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Abstract
Bilateral arm raising movements have been used in brain rehabilitation for a long time. However, no study 
has been reported on the effect of these movements on the cerebral cortex. In this study, using functional 
near infrared spectroscopy (fNIRS), we attempted to investigate cortical activation generated during bilat-
eral arm raising movements. Ten normal subjects were recruited for this study. fNIRS was performed using 
an fNIRS system with 49 channels. Bilateral arm raising movements were performed in sitting position at 
the rate of 0.5 Hz. We measured values of oxyhemoglobin and total hemoglobin in five regions of interest: 
the primary sensorimotor cortex, premotor cortex, supplementary motor area, prefrontal cortex, and pos-
terior parietal cortex. During performance of bilateral arm raising movements, oxyhemoglobin and total 
hemoglobin values in the primary sensorimotor cortex, premotor cortex, supplementary motor area, and 
prefrontal cortex were similar, but higher in these regions than those in the prefrontal cortex. We observed 
activation of the arm somatotopic areas of the primary sensorimotor cortex and premotor cortex in both 
hemispheres during bilateral arm raising movements. According to this result, bilateral arm raising move-
ments appeared to induce large-scale neuronal activation and therefore arm raising movements would be 
good exercise for recovery of brain functions. 
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Introduction
Various therapeutic modalities, including therapeutic exer-
cise for physical therapy intervention, neurotrophic drugs, 
procedures for relieving spasticity, neuromuscular electrical 
stimulation for the affected extremities and repetitive tran-
scranial magnetic stimulation, have been used in rehabil-
itation for patients with brain injury (Feeney et al., 1982; 
Bobath, 1990; Scheidtmann et al., 2001; Carr and Shepherd, 
2003; Takeuchi et al., 2005; Kwon and Jang, 2012; Lee and 
Jang, 2012). Among these modalities, therapeutic exercise 
has long been a basic and essential modality of physical 
therapy for brain rehabilitation (Bobath, 1990; Carr and 
Shepherd, 2003). The focus of therapeutic exercise has been 
on relieving spasticity of affected extremities, or improving 
functional activity (Bobath, 1990; Carr and Shepherd, 2003). 
Consequently, little is known about the direct effect of ther-
apeutic exercise on the brain. This information can be useful 
for development of scientific therapeutic strategies based on 
the concept of brain plasticity; therefore, clarification of this 
effect of therapeutic exercise would be important for patients 
with brain injury (Bach-y-Rita, 1981; Kaplan, 1988). 

Bilateral arm raising movements have been used in thera-
peutic exercise of brain rehabilitation for a long time (Bobath, 

1990). In addition, it is one of the most commonly recom-
mended bedside exercises during rehabilitation in patients 
with brain injury (Bobath, 1990). This movement is known to 
be effective in practice of range of motion exercise of upper 
extremity, improving awareness of equality of both hands, 
and relieving flexor spasticity of upper extremity (Bobath, 
1990). However, no study has reported on the effect of these 
movements on the cerebral cortex which concerned with mo-
tor planning and execution. Among functional neuroimaging 
techniques, functional near infrared spectroscopy (fNIRS), 
which measures hemodynamic changes in the cerebral cortex, 
would be appropriate for research on the cortical effect of bi-
lateral arm raising movement because fNIRS is less sensitive 
to motion artifact (Miyai et al., 2001; Perrey, 2008; Holtzer et 
al., 2011; Leff et al., 2011; Karim et al., 2012; Kurz et al., 2012).

In the current study, using fNIRS, we attempted to investi-
gate cortical activation generated during bilateral arm raising 
movements.

Subjects and Methods
Participants 
Ten healthy subjects (eight males, two females; mean age 
29.40 ± 1.43 years, range 25–32 years) with no history of 

http://orcid.org/0000-0003-3873-9516


318

Jang et al. / Neural Regeneration Research. 2017;12(2):317-320.

neurological, physical, or psychiatric illness were recruited 
for this study through volunteer recruitment notice. All 
subjects understood the purpose of the study and provided 
written, informed consent prior to participation. The study 
protocol was approved by our Institutional Review Board 
(approval No. YUH-12-0419-D12).

Bilateral arm raising movements
All subjects were asked to sit comfortably on a chair in an 
upright position. The subjects were instructed to extend the 
elbow fully and clasp their fingers with the direction of their 
palms facing outward on the thigh, and raise their hands up to 
the horizontal level with the uppermost part of the head, and 
then return to the thigh. The motor task was performed from 
the knee to vertical position (Figure 1). Using a block para-
digm design (three cycles; resting [20 seconds]-motor task [20 
seconds]-resting [20 seconds]-motor task [20 seconds]-resting 
[20 seconds]-motor task [20 seconds]), bilateral arm raising 
movements were performed at a frequency of 0.5 Hz under 
metronome guidance. The motor task was repeated three times 
at intervals of 5 minutes for the rest between each motor task. 

fNIRS 
The fNIRS system (FOIRE-3000; Shimadzu, Kyoto, Japan), 
with continuous wave laser diodes with wavelengths of 780, 
805, and 830 nm, was used for recording of cortical activ-
ity at a sampling rate of 10 Hz; we employed a 49-channel 
system with 30 optodes (15 light sources and 15 detectors). 
Based on the modified Beer-Lambert law, we acquired val-
ues for oxyhemoglobin (HbO) and total hemoglobin (HbT) 
following changes in levels of cortical concentration (Cope 
and Delpy, 1988). The international 10/20 system, with Cz 
(cranial vertex) located beneath the 25th channel, was used 
for positioning of optodes. A stand-alone application was 
used for spatial registration of the acquired 49 channels on 
the Montreal Neurological Institute (MNI) brain based on 
the 25th channel on the Cz (Cope and Delpy, 1988). 

