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Abstract

Background: Increased tendon pain and tendon damage is a significant complication related to hyperlipidemia.
Unlike the well-established pathogenesis associated with increased serum concentrations of total cholesterol,
triglycerides, and low-density lipoprotein in atherosclerotic cardiovascular disease, the role of hyperlipidemia in
promoting tendon damage remains controversial and requires mechanistic clarity.

Methods: In this study, we analyzed the consequences of hypercholesterolemia on the integrity of the
collagen-based architecture of the Achilles tendon. The Achilles tendons from rabbits fed with normal-cholesterol
(nCH) and high-cholesterol (hCH) diets were analyzed. We studied the morphology of tendons, distribution of lipids
within their collagen-rich milieu, the relative amounts of fibrillar collagen I and collagen III, and selected
biomechanical parameters of the tendons at the macroscale and the nanoscale.

Results: Histological assays of hCH tendons and tenosynovium demonstrated hypercellular areas with increased
numbers of macrophages infiltrating the tendon structure as compared to the nCH tendons. While Oil Red staining
revealed lipid-rich deposits in the hCH tendons, hybridization of tendon tissue with the collagen hybridizing
peptide (CHP) demonstrated damage to the collagen fibers. Fourier-transform infrared (FTIR) spectra showed the
presence of distinct peaks consistent with the presence of cholesterol ester. Additionally, the hCH tendons
displayed regions of poor collagen content that overlapped with lipid-rich regions. The hCH tendons had a
substantial fourfold increase in the collage III to collagen I ratio as compared to the nCH tendons. Tendons from
the hCH rabbits showed poor biomechanical characteristics in comparison with control. The biomechanical
changes were evident at the macrolevel and the nanolevel of tendon structure.

Conclusions: Our findings support the hypothesis that hypercholesterolemia coincides with the weakening of the
tendons. It is likely that the intimate contact between collagen fibrils and cholesterol deposits contributes to the
weakening of the fibrillar structure of the tendons.
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Background
Increased tendon pain and tendon damage are clinically
significant potential complications related to hyperlipidemia
[1–3]. Unlike the well-established pathogenesis associated
with increased serum concentrations of total cholesterol
(TC), triglycerides (TG), and low-density lipoprotein (LDL)
in atherosclerotic cardiovascular disease, the role of hyper-
lipidemia in promoting tendon damage remains controver-
sial and requires mechanistic clarity.
Studies in humans have indicated a possible associ-

ation between hyperlipidemia and increased risk for ten-
don damage. For example, Mathiak et al. have found
that 34 of 41 (83%) patients with Achilles tendon rup-
tures had elevated serum cholesterol concentration [4].
Researchers also demonstrated a positive relationship
between the damage of the Achilles tendon and familial
hyperlipidemia [1]. Another report documented musculo-
skeletal system manifestations among 38% of patients with
juvenile familial hyperlipidemia; administering lipid-
lowering drugs improved the pathological manifestations in
63% of these patients [5]. Injuries of the rotator cuff may
also be linked to hyperlipidemia based on findings that,
among the approximately 23% of individuals older than 50
with a rotator cuff tear, serum concentrations of TC, TG,
and LDL were significantly higher than in patients over 50
years of age without a rotator cuff tear [2]. Similar studies
by other researchers, however, demonstrated no clear rela-
tionship between the serum concentrations of TC and TG
and the occurrence of rotator cuff tears [6].
Meanwhile, studies in animal models have demon-

strated a link between hyperlipidemia and significant al-
terations of the mechanical properties of tendons [2, 7–
10]. In one example, assays of the supraspinatus tendons
from hypercholesterolemic mice, rats, and monkeys
demonstrated consistently increased tendon stiffness and
elastic modulus compared to corresponding parameters
of control tendons [11]. Other studies have revealed ad-
verse changes in rats fed with high-cholesterol diet;
among these, one study highlighted a significant reduc-
tion of normalized stiffness of the tendons in hypercho-
lesterolemic rats [9]. Finally, researchers also have
reported that mice fed high-fat diets to induce hyperlipid-
emia have reduced failure stress and load-to-failure at the
patellar tendon [12].
The damage to the tendons appears to result from

multifactorial causes. For instance, the accumulation of
cholesterol byproducts impairs blood circulation in the
tendon [13, 14]. Moreover, hyperlipidemia also alters
broad cellular processes, including biosynthesis of struc-
tural macromolecules, formation of supramolecular fi-
brillar assemblies, and matrix metalloproteinase (MMP)-
controlled matrix remodeling [15, 16].
Our study addresses a gap in understanding the rela-

tion between hypercholesterolemia and the weakening of

tendons. Here, we aim to fill this gap by defining the
consequences of excess cholesterol on the integrity of
the fibrillar architecture of the Achilles tendon in a
rabbit model of hypercholesterolemia. We hypothesize
that the infiltration of cholesterol weakens the tendon
structure via a mechanism that involves damage to the col-
lagen fibrils due to intimate cholesterol-collagen contact.

