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This study presents a novel methodology to investigate the nonparametric estimation of a survival probability under random
censoring time using the ranked observations from a Partially Rank-Ordered Set (PROS) sampling design and employs it in a
hematological disorder study. The PROS sampling design has numerous applications in medicine, social sciences and ecology
where the exact measurement of the sampling units is costly; however, sampling units can be ordered by using judgment
ranking or available concomitant information. The general estimation methods are not directly applicable to the case where
samples are from rank-based sampling designs, because the sampling units do not meet the identically distributed assumption.
We derive asymptotic distribution of a Kaplan-Meier (KM) estimator under PROS sampling design. Finally, we compare the
performance of the suggested estimators via several simulation studies and apply the proposed methods to a real data set. The
results show that the proposed estimator under rank-based sampling designs outperforms its counterpart in a simple random
sample (SRS).

1. Introduction

The idea of ranked set sampling (RSS) was introduced by
McIntyre [1] for the first time. It can provide a more struc-
tural method for collecting the sample units. A generalization
of RSS is the PROS sampling design. Both sampling methods
are similar with a clear difference; in the PROS sampling
design that we use in this paper, the ranker divides the sam-
pling units into ranked subsets of prespecified sizes based on
their partial ranks [2]. These sampling designs are techniques
to obtain more representative samples from the underlying
population where measurement of the units is costly and/or
time-consuming. In such sampling designs, sampling units
are ordered fairly accurately by using available auxiliary
information which may be costly to some extent (see [3]).

After the PROS sampling design was introduced by
Ozturk [4], many statisticians became interested in this

rank-based sampling method. For example, Ozturk [5] and
Frey [6] have relaxed the assumption concerning the prespe-
cification of the number of subsets in each set. Nazari et al.
[7] have developed nonparametric kernel density estimators
using PROS data. Hatefi et al. [3] have applied PROS sam-
pling in mixture modeling to estimate the age structures of
short-lived fish species. Ozturk [8] have used the properties
of PROS samples under multiple auxiliary information in
the estimation of the population mean and total infinite
population settings. Nazari et al. [9] have estimated the dis-
tribution function using PROS samples. Hatefi et al. [10]
have studied the information and uncertainty structures of
PROS data.

Currently, survival study is one of the important statisti-
cal tools for analyzing the data extracted from medical stud-
ies and social sciences. Presence of censoring observations is
the distinction between survival analysis and other statistical
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analyses (see [11]). However, survival analyses are expensive
due to the need of a large sample size and the potentially long
follow-up duration [12]. For the sake of parsimony, we may
consider the cost-effective sampling methods, in which only
a small proportion of the available units is measured; how-
ever, they contain a portion of the information contributed
by all of the units; for more information, see [13].

In this study, we develop the KM nonparametric estima-
tor using the PROS sampling design. The KM estimator mea-
sures the probability that a person survives longer than a
specific time, which is fundamental in survival analysis.
We study the asymptotic properties of this new estimator
and compare it with SRS and RSS counterparts. What dis-
tinguishes the present research from previous endeavors is
that we employ the PROS sampling design for incomplete
data containing censored observations, while all research on
PROS sampling design has been concerned with the infer-
ence procedure for complete data. There are only a few
results available when the researcher has incomplete data
and the sampling design is based on RSS not PROS samples.
For example, Yu and Tam [14] have considered maximum
likelihood estimation of parameters of the log-normal distri-
bution and have introduced a KM estimator for RSS. Zhang
et al. [15] have used RSS for estimating the KM estimator
of a reliability function with random right-censored data
where the population distribution is unknown. Strzalkowska-
Kominiak andMahdizadeh [13] have proposed a KM estima-
tor based on RSS when censored data are under random
detection limit assumption. Mahdizadeh and Strzalkowska-
Kominiak [16] have proposed a confidence interval for a
distribution function when data are right-censored with ran-
dom censoring time by applying RSS design.

In Section 2, we present some primary notes. In Section 3,
we introduce the nonparametric KM estimator. In Section 4,
we show the asymptotic normality of the KM estimator based
on imperfect PROS sampling design. We compare the per-
formance of the PROS KM estimator with respect to its SRS
and RSS counterparts using simulation studies in Section 5.
In addition, we illustrate our proposed method with a real
example. We consider a dataset collected in Amir Medical
Oncology Center, as our population in Section 6.

2. Necessary Background

2.1. Ranked Set Sampling. To obtain a RSS of size nL, with set
size n and L cycles, from the underlying population, a set of n

units is randomly selected from the population. The units are
ranked via some mechanisms. Then, the unit that ranked as
the smallest was selected for the final measurement. Another
set of n units is drawn and ranked, and the unit ranked as the
second smallest is selected for measurement. This process is
continued until the unit ranked as the maximum is selected
and measured. This is one cycle of the RSS procedure; the
cycle can be repeated L times to generate RSS of size nL
(see [17]).