The software package NIRS-SPM (http://bisp.kaist.ac.kr/
NIRS-SPM) implemented in the MATLAB environment (The 
Mathworks, Natick, MA, USA) was used in analysis of fNIRS 
data. Gaussian smoothing with a full width at half maximum 
(FWHM) of 2 seconds was applied to correction of noise 
from the fNIRS system (Cope and Delpy, 1988). The wave-
let-minimum description length based detrending algorithm 
was used for correction of signal distortion due to breathing 
or movement of the subject (Ye et al., 2009). SPM t-statistic 
maps were computed, and significant value of HbO and HbT 
were considered significant at the threshold of P < 0.05 (with 
expected Euler characteristics) (Ye et al., 2009; Li et al., 2012).

Regions of interest (ROIs)
Based on the Brodmann area (BA) and anatomical locations 
of brain areas, we designated five ROIs in the bilateral hemi-
spheres as follows: the primary sensorimotor cortex (SM1) 
(BA1, 2, 3, 4), supplementary motor area (SMA) (medial 
boundary: midline between the right and left hemispheres, 
lateral boundary: the line 15 mm lateral from the midline be-
tween the right and left hemispheres), premotor cortex (PMC) 

(BA6 except for the SMA), prefrontal cortex (PFC) (BA 8,9), 
and posterior parietal cortex (PPC) (BA 5,7) (Brodmann, 
1909; Afifi and Bergman, 2005). In addition, we divided the 
ROIs of the SM1 into two areas according to the homunculus: 
the somatotopic areas for arm and leg, respectively (Afifi and 
Bergman, 2005) (Figure 2A). Values for HbO and HbT were 
estimated from each channel of the five ROIs during per-
formance of bilateral arm raising movements. Subsequently, 
using the NIRS-SPM, HbO and HbT values of each ROI were 
acquired based on the individual general linear model (GLM) 
analysis results; the values indicate the relative change of HbO 
and HbT between resting and motor task phase. 

Data analysis
SPSS 20.0 software (IBM, Armonk, NY, USA) was used in 
performance of data analysis. The Kruskal-Wallis test with 
post hoc Mann-Whitney U test was used for determination 
of differences in HbO and HbT values between ROIs. Results 
were considered significant when P value was < 0.05.

Results
Based on the GLM analysis results, HbO and HbT values 
were acquired in each ROI; HbO and HbT values indicate 
relative change between resting and motor task phases 
during bilateral arm raising movements. HbO and HbT val-
ues were significantly higher in the SM1 (total: HbO = 0.0063, 
HbT = 0.0046; arm: HbO = 0.0069, HbT = 0.0057; leg: HbO 
= 0.0056, HbT = 0.0045), PMC (HbO = 0.0087, HbT = 
0.0055), SMA (HbO = 0.0055, HbT = 0.0050) and PFC (HbO 
= 0.0058, HbT = 0.0049) than in the PPC (HbO = 0.0029, 
HbT = 0.0021) (P < 0.05) (Table 1). In comparisons between 
all SM1, PMC, SMA, and PFC, we observed no significant 
difference in HbO and HbT values (P > 0.05). In addition, 
no significant differences in HbO and HbT values were ob-
served between the right and left hemispheres (P > 0.05).

t-statistic maps from HbO and HbT (corrected with ex-
pected EC, P < 0.05) values showed significant activation in 
bilateral SM1, PMC, and PFC during bilateral arm raising 
movements. Figure 2B showed higher activation in the arm 
somatotopic areas of the SM1 and PMC than in other ROIs 
in both hemispheres.

Discussion
In the current study, we measured HbO and HbT values as 
indices of neuronal activation in which neuronal activity 
was measured indirectly through detection of hemodynamic 
changes of the underlying cerebral cortex (oxygen consump-
tion by neuronal cells) (Irani et al., 2007; Perrey, 2008). Cor-
tical activation of the SM1, PMC, SMA and PFC was greater 
than that of PPC in both hemispheres. The results described 
above generally coincided with the results of t-statistic maps. 
Our results appear to suggest that performance of bilateral 
arm raising movements can activate bilateral SM1 and PMC. 
Consequently, bilateral arm raising movements appeared to 
require large-scale neuronal recruitment; therefore, it would 
be good exercise for brain activation.

Motor control in the human brain between musculature of 



319

Jang et al. / Neural Regeneration Research. 2017;12(2):317-320.