Material and methods
Animal model
Procedures performed on animals were approved by the
Thomas Jefferson University’s Institutional Animal Care
and Use Committee. No animals were alive at any point
during our study. Specifically, we obtained permission to
collect discarded tendons from an unrelated study on
the formation of atherosclerotic plaques. Except for
causing hypercholesterolemia, procedures associated
with the studies on the atherosclerotic plaques did not
have any impact on the tendons.
To estimate the number of rabbits needed for our

study, we considered published research data on the
mechanical characteristics of the tendons from rabbits
fed with a high-cholesterol diet similar to that applied
here [17]. In this study, the authors determined the dif-
ferences between the load-to-failure values measured for
the supraspinatus tendons in rabbits fed a normal diet
or a high-cholesterol diet. Considering the differences
between the means, together with the standard devia-
tions, we calculated that we will need 3 rabbits per
group to achieve 95% power (with two-sided significance
level α 0.05) in the similar assays. We determined the
sample size using GraphPad StatMate version 2.00 for
Windows (GraphPad Software, San Diego, CA)
The Achilles tendons we utilized were obtained from

euthanized female rabbits (hCH, n = 5) fed 6 oz/day of a
high-cholesterol (1%) diet (Research Diets, Inc., New
Brunswick, NJ) for 12 weeks. Similar diets containing 0.5
to 1% cholesterol are used routinely in rabbit-based
models of hypercholesterolemia [17–19]. This diet was
prepared based on the Certified Rabbit Diet 5322 (Pur-
ina Mills, Lancaster, PA). Following 12 weeks of a high-
cholesterol diet, the rabbits were fed a standard diet for
4 weeks, then sacrificed. Control tendons (nCH, n = 5)
were obtained from rabbits fed with the same base diet
with no cholesterol. The average age of the hCH group
was 2.6 years, and the average mass at the time of sacri-
fice was 3.4 kg. The average age of the nCH group was
2.0 years, and the average mass was 3.5 kg.

Processing of the tendons
Following sacrifice, the Achilles tendons were harvested;
one tendon was preserved for biomechanical tests and
the other one, from the contralateral leg, was utilized for
preparing tissue sections and collagen extracts. In brief,
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portions of the mid-substance regions were embedded
in optimal cutting temperature compound (OCT,
Tissue-Tek), then frozen at − 70 °C. Other portions of the
mid-substance regions were fixed in paraformaldehyde and
processed for histology. Portions of the tendons flanking
the mid-substance were utilized for extraction of collagen.
For the Fourier transform infrared (FTIR) spectros-

copy, 3-μm-thick longitudinal sections were prepared
from the OTC-embedded samples. These samples were
deposited on the MirrIR low-e microscope slides (Kevley
Technologies, Chesterland, OH). OTC-embedded sec-
tions were also employed for the lipid-specific staining
with Oil Red.

Histology of the tendons
Paraffin-embedded samples from nCH (n = 5) and hCH (n
= 5) rabbits were processed for hematoxylin and eosin
staining (H&E) to visualize the general tendon architecture
and cellularity. Longitudinal sections were also stained with
collagen-specific picrosirius red dye to allow analyses of the
organization of the bundles of collagen fibers.

Collagen hybridizing peptide
We employed a biotinylated form of the collagen hybrid-
izing peptide (CHP; 3-Helix Inc., Salt Lake City, UT)
that specifically binds to single α-chains of collagens.
Note that CHP does not bind to the α-chains folded into
proper triple helices of collagenous proteins. In contrast,
CHP binds to free α-chains that do not form proper
triple helices due to misfolding or degradation of colla-
gen molecules [20–22].
We applied the biotinylated CHP to the tendon sec-

tions from all rabbits, according to the manufacturer’s
protocol. The collagen-CHP binding was visualized
using a red fluorophore conjugated with avidin. Besides,
we stained the nuclei with 4′,6-diamidino-2-phenylin-
dole (DAPI) to visualize the distribution of cells.