2.2. Partially Rank-Ordered Set Sampling. In this section, we
introduce the PROS sampling design and present the neces-
sary notation. This sampling design is of the form G∗∗ design
in Ozturk (see [4]). In order to extract a PROS sample of size
N = nL, we choose a set size s = nm and a design parameter
D = fd1,⋯, dng that partitions the set f1, 2,⋯, sg into n
mutually exclusive subsets dj = fðj − 1Þm + 1,⋯, jmg, j = 1,
⋯, n. Sampling units are then assigned to the subsets dj,
j = 1,⋯, n, based on visual inspection, judgment ranking,
or using a concomitant variable such that all units in the sub-
set dj are judged to have smaller ranks than all units in the

subset dj′ , when j < j′. A unit is then randomly selected from
the subset d1 for full measurement and denoted by X½d1�1.
Again, we randomly select a set containing s units and assign
them to n subsets; after that, we randomly draw a member
from subset d2 and denote it by X½d2�1. These steps are con-
tinued until we randomly extract a unit from dn, X½dn�1.
These observations constitute one cycle of the PROS sam-
pling design; after L repetitions of this process, we achieve
a PROS sample of size nL, denoted by XPROS = fX½dj�i, i = 1,
⋯, L, j = 1,⋯, ng; for more details, see [9].

Table 1 presents a simple example of the construction of a
PROS sample when s = 9, n = 3 , and m = 3, the cycle size is
L = 2, and the design parameter is D = fd1, d2, d3g = ff1, 2,
3g, f4, 5, 6g, f7, 8, 9gg. Each set contains nine units assigned
to three partially rank-ordered subsets. In this process, units
in each subset have equal chance to take any place in the sub-
set. One unit, in each set from the bold-faced subset, is ran-
domly drawn and measured. The resulting PROS sample is
denoted by fX ½dj�i, i = 1, 2, j = 1, 2, 3g.

It should be noted that, if all members in the subset
dj have exactly smaller ranks than all members in dj′ , j <
j′, the PROS sampling design is perfect. Otherwise, we
have an imperfect PROS sampling design. Suppose that α

Table 1: An example of a Partially Rank-Ordered Set sample.

Cycle Set Subset Observation

1

S1 D1 = d1, d2, d3f g = 1, 2, 3f g, 4, 5, 6f g, 7, 8, 9f gf g X d1½ �1

S2 D2 = d1, d2, d3f g = 1, 2, 3f g, 4, 5, 6f g, 7, 8, 9f gf g X d2½ �1

S3 D3 = d1, d2, d3f g = 1, 2, 3f g, 4, 5, 6f g, 7, 8, 9f gf g X d3½ �1

2

S1 D1 = d1, d2, d3f g = 1, 2, 3f g, 4, 5, 6f g, 7, 8, 9f gf g X d1½ �2

S2 D2 = d1, d2, d3f g = 1, 2, 3f g, 4, 5, 6f g, 7, 8, 9f gf g X d2½ �2

S3 D3 = d1, d2, d3f g = 1, 2, 3f g, 4, 5, 6f g, 7, 8, 9f gf g X d3½ �2
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is a doubly stochastic matrix; we model the subsetting
error probabilities in the imperfect PROS as follows (see
[7] and [9]):

α =
αd1,d1 ⋯ αd1,dn

⋮ ⋱ ⋮

αdn ,d1 ⋯ αdn ,dn

2
664

3
775, ð1Þ

where αdj ,dh is the probability of assigning a unit into the

subset dj when it belongs to the subset dh with ∑n
h=1

αdj ,dh =∑n
j=1αdj ,dh = 1.

Throughout this paper, we use PROSαðn, L, s,DÞ as a
symbol of an imperfect PROS sampling design with the
design D = fdj, j = 1,⋯, ng, where α represents a subsetting
error probability matrix, n shows the number of subsets,
and L and s exhibit the number of cycles and the set size,
respectively. It should be pointed out that m = s/n.

SRS and RSS designs are special cases of the PROS sam-
pling design when s = 1 and s = n, respectively. For a perfect
PROS design, since αdj ,dh = 0 for h ≠ j and αdj ,dj = 1 for j =
1,⋯, n, the subsetting error matrix is an identity matrix
and the notation PROSIðn, L, s,DÞ can be used.

In this paper, the cumulative distribution function (CDF)
of the studied variable in the population, CDF of X ½dj�i for
i = 1,⋯, L, and CDF of the rth-order statistic among a sim-
ple random sample of size s are denoted by F, F½d j�, and
Fðr:sÞ, respectively. In addition, the corresponding probability
density functions are represented by f , f ½d j�, and f ðr:sÞ.