Figure 1 Arm raising movement for the therapeutic exercise. 
The subjects were instructed to extend the elbow fully and clasp their 
fingers with the direction of their palms facing outward on the thigh (A), 
and to raise their hands up to the horizontal level with the uppermost 
part of the head (B), and then return to the thigh. 

Figure 2 Results of oxyhemoglobin (HbO) and total hemoglobin 
(HbT) values during bilateral arm raising movements in healthy 
participants. 
(A) Five regions of interest based on the Brodmann area (BA) and ana-
tomical location of areas of the brain. The primary sensorimotor cortex 
(SM1): BA1, 2, 3, and 4; supplementary motor area (SMA); premotor 
cortex (PMC); prefrontal cortex (PFC): BA8 and 9; posterior parietal 
cortex (PPC): BA5 and 7; the arm somatotopic area of the SM1 (medial 
boundary: medial margin of the precentral knob, lateral boundary: lateral 
margin of the precentral knob); the leg somatotopic area of the SM1 (me-
dial boundary: longitudinal fissure, lateral boundary: medial margin of 
the precentral knob). (B) Group-average t-statistic maps of HbO and HbT 
during performance of bilateral arm raising movements using NIRS-SPM 
software (corrected with expected Euler characteristics, P < 0.05). 

proximal and distal joints has been suggested to differ (Freund 
and Hummelsheim, 1984, 1985; York, 1987; Davidoff, 1990; 
Matsuyama et al., 2004; Mendoza and Foundas, 2007; Jang, 
2009; Yeo et al., 2012). Musculature of distal joints, particularly 
the hand, is controlled by the lateral corticospinal tract (York, 
1987; Davidoff, 1990; Jang, 2009; Cho et al., 2012). By contrast, 
control of musculature of proximal joints, such as shoulder and 
hip, by the corticoreticulospinal tract has been suggested (Fre-
und and Hummelsheim, 1984, 1985; York, 1987; Matsuyama 
et al., 2004; Mendoza and Foundas, 2007; Yeo et al., 2012). The 
corticospinal tract and corticoreticulospinal tract are known 
to originate mainly from the primary motor cortex and the 
PMC, respectively (Russell and Demyer, 1961; Jane et al., 1967; 
Matsuyama et al., 2004; Yeo et al., 2012). Therefore, our results 
showing bilateral arm SM1 and PMC were activated without 
difference indicate that the corticospinal tract and corticore-
ticulospinal tract were activated equally by performance of 
bilateral arm raising movements. The PMC is the cerebral area 
involved in planning, preparation, and initiation of movement, 
along with the SMA as a secondary motor area (Halsband et 
al., 1994; Leonard, 1998). Consequently, activation of the PMC 
appears to be related to motor planning for performance of bi-
lateral arm raising movements.  

Since introduction of functional neuroimaging techniques, 
many studies have reported on brain activation patterns 
during execution of various movements in normal subjects 
and patients with stroke (Miyai et al., 2001; Luft et al., 2002; 
Kapreli et al., 2006; Perrey, 2008; Holtzer et al., 2011; Kim et 

al., 2011; Leff et al., 2011; Karim et al., 2012; Kurz et al., 2012). 
In 2013, using functional magnetic resonance imaging, Craci-
unas et al. (2013) suggested that stroke patients with poor 
proximal recovery showed low level of cortical activation in 
the SM1 and PMC (Craciunas et al., 2013). In 2015, using 
functional magnetic resonance imaging, Pundik et al. (2015) 
reported increment of cortical activation in contralesional and 
bilateral primary motor cortex and premotor cortex following 
recovery of proximal arm function in patients with stroke. 

These results appear to be compatible with the results of the 
current study, which showed increased cortical activation in 

Table 1 Comparison of oxyhemoglobin and total hemoglobin values between posterior parietal cortex and other regions of interests

SM1

PMC SMA PFC PPCTotal Arm Leg

HbO (M) 0.0063±0.0032* 0.0069±0.0048* 0.0056±0.0034* 0.0087±0.0045* 0.0055±0.0030* 0.0058±0.0036* 0.0029±0.0028
HbT (M) 0.0046±0.0028* 0.0057±0.0041* 0.0045±0.0034* 0.0055±0.0025* 0.0050±0.0034* 0.0049±0.0024* 0.0021±0.0024

Values are expressed as the mean ± standard deviation. *P < 0.05, vs. PPC (Kruskal-Wallis test followed by post hoc Mann-Whitney U test). HbO: 
Oxyhemoglobin; HbT: total hemoglobin; SM1: primary sensorimotor cortex; PMC: premotor cortex; SMA: supplementary motor area; PFC: 
prefrontal cortex; PPC: posterior parietal cortex.
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the SM1 and PMC by proximal joint movement. We believe 
that the results of this study would be helpful for conduct of 
research on brain rehabilitation. In addition, fNIRS is a good 
tool for use in research on the effects of therapeutic exercise 
on the brain, which is employed in the field of brain rehabil-
itation. However, this study is limited by a small sample size. 
In addition, the limitation that this study could not include 
patients with brain injury should be considered. Further 
studies about the clinical implications of these findings for 
patients with brain injury are required.
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