Fourier transform infrared spectroscopy
An FTIR spectrometer (Spotlight 400, Perkin Elmer,
Waltman, MA) was used to analyze all tendon samples.
For each rabbit, we prepared two tissue samples. Then,
on average, we analyzed nine regions of interests (ROI)
per sample for the hCH group (total 90 ROIs) and 4.5
ROIs per sample for the nCH group (total 45 ROIs). The
reason we selected more ROIs per sample in the hCH
group was that the structure of the tendons was not uni-
form due to the breaks and cell infiltration. In contrast,
the structure of the tendons from the nCH group was
quite uniform with low cell content.
The tissues were sampled in the trans-reflectance mode

using a reflective substrate, MirrIR low-e microscope
slides. The measurements were done in the imaging mode
in the 4000 to 748 cm−1 wavenumber spectral range, at a

pixel resolution of 25 μm, with 32 scans per pixel, and a
spectral resolution of 8 cm−1.
To visualize the distribution and the intensities of the

collagen-specific, protein-specific, and lipid-specific aver-
age absorbance signals, the following normalized spectral
images were generated: (i) at the collagen peak (centered
around 1338 cm−1; attributed to the CH2 wagging vibra-
tion of proline side chains), (ii) at the amide II protein
peak (centered around 1560 cm−1, associated with the N–
H bending and C–N stretching vibrations), (iii) at the
cholesterol esters peak (centered around 1731 cm−1, at-
tributed to the stretching C=O groups), and (iv) at the
peak associated with the long unsaturated aliphatic chains
of lipids (centered around 2932 cm−1, associated with the
C–H stretching) [23–25].
Following scanning of the multiple areas of the tendons,

co-added spectra were generated with the Spectrum
Image software (PerkinElmer, Inc., Waltman, MA). Subse-
quently, employing the Spectrum software (PerkinElmer,
Inc., Waltman, MA), we calculated the ratios of the areas
of the integrated amide II and collagen peaks. According
to the earlier studies, the increase in this ratio indicates
the decrease of the structural integrity of collagen mole-
cules [26–28]. The data points were plotted for each
group and demonstrated as the means with the standard
deviations (±SD) (GraphPad Software, Inc., La Jolla, CA).

Analysis of collagen III
We analyzed whether the high-cholesterol diet changes
the relative amount of collagen III in the tendons of the
hCH rabbits compared to the control nCH rabbits. In
brief, we extracted a pepsin-soluble fraction of collagen
using porcine pepsin (Sigma-Aldrich, St. Louis, MO) ap-
plied at 5 mg/ml in 0.5M acetic acid. Next, the α1(III)
chains were separated from the α1(I) chains using de-
layed reduction gel electrophoresis, as described [29, 30].
Corresponding samples were applied to a separate gel

in which electrophoresis was carried out in reducing
conditions applied from the beginning of the electro-
phoretic run. Following electrophoresis, collagen bands
were visualized by staining with Coomassie blue dye.

Biomechanical tests of tendons
After euthanasia, the Achilles tendon was harvested and
immediately frozen in PBS-soaked gauze at − 80 °C until
use. No tendons were purposely excluded from the bio-
mechanical tests, but ultimately, four from the nCH
group and three from the hCH group were of sufficient
size and quality for testing.
Before mechanical testing, each tendon was incubated

overnight at 4 °C in PBS. Mechanical testing was performed
using an ElectroForce-3200 material testing system (TA In-
struments, New Castle, DE). A region of approximately 10
mm at each end of the specimen was clamped securely

Steplewski et al. Journal of Orthopaedic Surgery and Research          (2019) 14:172 Page 3 of 13



using thin film grips (model Imada-FC-20, Imada, Inc.,
Northbrook, IL) attached to a 225-N load cell. First, a pre-
load of 0.3 N was placed on the specimen. The cross-
sectional area and gauge length were carefully measured
using digital calipers. Next, 10 cycles of preconditioning
were performed using a sinusoidal waveform of 5% displace-
ment at 0.2%/s. Finally, a monotonic displacement ramp of
0.1mm/s was applied until failure. Force and displacement
were acquired at 25Hz and analyzed digitally using a cus-
tom GNU/Octave script. The data points were plotted for
each group and demonstrated as the means with the stand-
ard deviations.