3. Kaplan-Meier Estimator Based on PROS
Sampling Design

Definition 1. Let X1,⋯, Xn ~ F and C1,⋯, Cn ~G be two
independent random variables where we observe Yi =min
fXi, Cig ~H and δi = 1fXi ≤ Cig be the indicator variable
which specifies the event/censored status. The KM estimator
defined as

1 − F̂SRS tð Þ =
Yn
i=1

1 −
δ i½ �

n − i + 1

� �1 Y ið Þ≤tf g
, ð2Þ

where Y ð1Þ,⋯, Y ðnÞ are ordered values of the simple random
sample (SRS) with related δ½1�,⋯, δ½n� values; see [18] for
more information.

Based on the above Definition 1 and Definition 1 in [9], we
estimate the KM estimator based on the imperfect PROS
sampling design PROSαðn, L, s,DÞ.

The KM estimator based on the PROSαðn, L, s,DÞ sam-
ple, XPROS, defined as

1 − F̂PROS tð Þ = 1
n
〠
n

j=1
1 − F̂ d j½ � tð Þ
� �

, ð3Þ

where 1 − F̂½d j� is the KM estimator based on the indepen-

dent and identically distributed (SRS) fY ½dj�1, Y ½dj�2,⋯,
Y ½dj�Lg, defined as

1 − F̂ d j½ � tð Þ =
YL
k=1

1 −
δ∗dj½ �k

L − k + 1

 !1 Y∗
d j½ �k≤t

n o
, ð4Þ

where Y∗
½dj�1,⋯, Y∗

½dj�L are ordered values of Y ½d j�1,⋯, Y ½d j�L
and δ∗½d j�k values are related to Y∗

½dj�k values for k = 1,⋯, L.

4. Asymptotic Properties

In this section, we study the behavior of the nonparametric
KM estimator in large samples based on the imperfect PROS
sampling design. The asymptotic properties of the KM esti-
mator under the SRS were widely available in the literature
survey [19–21].

We demonstrate that no stronger assumptions are
needed while using the imperfect PROS-based KM estimator.
At first, we introduce the following lemma, which is a straight
result of Lemma 2.1 in Stute and Wang [18].

Lemma 1. Suppose X ~ F and C ~ G are two independent
random variables. In addition, let X½dj�i ~ F½dj� be the PROS

sample from subset dj in the ith cycle and C½dj�i be the corre-
sponding censored time.

Set H½dj�ðtÞ = Pðmin ðX½d j�i, C½d j�iÞ ≤ tÞ, then we have

1 −H dj½ � tð Þ = 1 − F dj½ � tð Þ
� �

1 − G tð Þð Þ: ð5Þ

Proof. See Appendix A.
Due to the expressed lemma, we can define

~H
0
dj½ � zð Þ =

ðz
−∞

1 − F dj½ � yð Þ
� �

G dyð Þ,

~H
1
dj½ � zð Þ =

ðz
−∞

1 − G y −ð Þð ÞF dj½ � dyð Þ:
ð6Þ

We also set

γ0d j
Xð Þ = exp

ðx
−∞

~H
0
dj½ � dzð Þ

1 −H dj½ � zð Þ

8<
:

9=
;: ð7Þ

3Computational and Mathematical Methods in Medicine



Let φðwÞ be a score function

γ1dj
Xð Þ = 1

1 −H dj½ � xð Þ
ð
1 x <wf gφ wð Þγ0d j

wð Þ~H1
dj½ � dwð Þ,

γ2dj
Xð Þ =∬

1 v < x, v <wf gφ wð Þγ0dj
wð Þ

1 −H dj½ � vð Þ
� �2 ~H

0
d j½ � dvð Þ~H1

dj½ � dwð Þ:

ð8Þ

Now, we present Theorem 1.

Theorem 1. Assume F and G are continuous and

ð
φ2 xð Þγ20 xð Þ~H1

dxð Þ <∞, ð9Þ

ð
φ xð Þj j

ðx
−∞

G dzð Þ
1 −H zð Þð Þ 1 −G zð Þð Þ

� �1/2
F dxð Þ <∞, ð10Þ

where

~H
0
zð Þ = P X ≤ z, δ = 0ð Þ =

ðz
−∞

1 − F yð Þð ÞG dyð Þ, z ∈ℝ,

~H
1
zð Þ = P X ≤ z, δ = 1ð Þ =

ðz
−∞

1 −G yð Þð ÞF dyð Þ, z ∈ℝ:

ð11Þ

Also, set

γ0 xð Þ = exp
ðx
−∞

~H
0
dzð Þ

1 −H zð Þ

( )
,

γ1 xð Þ = 1
1 −H xð Þ

ð
1 x <wf gφ wð Þγ0 wð Þ~H1

dwð Þ,

γ2 xð Þ =
ð Ð

1 v < x, v <wf gφ wð Þγ0 wð Þ
1 −H vð Þð Þ2

~H
0
dvð Þ~H1

dwð Þ:

ð12Þ

As L⟶∞ and N = nL, we have

ffiffiffiffi
N

p ð
φ xð Þ F̂PROS dxð Þ − F dxð Þ� �

~N 0, σ2
n

� �
, ð13Þ

where

σ2n =
1
n
〠
n

j=1
var
h
φ Y dj½ �ð Þ γ0dj Y dj½ �

� �
δ dj½ �

+ γ1dj Y dj½ �
� �

1 − δ dj½ �
� �

− γ2dj Y dj½ �
� �i

:

