy is constant in the BCS limit, reaching 1/8 for small doping (gray). 
(C) Superconducting gap as a function of V/ for different doping concentrations. 
It follows the continuum prediction (dashed line) up to V/ ≃ 0.7.
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MATERIALS AND METHODS
We support the emergence of superconductivity with evidence from 
ED on finite size lattices. While the original model Eq. 1 exhibits 
positive b (see the Supplementary Materials), we focus on the effective 
model Eq. 2, which allows reaching larger system sizes. First, the 
superfluid behavior of the system is probed by the charge stiffness (34)

	​ D  = ​   1 ─ 
16 ​​​ 2​

 ​ ​​ ​L​ 1​​ ─ ​L​ 2​​ ​ ​ 
​∂​​ 2​ E(N, ) ─ 

∂ ​​​ 2​
 ​  ∣​ 

=0

​​​	 (9)

at doping  = N/(L1 × L2), with N being the number of doped fermi-
ons and (L1, L2) being the number of sites along the two basis vectors 
of the triangular lattice. D measures the sensitivity of the ground 
state energy E(N, ) to twisted boundary conditions r + L1 = e2ir. 
A positive value of D > 0 in the thermodynamic limit implies dissi-
pationless charge transport and gives a direct signature of the Meissner 
effect (35). In the range of parameters considered, our system clearly 
exhibits (with small finite-size effect) the h/2e flux periodicity of 
superconductors (36) and shows positive D (see Fig.  4,  A  to  B), 
which proves superconductivity in the ground state. The charge 
stiffness of a BCS superconductor with a parabolic dispersion rela-
tion is known exactly: D = EF/4 (33). Our results for V <  are 
correctly captured by this prediction, especially at low doping con-
centrations where fermions live close to the band minima.

To demonstrate the strong-coupling nature of the supercon-
ducting state, we consider the superconducting gap

	​​ ​ gap​​  = ​  ​(− 1)​​ N​ ─ 2  ​ [ E(N + 1 ) + E(N − 1 ) − 2E(N ) ]​	 (10)

Our continuum theory Eq. 5 predicts ​​​ gap​​  = ​ √ 
_

 2 ​E​ F​​ ​​ b​​ ​​ up to V ∼ . 
This leads to a ratio of the gap and critical temperature gap/kBTc =  
e1 −  ≃ 4.796 (26–28), which is much larger than the universal val-
ue 1.764  in BCS theory for weak-coupling superconductors (37). 
This is because the phonon-induced retarded attraction in conven-
tional metals is limited to electrons within a Debye energy from the 
Fermi surface, whereas in our theory, the induced pairing inter-
action is instantaneous on the time scale of inverse bandwidth 
(ℏ/W), so that all carriers in the narrow band are subject to the pairing 
interaction. For sufficiently large V or at very small doping concen-
trations, the system lies in the BEC regime and the gap-to-Tc ratio 
can take arbitrarily large values.

Our numerical results for  ≃ 0.1, shown in Fig. 4C, confirm the 
superconducting behaviors identified above with a robust gap gap 
increasing with V up to V/ = 0.7. Near this point, our numerical 
results agree with the mean field prediction, and the gap reaches as 
large as gap = 0.84EF. This allows the system to reach a critical tem-
perature of 0.1EF as described above. For V ≲ 0.5, the numerically 
extracted gaps gap lie above the continuum theory prediction due to 
finite size effects. In that regime, the finite lattice considered cannot fully 
accommodate the bound state that arises in the thermodynamic limit 
(see Fig. 2). This effective confinement increases the energy of the 
bound pairs, resulting in an overestimate of the superconducting 
gap. Despite this discrepancy, the simultaneous presence of a positive 
gap and a nonzero charge stiffness stands as a strong probe of super-
conductivity in our model for V < 0.7.

In addition to the BCS-BEC superconductivity at low density, 
our model shows very rich physics at higher doping concentrations, 
where lattice effects become important. By performing mean-field 

calculation on the model Eq. 2, we find f-wave pairing for doping  
 < 1/3 (see the Supplementary Materials). The corresponding crit-
ical temperatures, as shown in Fig. 3, are calculated with the linear-
ized gap equation

	​​ ​ 1 ─  ​  = ​  1 ─ ​N​ s​​
 ​ ​∑ 

q
​ ​​ ​ 
​[​∑ j​ ​​ sin (q · ​a​ j​​ ) ]​​ 2 ​

  ─ ∣ ​​ q​​ ∣ ​  tanh ​( ​​ ​ ∣ ​​ q​​  ∣  ─ 2 ​k​ B​​ ​T​ c​​
 ​​ )​​​​	 (11)

with k = (k) −  and  = 2 − Vf − (2 + )U3, where  = (3Ns)−1∑qfFD 
(q)∑j cos (q · aj) originates from three-body interactions. Here, Ns 
denotes the total number of sites, and the chemical potential is fixed 
by ​  = ​ N​s​ 

−1​ ​∑ q​ ​​ ​f​ FD​​(​​ q​​)​, with fFD being the Fermi-Dirac distribution.
At low doping, the f-wave superconducting state has a full pairing 

gap, and its Tc obtained from lattice model calculation agrees well 
with our previous result based on continuum theory. At higher 
doping concentration  > c ≈ 1/4, the gap vanishes at six nodes on 
the Fermi surface along the M direction, where the f-wave gap 
function vanishes. This change in gap structure is due to the change 
of Fermi surface topology across the van Hove singularity, where 
the two pockets around ±K merge into a single Fermi surface en-
closing the  point (see Fig. 3).

The above conclusions are confirmed by our ED study, which 
shows clear evidence of nodal superconductivity at ​​1 _ 4​ <  ≤ ​1 _ 3​​. We 
also find that the superconducting state is remarkably robust against 
longer-range bare repulsion. These numerical results can respectively 
be found in the Supplementary Materials.

Last, our ED study reveals nonsuperconducting states in the 
ultrastrong coupling regime V ≳  (see the Supplementary Materials). 
The detailed description of these competing phases is left for further 
study, the focus of this work being the fully controlled theory of 
superconductivity emerging from repulsive interactions at V < .

DISCUSSION
Our work opens a new route to unconventional superconductivity 
in atomic Fermi gas and electron systems. Encouragingly, optical lattices 
with honeycomb geometry and tunable bandgap have already been 
realized (38, 39). Many recent advances in dipolar or Rydberg atom 
systems with longer-range interactions (40, 41) have enabled the imple-
mentation of one-dimensional t − V Hamiltonian (42) and hold 
great promise for the realization of our model in the near future.

Our mechanism for strong-coupling superconductivity mediated 
by charge-transfer complex, or interband excitations, may also shed 
insight into graphene-based moiré superlattices, where the small 
bandwidth and high kBTc/EF ratio (up to ∼0.1) place important con-
straints on viable theories. It will be interesting to develop accurate 
low-energy models for these systems and analyze superconductivity 
in the narrow band limit as exemplified in our work. In this regard, 
we note that correlated hopping and direct repulsion also appear in 
effective Hamiltonian for narrow bands in twisted bilayer graphene 
(43–45). Our theory suggests that renormalization by virtual interband 
excitations is necessary to obtain strong-coupling superconductivi-
ty. Moreover, our simple model may be relevant to twisted double 
bilayer graphene (46) and trilayer graphene-boron nitride hetero-
structures (47), where signs of spin-polarized superconductivity have 
been reported (48, 49). We leave to future work the extension of our 
theory to spinful systems and its application to various strongly cor-
related materials.
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