Atomic force microscopy-based nanoindentation
Each OCT-embedded tissue was cryo-sectioned longitu-
dinally along the fiber axis onto the glass slides to pro-
duce ~ 5-μm-thick sections. Following cryopreservation,
the samples were stored in − 80 °C in OCT for less than
1 week until AFM nanoindentation tests. Only intact
OCT-frozen sections were selected for the AFM assays.
Sections missing any fragment were excluded. Conse-
quently, selected tendons from the nCH (n = 3) and the
hCH rabbits (n = 3) were processed for the AFM inden-
tation studies.
For each rabbit, we prepared two tissue sections. Prior

to testing, the sections were thawed and washed in
phosphate-buffered saline (PBS). On each section, AFM
nanoindentation was performed using microspherical
colloidal tips (R ~ 5 μm, nominal k = 0.6 N/m, HQ:
NSC36/Tipless/Cr-Au, cantilever C, NanoAndMore,
Watsonville, CA) and a Dimension Icon AFM (Bruker-
Nano, Santa Barbara, CA) at 10 μm/s indentation rate
up to a maximum load of ~ 120 nN [31]. Given the tip
radius ~ 5 μm and a maximum indentation depth ~ 0.5–
1 μm, the effective tip-sample contact radius was ~ 2–
3 μm. At this scale, the indentation modulus is a mani-
festation of local sliding and uncrimping of the collagen
fibrils and, thus, is highly sensitive to the structural in-
tegrity of tendon.
For each sample, we performed nanoindentation at

three random sites. At the same location, nanoindenta-
tion was repeated at least three times, where the high re-
peatability of indentation curves suggested negligible
irreversible plastic deformation. At each location, the ef-
fective indentation modulus, Eind (in Pa) was calculated
by fitting the entire portion of each loading force-depth
curve to the finite thickness-corrected Hertz model via
least squares linear regression by assuming Poisson’s ra-
tio, ν = 0.3 for tendon [32, 33].

Statistical plan
We derived the number of animals we needed for our
study based on the work published by Chung et al. as
described above [17]. We employed a one-way analysis

of variance (ANOVA; IBM SPSS Statistics, v25) to deter-
mine whether there are any statistically significant differ-
ences between the means calculated for the hCH and
the nCH groups (significance level 0.05). For all analyzed
parameters we measured, the data points were plotted
for each group and presented together with the means
and the standard deviations. The significance levels were
indicated with asterisks in all graphs: *P < 0.05, **P <
0.01; ***P < 0.001

Results
Animal model
Biochemical assays demonstrated the increase of choles-
terol in the blood of the hCH rabbits. While the concen-
tration of total cholesterol in the nCH rabbits ranged from
10 to 80mg/dl, the concentration of total cholesterol in
the hCH rabbits ranged from 900 to 1200mg/dl. No ad-
verse effects of the high-cholesterol diet were observed in
the hCH group. Both groups exhibited the same level of
daily activities, and their masses were comparable.

Histology of tendons
Following isolation, the Achilles tendons were processed
for the H&E staining and then observed under a micro-
scope (Fig. 1). These observations revealed marked dif-
ferences in the nCH and the hCH tendons. First, the
cellularity of the nCH tendons was low with only a few
tenocytes visible in the tendon sections. In contrast, the
hCH tendons were characterized by hypercellularity with
cells, including numerous clusters with morphology
similar to macrophages, infiltrating the tendon structure
(Fig. 1f ). The tenosynovium also was hypercellular with
marked hyperplasia. Meanwhile, the thickness of tenosy-
novium of the nCH tendon was uniform, and the con-
tent of cells was relatively low. Finally, the Oil Red
staining revealed lipid-rich deposits in the tendons from
the hCH rabbits while, in contrast, similar deposits were
not present in the nCH tendons (Fig. 2).

Hybridization of tendon tissue with CHP
While intact collagen α-chains fold into tightly packed
triple helices, misfolded or cleaved α-chains unfold,
thereby allowing their binding with the CHP. Applying
the CHP to the tendons from the nCH and hCH rabbits,
we showed the binding of this peptide to the collagen-
rich structure of the tendons (Fig. 3), and we observed
marked differences between the binding patterns. Specif-
ically, in the nCH tendons, the CHP-positive signals
were only observed along the edges of the collagen fibers
parallel to the longitudinal axis of the tendon, while in
the hCH tendons, the CHP-specific signals were also ob-
served in the form of the bands running perpendicular
to the long axis (Fig. 3c, d). This unique pattern of
hybridization of the CHP most likely indicated the sites
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Fig. 1 A general histology of the Achilles tendons from the nCH (a, c, e) and the hCH (b, d, f) rabbits. Individual panels stained by H&E show
increasing magnifications of the tendon fragments. Arrows seen in d and f indicate cell infiltration. Ts, tenosynovium; Te, tendon