ð14Þ

Proof. In view of the equivalent theorem in SRS sampling
design [21], it suffices to show that, for every j = 1,⋯, n,

ð
φ2 xð Þγ20dj xð Þ~H1

dj½ � dxð Þ <∞,

ð15Þ

ð
φ xð Þj j

ðx
−∞

G dzð Þ
1 −H dj½ � zð Þ
� �

1 − G zð Þð Þ

0
@

1
A

1/2

F dj½ � dxð Þ <∞:

ð16Þ

As to equation (15), under continuity of F and G and
γ0djðXÞ = ð1 −GðxÞÞ−1, we also have

~H
1
dj½ � dxð Þ =

d ~H
1
dj½ � xð Þ

� �
dx

=
d
Ð x
−∞ 1 −G yð Þð ÞF dj½ � dyð Þ

� �
dx

= 1 −G xð Þð ÞF dj½ � dxð Þ:
ð17Þ

Under the continuity of F, there exists a density f . We
have FðdxÞ = ð1/nÞ∑n

j=1F½dj�ðdxÞ; hence, nFðdxÞ =∑n
j=1F½dj�

ðdxÞ.
By using the above relationship,

ð
φ2 xð Þγ20dj

xð Þ~H1
d j½ � dxð Þ

=
ð

φ2 xð Þ
1 −G xð Þð Þ2 1 −G xð Þð ÞF dj½ � dxð Þ

=
ð

φ2 xð Þ
1 −G xð Þð Þ F dj½ � dxð Þ

≤ 〠
n

j=1

ð
φ2 xð Þ

1 − G xð Þð Þ F dj½ � dxð Þ

= n
ð

φ2 xð Þ
1 − G xð Þð Þ F dxð Þ <∞:

ð18Þ

By equation (9), this phrase is finite, so we prove equation
(15).

To prove that (16) holds, we have to determine a lower
bound for 1 − F½dj�ðzÞ.

We know that

〠
s

i=s−u+1

s

s − i

 !
1 − F zð Þð Þi− s−u+1ð Þ F zð Þð Þs−i

= 〠
u−1

i=0

s

u − 1 − i

 !
1 − F zð Þð Þi F zð Þð Þu−1−i,

ð19Þ
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for i ≤ u − 1, we have

s

u − 1 − i

 !
≥

u − 1
i

 !
,

1 − F u:sð Þ zð Þ = 〠
s

i=s−u+1

s

i

 !
1 − F zð Þð Þi F zð Þð Þs−i

= 1 − F zð Þð Þs−u+1 〠
s

i=s−u+1

s

s − i

 !

� 1 − F zð Þð Þi− s−u+1ð Þ F zð Þð Þs−i

= 1 − F zð Þð Þs−u+1 〠
u−1

i=0

s

u − 1 − i

 !

� 1 − F zð Þð Þi F zð Þð Þu−1−i

≥ 1 − F zð Þð Þs−u+1 〠
u−1

i=0

u − 1

i

 !

� 1 − F zð Þð Þi F zð Þð Þu−1−i
= 1 − F zð Þð Þs−u+1,⇒1 − F u:sð Þ zð Þ
≥ 1 − F zð Þð Þs−u+1:

ð20Þ

Therefore, we have

1 − F dj½ � zð Þ = 1
m
〠
n

h=1
〠
u∈dh

αdj ,dh 1 − F u:sð Þ zð Þ
� �

≥
1
m
〠
n

h=1
〠
u∈dh

αdj ,dh 1 − F zð Þð Þs−u+1:
ð21Þ

We know

f d j½ � xð Þ = 1
m
〠
n

h=1
〠
u∈dh

αdj ,dh f u:sð Þ xð Þ

= 1
m
〠
n

h=1
〠
u∈dh

αdj ,dh
s!

u − 1ð Þ! s − uð Þ! f xð ÞF xð Þu−1 1 − F xð Þð Þs−u

≤
1
m
〠
n

h=1
〠
u∈dh

αdj ,dh
s!

u − 1ð Þ! s − uð Þ! f xð Þ 1 − F xð Þð Þs−u:

ð22Þ

Also,

z ≤ x⇒ 1 − F zð Þð Þs−u ≥ 1 − F xð Þð Þs−u, ð23Þ

so,

1
m
〠
n

h=1
〠
u∈dh

αdj ,dh 1 − F zð Þð Þs−u ≥ 1
m
〠
n

h=1
〠
u∈dh

αdj ,dh 1 − F xð Þð Þs−u:

ð24Þ

Then,

1
m
〠
n

h=1
〠
u∈dh

αd j,dh 1 − F zð Þð Þs−u
 !− 1/2ð Þ

≤
1
m
〠
n

h=1
〠
u∈dh

αdj ,dh 1 − F xð Þð Þs−u
 !− 1/2ð Þ

:

ð25Þ

Based on Lemma 1 and the above equations

ð
φ xð Þj j

ðx
−∞

G dzð Þ
1 −H dj½ � zð Þ
� �

1 −G zð Þð Þ

0
@

1
A

1/2

F dj½ � dxð Þ =
ð
φ xð Þj j

ðx
−∞

G dzð Þ
1 − F dj½ � zð Þ
� �

1 −G zð Þð Þ2

0
@

1
A

1/2

f d j½ � xð Þdx

≤
ð
φ xð Þj j

ðx
−∞

G dzð Þ
1/mð Þ∑n

h=1∑u∈dhαdj ,dh 1 − F zð Þð Þs−u+1
� �

1 −G zð Þð Þ2

0
@

1
A

1/2
1
m

〠
n

h=1
〠
u∈dh

αd j ,dh
s!

u − 1ð Þ! s − uð Þ! f xð Þ 1 − F xð Þð Þs−udx

=
ð
∣φ xð Þ∣

ðx
−∞

G dzð Þ
1 − F zð Þð Þ 1 −G zð Þð Þ2 × 1

1/mð Þ∑n
h=1∑u∈dhαd j ,dh 1 − F zð Þð Þs−u

 !1/2 1
m

〠
n

h=1
〠
u∈dh

αd j,dh
s!

u − 1ð Þ! s − uð Þ! 1 − F xð Þð Þs−uF dxð Þ

≤
ð
∣φ xð Þ∣

ðx
−∞

G dzð Þ
1 −H zð Þð Þ 1 −G zð Þð Þ

� �1/2 1
m

〠
n

h=1
〠
u∈dh

αd j,dh 1 − F xð Þð Þs−u
 !− 1/2ð Þ 1

m
〠
n

h=1
〠
u∈dh

αd j,dh
s!

u − 1ð Þ! s − uð Þ! 1 − F xð Þð Þs−u
 !

F dxð Þ

≤
ð
∣φ xð Þ∣

ðx
−∞

G dzð Þ
1 −H zð Þð Þ 1 −G zð Þð Þ

� �1/2 1
m

〠
n

h=1
〠
u∈dh

αd j,dh 1 − F xð Þð Þs−u
 !− 1/2ð Þ

C
m

〠
n

h=1
〠
u∈dh

αd j,dh 1 − F xð Þð Þs−u
 !

F dxð Þ

= C
ð
∣φ xð Þ∣

ðx
−∞

G dzð Þ
1 −H zð Þð Þ 1 −G zð Þð Þ

� �1/2 1
m

〠
n

h=1
〠
u∈dh

αd j ,dh 1 − F xð Þð Þs−u
 !1/2

F dxð Þ:

ð26Þ
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We define constant C as

C =maxu=1,⋯,s
s!

u − 1ð Þ! s − uð Þ!
	 


: ð27Þ

Because s − u ≥ 0, we have

1
m
〠
n

h=1
〠
u∈dh

αdj ,dh 1 − F xð Þð Þs−u ≤ 1
m
〠
n

h=1
〠
u∈dh

αdj ,dh = 1, ð28Þ

so (26) is smaller than

C
ð
φ xð Þj j

ðx
−∞

G dzð Þ
1 −H zð Þð Þ 1 −G zð Þð Þ

� �1/2
F dxð Þ: ð29Þ

In view of equation (10), this equation is finite, and this
completes the proof. □

It should be noted that Theorem 1 has been proven only
for the imperfect model, which has already been described in
Section 2.2, and this model is not completely general.

5. Simulation Study

In this section, we compare the performance of the KM esti-
mator of survival function under the PROS sampling design
relative to its SRS and RSS counterparts.

To do so, we considered two situations in which the orig-
inal random variables were generated from an exponential
distribution with mean 1 (model A) and standard log-
normal distribution with mean 1.649 (model B). The cen-
sored variables in the two cases are supposed to have an
exponential distribution; a common rate of exponential dis-
tribution was determined when the desired censoring level
was prespecified. In all simulation scenarios s = nm and the
set size for the RSS sampling design is n. The algorithm of
the simulation study is explained in Appendix B.

By using distribution theory, if D and E are independent
and distributed exponentially with means θ1 and θ2, respec-
tively, then PðD ≤ EÞ = θ2/ðθ1 + θ2Þ. On the other hand,
PðD ≤ EÞ = 1 − p. Setting the values of the censoring level
ðpÞ and θ1 = 1 in these equations, we can find the appropriate
value of the exponential rate in model A. Given the fact that
there is no such expression for model B, we found the expo-
nential common rate for the censoring variable by trial and
error, although one can easily solve this problem numerically
by using software like R. The values of the exponential rate
were equal to 0.013 and 0.190 and led to censoring levels of
0.1 and 0.6, respectively.