Fig. 2 Oil Red staining of lipid deposits in tendon samples from the nCH rabbits (a) and hCH rabbits (b). The deposits seen in b most likely
include esterified cholesterol
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of the unfolding of collagen triple helices at points of the
α-chains degradation. Observation of the breaking of col-
lagen fibers in the hCH tendons stained with collagen-
specific picrosirius red supports this same pattern of bind-
ing (Fig. 4). Specifically, in contrast to control (Fig. 4a, c),
the collagen fiber continuity in the hCH tendons was
interrupted (Fig. 4b, d). Moreover, observation of the
picrosirius red-stained samples did not reveal any readily
visible signs of fibrosis.

FTIR assays of tendons
Due to the unique physicochemical properties of analyzed
molecules, we were able to obtain protein-specific, colla-
gen triple helix-specific, and lipid-specific signals using
the FTIR spectroscopy. Utilizing these specific signals, we
analyzed the relative amounts of total proteins, collagen,
and lipids. Analysis of the tendon sections from the hCH
rabbits revealed the presence of distinct peaks at 1730
cm−1 and 2932 cm−1 (Fig. 5). Prior studies on non-
calcified atherosclerotic plaques demonstrated that these
peaks are associated with cholesterol esters [23, 34, 35].
We also analyzed the ratios of integrated peak areas of

the absorbance in the protein region centering around
1560 cm−1 and the collagen region centering around
1338 cm−1. Measurements of various regions of the ten-
dons from the hCH rabbits demonstrated that this ratio
trended significantly higher in comparison with control
(Fig. 6). According to Kim et al., this change may signify

a decrease of the structural integrity of collagen triple
helices [26]. Of interest, we observed that the content of
the collagen-derived signal was relatively low in the areas in
which the lipid-rich signals were relatively strong (Fig. 7).

Analyses of collagen III
As the composition of the fibrillar collagen types may
change due to many pathological processes, we analyzed
the relative content of two major collagen types that
build the architecture of the tendon, namely collagen I
and collagen III. Employing a method that allows separ-
ation of the α-chains of these collagens, we demon-
strated an increase in the collagen III to collagen I ratio
in the hCH rabbits; there was an about fourfold increase
in this ratio, from 0.14 in the nCH rabbits to 0.6 in the
hCH rabbits (Fig. 8).

Mechanical tests
To analyze the mechanical properties of the tendons from
the hCH (n = 4) and nCH (n = 3) rabbits, we performed
monotonic tensile tests to failure on the Achilles tendon
samples (Fig. 9). Our results demonstrate that the high-
cholesterol diet is associated with diminished tendon
strength and stiffness of the hCH rabbits, as illustrated by
marked decreases in the ultimate stress and Young’s modu-
lus. Moreover, we observed a higher yield strain in the
high-cholesterol tendons. In total, our results indicate that
high cholesterol markedly impairs tendon biomechanical

Fig. 3 Detection of CHP-accessible collagen α-chains. a, b H&E staining of the tendons from the nCH and the hCH rabbits. In addition, c and d
demonstrate the CHP-positive signals in the consecutive sections observed using a fluorescence microscope. While the CHP-positive staining in
the nCH samples is seen exclusively at the edges of the bundles of collagen fibers that form the tendon architecture, in the hCH samples, this
staining is also seen across (large arrows) the longitudinal sections of the analyzed tendons. Besides, the DAPI staining corroborates a marked
increase in the cellularity (small arrows) of the HCH tendons (d) in comparison with control (c)
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Fig. 4 The architecture of the tendons visualized by staining with picrosirius red. While a and b show a relatively low magnification of the
tendons, c and d show relatively large magnifications of the selected regions. Although the bundles of collagen fibers in the nCH rabbits (a, c)
are uninterrupted, the bundles of collagen fibers in the hCH rabbits (b, d) have readily visible breaks (arrows). The arrow in a shows a crimped
area along the collagen fibers. Unlike the breaks observed in b and d, the indicated crimp area remains intact

Fig. 5 Representative FTIR spectra of the tendon sections derived from the nCH rabbits (black line) and the hCH rabbits (red and green lines).
Principal peaks evaluated in this study are demonstrated. The peak of absorbance corresponding to the collagen region centers around 1338
cm−1 and the peak corresponding to the protein region centers around 1560 cm−1. Distinct peaks at 1730 cm−1 and 2932 cm−1 are associated
with cholesterol esters
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performance, as characterized by diminished strength and
stiffness with increased laxity.