For each combination of sample sizes N = 30, 120, and
240 and the mentioned censoring levels 0.1 and 0.6, 5000
samples were generated under the SRS, RSS, and PROS sam-
pling designs. For different values of n, m, and L and the
misplacement probabilities αdi ,di = α0 and αdi ,d j

= ð1 − α0Þ/
ðn − 1Þ for i ≠ j, the values of the mean squared error
(MSE) were computed for the three estimators from each
sample when α0 = 0, 0.5, 0.7, and 1.

5.1. Comparing the Kaplan-Meier Estimators. We compare
the performance of the KM estimators of the survival func-
tion between the studied sampling designs. The efficiency of
the PROS estimation with respect to its SRS and RSS counter-
parts, at the point t, is defined as

RP = MSE 1 − F̂RSS tð Þ� �
MSE 1 − F̂PROS tð Þ� � , SP = MSE 1 − F̂SRS tð Þ� �

MSE 1 − F̂PROS tð Þ� � , ð30Þ

where 1 − F̂PROSðtÞ, 1 − F̂RSSðtÞ, and 1 − F̂SRSðtÞ are the KM
estimators of the survival function at point t based on PROS,
RSS, and SRS sampling designs, respectively.

Note that MSEð1 − F̂PROSðtÞÞ = E½FðtÞ − F̂PROSðtÞ�2.MSE
ð1 − F̂RSSðtÞÞ and MSEð1 − F̂SRSðtÞÞ are similarly defined.
Also, t = F−1ðqÞ for a fixed percentile q ∈ ð0, 1Þ, and F−1ð:Þ
is the inverse of the underlying distribution function. The
values of RP and SP calculate for m = 3 and n = 3 and 5 in
both models when we consider q = 0:10, 0.25, 0.50, 0.75,
and 0.90. Because of the large volume of output and similar
results in both models, we only report the results for model
A in this article.

In the literature, the sample sizes in the PROS and RSS
designs were similar but they have used a much smaller set
size for RSS sampling design than for PROS. However, simu-
lation studies that are not presented here show that the RSS-
based estimator may performs better than the one using the
PROS sampling design under the same sample size and the
same set size.

As shown in Figures 1 and 2, in model A, the KM estima-
tor based on the PROS sampling design in most cases is more
efficient than the KM estimator based on the RSS and SRS
sampling designs with similar sample sizes. The best perfor-
mance of the PROS design over the SRS and RSS designs hap-
pens when the ranking errors are small or zero, i.e., when
α0 = 0:7 and 1. The efficiency of the KM estimator based on
PROS relative to SRS is as good as or higher than the effi-
ciency of the KM estimator based on the PROS relative to
the RSS procedure, regardless of the censoring level and
ranking error. Assuming a fixed sample size and censoring
level, by increasing the n for large values of α0, the efficiency
of the KM estimator based on the PROS sampling design is
enhanced. It should be noted that in an imperfect PROS sam-
pling design ðα0 = 0Þ, the efficiency reduced as n increased.

We can conclude that increasing the level of censorship
in a smaller sample size leads to a reduction in efficiency
in both models, but for a larger sample size, this rarely hap-
pens; in other words, the level of censored data in the smaller
sample size has a greater impact on the performance of the
PROS sampling design compared to the that in the larger
sample size.

We conclude that, regardless of the censoring level and
ranking error, increasing the sample size leads to increased
efficiency. The perfect PROS KM estimator performs three
times more efficiently than the SRS KM estimator in several
simulation scenarios. It is worth noting that RP might
decrease when one considers the same set size in the PROS
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and RSS designs with similar sample sizes. In all figures, we
consider m = 3 for the PROS design.

In addition, we compared these three sampling methods
using a mean integrated squared error (MISE) indicator,
defined as

MISE =
ð+∞
−∞

E F̂n tð Þ − F tð Þ� �2
dF tð Þ: ð31Þ

From Table 2, we can conclude that most of the time,
PROS has less MISE than the RSS and SRS sampling methods
with similar sample sizes, especially for a large α0. In addi-
tion, we observe that as the level of censored data increases,
the amount of the MISE value increases as well in both
models. It should be mentioned that in the low level of cen-
sorship, the log-normally distributed (model B) has lower
MISE than the exponentially distributed (model A), but at
the high level of censorship, model B has larger MISE than
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Figure 1: The efficiency of the KM estimator based on PROS with respect to RSS (solid line) and SRS (dashed line) counterparts at different
percentiles.
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model A, for the same values of n and m and the subsetting
probabilities αdi ,dj

. As we expect, increasing the sample size
reduces the MISE.

The results show that when α0 = 0:5, 0.7, and 1 in a
smaller sample size with a low percentage of censored data,
the larger n leads to the smaller MISE of the estimators, but
with a high percentage of censored data, the MISE value
increases as n increases. However, in larger sample sizes,

the MISE of the estimator decreases as the n goes up in all
censoring levels.