Nanoindentation
We performed nanoindentation assays on randomly se-
lected sections from the hCH and the nCH rabbits.
AFM nanoindentation detected a remarkably smaller in-
dentation modulus for the hCH tendons compared to
the nCH control (Fig. 10).

Discussion
Poor mechanical characteristics and alteration of the healing
of the tendons due to hyperlipidemia present a serious clin-
ical problem. Scientists have hypothesized tendons exposed
to high concentrations of lipids develop molecular-level
damage to the collagenous architecture that leads to injury
and impairs healing [8, 36]. Based on the similarities to
pathological processes taking place in atherosclerotic pla-
ques, researchers have studied the potential mechanisms of
tendon damage. These mechanisms include (i) reduced ex-
pression of genes encoding collagen I, (ii) increased ex-
pression of MMPs, (iii) reduced expression of tissue
inhibitors of MMPs (TIMPs), (iv) intracellular accumula-
tion of toxic cholesterol deposits that trigger deleterious

chronic inflammation and may activate mitochondrial
pathways of apoptosis, and (v) direct binding of choles-
terol to the collagen fibrils that alters their arrangement
[1, 12, 37–43]. Despite these studies, the effects of hyper-
lipidemia on tendon damage have remained ill-defined.
The findings from our study support the hypothesis

that the high cholesterol diet leads to the weakening of
the tendons via a mechanism that involves damage to
the collagen fibrils. Detecting the exposed collagen α-
chains within the tendons’ architecture validates this hy-
pothesis. We propose that these single α-chains occurred
because collagen molecules were damaged. Although
our study could not answer whether this damage re-
sulted due to enzymatic or physical cleavage of collagen
molecules, we postulate that it was site-specific. In sup-
port of this notion, we observed a remarkably regular
pattern of breaks in the fibrils that form the architecture
of the tendon.
We predict that when the collagen molecules in the fi-

brils break, the collagen then becomes degraded. Deg-
radation of collagen molecules occurs because when the
individual collagen α-chains that form the triple helices
break into smaller fragments, their thermostability drops
below the body temperature [44, 45]. This drop in the

Fig. 6 Amide II/1338 cm−1 peak area ratio comparison (***P < 0.001). The means ± SD are indicated
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Fig. 7 FTIR intensity images of the tendons created by peak integration mapping of the 1338 cm−1, 1560 cm−1, 1730 cm−1, and 2932 cm−1

absorbance bands. Tendons from the nCH rabbits have a uniform distribution of protein-specific and the collagen-specific signals. The intensity of
the lipid-specific signals in these tendons is relatively low. In tendons from the hCH rabbits, the distribution of protein-specific and collagen-
specific signals is not uniform. In these tendons, the areas of lipid-specific signals are evident (delineated with dotted lines). Of note is the
observation that in the lipid-rich areas, the intensity of protein-specific and collagen-specific signals is relatively low. Intensity scales [A] are placed
on the top. Bars = 200 μm

Fig. 8 Electrophoresis of collagens extracted from the tendons dissected from the nCH and the hCH rabbits. Patterns of migration of collagen I
and collagen III chains separated in standard (a) reducing conditions (DTT) and in delayed reduction (B) conditions (d-DTT) of electrophoresis.
α1(I), α2(I): specific chains of collagen I; α1(III)*: collagen III chains separated with the use of delayed-reduction conditions; β, γ: oligomers
consisting of cross-linked collagen α-chains. Molecular mass markers (kDa) are also indicated
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thermostability prompts the fragments to unfold into in-
dividual chains, thereby rendering them a target of pro-
teolytic enzymes. Although very slow, the above process
also takes place in physiological conditions to allow the
normal turnover of collagen fibrils. The physiological deg-
radation of collagen molecules depends on the catalytic
activities of MMPs, most notably MMP-1. MMP-1 is an
enzyme that cleaves the fibrillar collagens at a defined site
into the two thirds and the one third fragments that,

unlike the original full-length parent molecule, unfold
below 37 °C [45].
As indicated by our FTIR analysis and calculations of

the amide II/collagen ratios, the areas of relatively low col-
lagen content in the Achilles tendons from the hCH rab-
bits overlap with the regions of the relatively high
cholesterol content. Consistent with the studies on the
degradation of the collagen matrix in the cartilage, our ob-
servation of the decrease of the intensity of collagen-

Fig. 9 A graphic representation of mechanical properties of the nCH and hCH tendons. The means ± SD are indicated. The statistical significance
of the differences between pairs of the means are indicated (*P < 0.05; **P < 0.01; ***P < 0.001; ns, no statistical difference)

Fig. 10 A graphic representation of nanomechanical properties of the nCH and hCH tendons. The means ± SD are indicated. The statistical
significance of the difference between the means are indicated (***P < 0.001)
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specific signals may indicate reduced integrity of collagen
molecules [28]. This overlap of the regions of collagen dis-
integration with the regions of high-lipid content may in-
dicate an excessive accumulation of the lipids within the
collagen fibrils present in those areas. Scientists well
recognize a strong interaction of extracellular lipids with
collagen fibrils. For instance, in human xanthomas, like in
atherosclerotic plaques, unesterified cholesterol accumu-
lates mainly in the extracellular space while Oil Red-
stained esterified cholesterol accumulates both intracellu-
larly and extracellularly [40]. Notably, Rabinowitz and
Shapiro have demonstrated that collagen molecules have a
strong propensity to interact with lipids, with a significant
portion of lipids remaining bound to collagen isolated
from the skin even after the treatment with organic sol-
vents [46].
Considering these characteristics of the lipid-collagen

binding interaction, we suggest that this binding could
be a part of a mechanism that damages the collagen fi-
brils and thereby alters their mechanical properties. In
this context, we agree with earlier suggestions that the
lipid-associated damage to the tendons could result from
chronic processes causing recurrent microdehiscence of
the tendon tissue [36]. Specific mechanisms of the fibril
damage, however, remain unclear.
Mechanical testing of the tendons showed diminished

tendon strength and stiffness. The absolute values from
our biomechanical testing are somewhat lower than ex-
pected for this tissue type, which may be due to the pos-
sible differences in tissue processing, measurements of
tendon cross-sectional area, or gauge length measure-
ments. Also, our data differ from those of Beason et al.
who demonstrated increased stiffness of the supraspinatus
tendon in hypercholesterolemic mice, rats, and monkeys
[11]. Still, the same group reported normal or decreased
stiffness of the patellar tendons in hypercholesterolemic
mice [8]. Moreover, Grewal et al. reported that mice fed a
high-fat diet had reduced patellar tendon failure stress
[12]. Here, our data indicate that hypercholesterolemia
negatively affects the biomechanical performance. How-
ever, in the context of the studies referenced above, this
finding may depend on the age of the animal, the type of
tendon, and specific biomechanical test performed.
The nanoindentation studies further support our obser-

vation of diminished mechanical stability of tendons from
the hCH rabbits. Utilizing a design with an effective tip-
sample contact radius of about 3 μm, we analyzed a rela-
tively large region of a collagen fibril. At this scale, the in-
dentation modulus is a manifestation of local sliding and
uncrimping of the collagen fibrils rather than mechanical
properties of the gap zone, within which, as described
above, collagen fibril-lipid binding takes place [47]. Con-
sidering that the length of a gap-overlap region is 67 nm,
the tip we employed covered a number of the gap-overlap

domains. Thus, the method we used is highly sensitive to
detect the structural integrity of the fibrillar architecture
of tendon rather than the measure properties at the ultra-
structural level. AFM data are consistent with our hypoth-
esis that high cholesterol results in impaired collagen fibril
structure in the tendon at the microscale.
Due to the similarities between the processes occur-

ring in hyperlipidemia in the atherosclerotic plaques and
tendons, one possible mechanism for the collagen fibril
damage could involve persistent inflammation and in-
creased production of macrophage-derived MMPs. This
notion is supported by the fact that, similar to the re-
sults presented here, researchers have demonstrated the
presence of lipid-loaded macrophages in earlier studies
on tendon xanthomas [36].
Furthermore, hyperlipidemia also alters broad cellular