In Table 2, as the misplacement probabilities decrease,
the superiority of the PROS estimator compared to the RSS
and SRS estimators becomes more obvious. The MISE values
of the KM estimator derived from perfect PROS and perfect
RSS sampling designs are smaller than those in imperfect
methods. Note that the KM estimator based on the SRS
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Figure 2: The efficiency of KM estimator based on PROS with respect to RSS (solid line) and SRS (dashed line) counterparts at different
percentiles.
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sampling design has a smaller MISE value than the one based
on the imperfect rank-based sampling designs for some cases
in small sample sizes and high censorship percentage.

Note that the RSS KM estimator can have a lower MISE
than the PROS one, when we consider a similar set size and
fixed sample size.

6. Real Data Application

In this section, we use the information of children under 18
years of age with nonhematological disorders such as Beta-
Thalassemia and Idiopathic Thrombocytopenic Purpura
(ITP) and children with hematological malignancies includ-
ing various types of lymphoma and Acute Lymphocytic Leu-
kemia (ALL), registered in the Amir Medical Oncology
Center during May 2014 to August 2017. The dataset con-
tains the survival information of 61 patients. We provide
KM estimates of Y which is the survival time (in months)
as the variable of interest by using Z which is the white blood
cells as the concomitant variable, which are used for ranking
purpose. The correlation coefficient between Z and Y is 0.455
and is significant (p value = 0.0001); also, we should add that
50.8% of people are censored. We considered the perfect
PROS and RSS sampling designs. In order to estimate the
KM estimator of survival time, we regarded this data set as
a target population and extract PROS, RSS, and SRS samples

(with replacement) of size N = nL from the population. We
considered design parameter D = fd1, d2, d3, d4, d5g. At the
first step, we randomly selected nm = 15 patients from the
target population and then partitioned these patients into
subsets d1, d2, d3, d4, and d5 based on their WBC values. At
the next step, we randomly selected a unit from subset d1
and observed its survival time. Again, we randomly selected
15 patients and assigned them to d1, d2, d3, d4, and d5 and
randomly drew a member from subset d2 and repeated these
steps until we selected a unit from subset d5; these observa-
tions constitute one cycle of PROS; in this real data, we con-
sidered 3 cycles, and finally, we have 15 survival time
observations from patients.

In RSS, we randomly selected 5 patients from the target
population and ranked them based on their WBC values,
then we selected the patient with the smallest WBC and
observed its survival time. This procedure continued until
the survival time of the 5th ranked unit in the 5th set of units
measured. These 5 observations constitute one cycle of RSS;
in this example, we considered 3 cycles, and finally, we
observed the survival time of 15 patients.

For each sampling design, the KM estimator was calcu-
lated in different time points. Then, this process was repeated
M times. We took ðn,m, L,MÞ = ð5, 3, 3, 50Þ. These 50 KM
charts under the three sampling designs are shown in
Figure 3. Figure 3 shows that the variation of the KM

Table 2: Estimated MISE of Kaplan Meier estimator, N = 30, 120, and 240.

Censoring
level

α0 = 0 α0 = 0:5 α0 = 0:7 α0 = 1
PROS RSS SRS PROS RSS SRS PROS RSS SRS PROS RSS SRS

Model A

N = 30
(n = 3, L = 10)

0.1 0.0062 0.0065 0.0071 0.0066 0.0069 0.0069 0.0059 0.0064 0.0071 0.0037 0.0048 0.0070

0.6 0.0620 0.0653 0.0664 0.0672 0.0679 0.0653 0.0628 0.0644 0.0655 0.0492 0.0563 0.0661

N = 30
(n = 5, L = 6)

0.1 0.0069 0.0068 0.0071 0.0065 0.0068 0.0069 0.0055 0.0058 0.0071 0.0030 0.0042 0.0070

0.6 0.0713 0.0717 0.0664 0.0687 0.0699 0.0653 0.0642 0.0668 0.0655 0.0539 0.0590 0.0661

N = 120
(n = 3, L = 40)

0.1 0.0021 0.0022 0.0024 0.0024 0.0025 0.0024 0.0021 0.0022 0.0025 0.0012 0.0016 0.0024

0.6 0.0493 0.0531 0.0581 0.0569 0.0574 0.0584 0.0511 0.0534 0.0578 0.0305 0.0395 0.0581

N = 120
(n = 5, L = 24)

0.1 0.0023 0.0023 0.0024 0.0022 0.0023 0.0024 0.0018 0.0020 0.0025 0.0009 0.0013 0.0024

0.6 0.0565 0.0569 0.0581 0.0546 0.0559 0.0584 0.0474 0.0502 0.0578 0.0274 0.0352 0.0581

N = 240
(n = 3, L = 80)

0.1 0.0014 0.0015 0.0017 0.0017 0.0016 0.0017 0.0014 0.0015 0.0017 0.0007 0.0011 0.0017

0.6 0.0469 0.0514 0.0569 0.0555 0.0557 0.0567 0.0491 0.0515 0.0571 0.0260 0.0363 0.0569

N = 240
(n = 5, L = 48)

0.1 0.0016 0.0017 0.0017 0.0015 0.0016 0.0017 0.0012 0.0013 0.0017 0.0006 0.0008 0.0017

0.6 0.0539 0.0553 0.0569 0.0524 0.0536 0.0567 0.0445 0.0477 0.0571 0.0215 0.0301 0.0569
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Figure 3: The KM estimates in different time for n = 5, L = 3, andm = 3 under 50 PROS, RSS, and SRS samples. The red solid line shows the
mean of KM estimators.