processes, including biosynthesis of collagenous and
non-collagenous structural macromolecules and matrix
remodeling. For example, studies of the atherosclerotic
blood vessels and xanthomas have demonstrated signifi-
cant qualitative and quantitative changes in collagen I
and collagen III and increased proteolytic activity of spe-
cific MMPs [15, 16]. We further illustrated these
changes by a remarkably increased collagen III to colla-
gen I ratio in the hCH tendons. As the increase of the
collagen III to collagen I ratio is frequently reported in
fibrotic tissues, we cannot exclude a possibility that pro-
longed inflammation due to hypercholesterolemia trig-
gered the fibrotic response. We contemplate, however,
that this increase of the collagen III to collagen I ratio
might be hypercholesterolemia-specific. In particular,
when studying post-traumatic arthrofibrosis in a rabbit
model of the knee injury, we also analyzed the collagen
III to collagen I ratio in fibrotic posterior knee capsules
[30]. Although we observed a slight increase in the ratio,
this increase was minimal. Moreover, while we observed
an excessive accumulation of collagen-rich deposits in the
fibrotic joint capsules, here, similar deposits within the
Achilles tendons of the hCH rabbits were not evident.
Another intriguing possibility for lipid-dependent

damage to the collagen fibrils was presented by Chap-
man and colleagues who studied the interactions of the
collagen fibrils in vitro with non-polar liquids. They con-
cluded that collagen fibril/non-polar compounds inter-
action is site-specific and that the binding occurs in the
gap region of the collagen fibrils [47]. The authors dem-
onstrated that binding non-polar compounds breaks the
fibrils over considerable regions. They also suggested
that infiltration of cholesterol into the collagen fibrils in
the atherosclerotic plaques, in the arcus juvenilis of the
cornea, and infiltration of lipids to the dermis in diabetes
mellitus may reduce the mechanical strength of collage-
nous framework of these tissues by the same
mechanism.
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Moreover, the authors have shown that these breaks
occur within individual collagen molecules that build a fi-
bril. The authors explained that splitting the collagen mole-
cules results from the binding of non-polar agents to a
unique hydrophobic region present within the collagen fi-
brils. This unique region consists of clusters of hydrophobic
amino acid residues whose presence defines a highly flex-
ible domain of collagen triple helix. The authors presented
evidence that binding non-polar agents to this flexible re-
gion stiffens it. This stiffening could weaken the fibril by re-
ducing the mobility of the lipid-binding region. A similar
reduction of the mobility of triple helical domains was ob-
served with gelatin absorbed onto hydrophobic surfaces in
an oil-water emulsion [48]. The breakage occurs in the
proximity to the fibril-stabilizing cross-links, thus further
altering the structural integrity of a collagen fibril. Our find-
ings align with research by Chapman et al. This alignment
is evident by the presence of collagen fibril breaks and the
overlap of lipid-rich regions with the regions of decreased
collagen content seen in the tendons from the hCH rabbits.
Moreover, studies demonstrated that binding non-

polar compounds to free collagen molecules reduces
their ability to incorporate into a fibril [47]. If correct,
this could explain the alterations of healing of injured
tendons and ligaments seen in hyperlipidemia [9]. The
specific pathomechanism of these alterations is that
binding of lipids to free collagen molecules blocks their
self-assembly into the collagen fibrils needed to repair
the architecture of damaged tissue. A similar mechan-
ism of blocking collagen fibrillogenesis by binding of
small molecules and antibodies to various sites of free
collagen molecules was reported by various researcher
groups [49, 50].
Chapman et al. also contemplated that binding of non-

polar compounds to the hydrophobic domain of collagen
molecules may displace the water shell surrounding the
α-chains, thereby altering the physicochemical charac-
teristics of the triple helices [47]. Also, the same authors
discuss their observation on a substantial reduction of
the wet tensile strength and stiffness of the rat tail ten-
dons treated with hydrophobic compounds [47]. Collect-
ively, these data support our observation of the tendon
weakening in the hCH group.
The main limitation of this study in the context of hu-

man disease is that the concentrations of cholesterol in
the sera of analyzed rabbits were extremely high relative
to those observed in typical hypercholesterolemic pa-
tients. Thus, we cannot exclude the possibility that the
changes that we observed in the tendons were more dy-
namic than the changes in humans with chronic hyper-
cholesterolemia. Another limitation is a relatively small
number of animals available for this study. Thus, we
consider our work introductory and contemplate further
studies with more comprehensive experimental design.

Conclusions
Despite the limitations, our study describes the molecular-
level consequences of infiltration of cholesterol into the
collagen-rich architecture of the tendon. According to our
knowledge, this study offers the first FTIR-based and
CHP-based evidence for the colocalization of cholesterol
deposits with damaged collagen fibrils. This new indica-
tion supports the hypothesis that intimate cholesterol-
collagen contact may be a critical factor in damage of the
collagen-rich framework of the tendons associated with
hypercholesterolemia.
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