9Computational and Mathematical Methods in Medicine



estimators in each fixed time under the PROS sampling
design is less than the variation of the RSS and SRS counter-
parts. We conclude that in this real data, the PROS estimate
performs better than the RSS and SRS designs. We uploaded
the raw data as a supplementary material (available here).

7. Summary and Concluding Remarks

In numerous medical fields, the exact measurement of the
desired variable is expensive or time-consuming. Rank-based
sampling designs such as PROS can help overcome this diffi-
culty by ranking a small number of sampling units based on
a concomitant variable. These sampling designs can be used
to obtain samples that are more informative and also result
in more accurate inference about the parameters of interest.

In this paper, we considered the problem of the KM esti-
mator that is a proper and commonly used technique in sur-
vival analysis associated with an imperfect PROS sampling
design. PROS is a new sampling design that avoids ranking
all units in a given set. Furthermore, we developed asymp-
totic distributional properties of the new KM estimator based
on a proposed sampling method. We showed how well this
estimator performs in comparison with its RSS and SRS
counterparts. The simulation results recommend that under
both perfect and imperfect subsetting assumptions, the effi-
ciency of the estimator based on the PROS sampling design
is higher than the efficiency of the estimator based on the
two other sampling methods with the same sample sizes. It
is noteworthy that, by increasing the set size in RSS while
keeping the sample size fixed in both designs, the RSS KM
estimator can have smaller values of MSE than the PROS
one. Finally, we applied all the introduced sampling designs
to a real data set. We believe that it would be appealing to
apply the proposed methodology to useful statistical models,
for example, a Cox regression model for analyzing time to
event data that is applicable to the majority of medical fields.

Finally, we will recommend the use of recently proposed
sampling designs to extend this study, for example, even
order ranked set sampling (EORSS) [22] and quartile pair
ranked set sampling (QPRSS) [23] designs that have recently
received attention by some researchers.

Appendix

A. The Proof of Lemma 1

We have

1 −H dj½ � tð Þ = 1 − P min X dj½ �i, C dj½ �i
� �

≤ t
� �

= P min X dj½ �i, C dj½ �i
� �

> t
� �

= P X dj½ �i > t, C dj½ �i > t
� �

= P X dj½ �i > t
� �

P C dj½ �i > t
� �

= 1 − F dj½ � tð Þ
h i

1 −G tð Þ½ �:

ðA:1Þ

B. Algorithm of Simulation Scenarios

The steps of simulation study algorithm are as follows:
Step 1: Perform data generation in the following ways:

(i) Generate 1000 random event time observations from
the desired distribution (X)

(ii) Generate 1000 random censored time observations
from the desired distribution (C)

(iii) Observe the status variables (δ = IðX < CÞ)
(iv) Calculate survival time variable (T =min ðX, CÞ)
Step 2: Perform sampling in the different studied designs:

(i) Generate PROS, RSS, and SRS samples from the target
population. For PROS and RSS, we generate the sam-
ples based on different values for subsetting error
matrices, set sizes, and cycle sizes

Step 3: Estimate the desired estimators:

(i) estimate the KM estimator using the corresponding
formula coding

Step 4: calculate comparison criteria:

(i) Compute the MSE of the KM estimator in different
percentile points

(ii) Compute the MISE values for KM estimators under
the three different sampling designs

Step 5: Repeat all the above steps 5000 times.
Step 6: Compute the mean of 5000 calculated MSE and

MISE and report them.

Data Availability

In the present study, we used the information about children
under 18 years of age with non-hematological disorders such
as Beta-Thalassemia and Idiopathic Thrombocytopenic Pur-
pura (ITP) and also children with hematological malignan-
cies including various types of lymphoma and Acute
Lymphocytic Leukemia (ALL), registered in Amir Medical
Oncology Center during May 2014 to August 2017, as a pop-
ulation of interest.
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Supplementary Materials

This supplementary file includes the data for the Section 6
(real data) example in the paper. This file contains the infor-
mation of children under 18 years of age with nonhematolo-
gical disorders such as Beta-Thalassemia and Idiopathic
Thrombocytopenic Purpura (ITP) and children with hema-
tological malignancies including various types of lymphoma
and Acute Lymphocytic Leukemia (ALL), registered in Amir
Medical Oncology Center during May 2014 to August 2017.
The dataset contains the survival information of 61 patients.
(Supplementary Materials)
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