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Abstract: Eco-efficiency has been receiving attention worldwide, and the effective implementation
of environmental regulations (ERs) has become crucial to regional eco-efficiency. This paper uses a
method combining mixed directional distance function and bootstrapping approach to investigate
the spatial and temporal distribution characteristics of eco-efficiency under the constraint of land use
carbon emission in China from 2004 to 2016. The nonlinear relationship between ER and eco-efficiency
is observed with a panel threshold model. Results from empirical tests reveal that eco-efficiency in
China during the study period has an upward trend, and the spatial and temporal distribution of
eco-efficiency is unbalanced and concentrated. Technical innovation and land marketization (LM)
shows double threshold, whereas industrial structure (IS) has a single threshold effect. LM has a
promotional effect on eco-efficiency, which differs in the promotion before and after promotion across
the threshold value. Reasonable ER can reduce cost by stimulating the innovation of green production
technology and achieves a win-win situation between environment and output. This finding further
verifies that the ER for eco-efficiency under the constraint of land use carbon emission conforms
to the Porter hypothesis. The effect of ER on eco-efficiency changes from negative to positive with
the increase of IS level. Adjusting the ownership structure and increasing the proportion of green
achievements in the promotion and assessment of officials are important measures in the upgrading
of eco-efficiency.

Keywords: environmental regulation; eco-efficiency; carbon emission; bootstrapping approach; panel
threshold model

1. Introduction

The definition of eco-efficiency was first proposed by Schaltegger and Sturm in 1990; the World
Business Council for Sustainable Development (WBCSD) defines it as the product of price competition
advantage, which can satisfy human needs and improve living standards, as well as the impact on the
ecological environment and resource consumption gradually reduced to and forecast of earth bearing
level of the same level and achieve the coordinated development of environment and society [1].
International organizations have been committed to carbon emission reduction for the mitigation of
global warming [2,3]. In China, energy saving and emission reduction have attracted considerable
interest in view of environmental pollution and excessive resource consumption due to rapid economic
growth and urban expansion. The focus of CO2 emission reduction is on fossil energy consumption,
whereas CO2 generated by land use changes caused by human activities is ignored [4,5]. Greenhouse
gas emissions from human activities are the main cause of global warming [6], CO2 emissions accounted
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for 78% during the period from 1970 to 2010 [7]. Governments are responsible for identify instruments
that can ameliorate global warming. According to statistics, China became the world’s largest emitter
of CO2 in 2007 and promised to reach the peak of carbon emission around 2030 and reduce emission
intensity by 60–65% relative to that in 2005 [8,9]. Environmental regulations (ERs) are expected to play
an increasingly essential role in achieving carbon emission reduction targets and meet the requirement
of resource saving and environment protection.

ERs are classified into three types, namely, command-and-control (C & C), market-based, and
reluctant regulations respectively. Under C & C regulations, government determines the allocation of
pollutant quotas. Over-polluting enterprises are penalized under compulsive regulations. To ensure
that enterprises comply with ERs, China enacted relevant environmental laws and regulations, as well as
administrative commands. China’s government has implemented stringent market-based ERs, such as
pollution control subsidy, waste water discharge fees, and excess discharge fees, since its entry into
the World Trade Organization (WTO). C & C regulations is remain the most popular ER in regulating
the environmental problems in China despite its ineffectiveness in improving country’s ecological
environment after its accession to the WTO [10]. Environment regulation on environment protection
has two conductive paths: industrial structure (IS) and official competition (COM). It analyzes the
restrictive factors of industrial expansion from the indirect function path increases the cost of operating
energy-intensive industries and thus promotes the upgrading of IS, and reduces air pollution.

Previous studies have explored the impact of ERs on eco-efficiency based on a linear regression
model, but the results have limited practicality [11–14] and few studies have focused on the nonlinear
connection between ER and eco-efficiency. Considering the research gap, this paper is aimed at the
following aspects: First, carbon emission caused by land use activities is taken into the indicator system
for estimating of the eco-efficiency under the constraint of land use carbon emission. Second, the
indirect effect of ER is explored by using a panel threshold model. Third, IS, research and development
(R & D) and land marketization (LM) are used as threshold variables. This paper investigates regional
differences and proposes targeted policies based on the characteristics of regional eco-efficiency.

The paper is organized as follows: Section 2 provides an overview of ER and eco-efficiency.
Section 3 describes the eco-efficiency estimation method and panel threshold regression. model
Section 4 outlines the results and analysis of eco-efficiency and the threshold regression. Section 5
concludes the work.

2. Literature Review

The concept of eco-efficiency was defined as the ratio of outputs divided by the Organization for
Economic Co-operation and Development (OECD) [15]; the value of products and services produced
by the enterprises represent the outputs, whereas the sum of environmental pressures generated by the
enterprises represent the inputs. Previous research on eco-efficiency mainly estimate the eco-efficiency
of industries [16], enterprises [17,18], and different regions [19,20]. To date, the influencing factors of
eco-efficiency have focused on science and technology investment, foreign direct investment (FDI), IS,
and urbanization [21]. Environmental regulation is also an important factor in accelerating the technical
innovation (RD) and promoting the environment and economic level of enterprises [22–24], but studies
have rarely focused on ER and eco-efficiency interaction. Furthermore, the degree of ER and the value
of eco-efficiency vary by region. Thus, studying the mechanism of how ER affects eco-efficiency is
significant in different regions in China as well as helpful for environmental enhancement.

In addition to the studies, the effects of ERs on environmental pollution has also been studied in
three aspects. The first one is the “cost compliance theory,” which means that raising the level of ER
encroaches on parts of production costs and reduces economic outputs, thereby affecting economic
aggregate. Laplante and Rilstone [25] researched the pulp and paper product industry in Canada
to verify the negative relationship between pollution emission and ER. Dasgupta et al. studied the
relationship between ER and pollutant discharge, results showed that regulations could decrease
the pollutant discharge effectively through changing the emission level [26]. Compared with the
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level of pollutant emission, environmental management should be more strictly strengthened for
pollutant control. Jaffe and Stavins [27] concluded that ER increases the costs on enterprises and
restricted the capital to improve the potential for technological innovation. Levinson and Taylor [28]
found that the production cost of enterprises under the constraints of ERs increases due to the
increase in pollution control costs and the price of production factors and reduces the innovation
capability and competitiveness of enterprises and ultimately adversely affects enterprise and industrial
performance. Xie et al. found that current C & C and market-oriented ERs can significantly promote
regional green productivity [29]. The second one aspect “Porter hypothesis,” that is, reasonable
ER can stimulate the innovation compensation effect of enterprises, which not only can offset the
loss of compliance cost, but also can produce technology diffusion and structure upgrade effect.
Nadeau concluded that environmental regulations could cut down the time spending in violating
factory standards [30]. Daron et al. found that dynamic ERs can promote technological advances in
low-emission machinery [31]. Therefore, increasing the intensity of ER would promote the demand of
clean technology for polluting enterprises. Moreover, reducing the demand for pollution-intensive
technologies would contribute to establishing the direction of technological innovation in the next stage.
The last one is uncertainty theory. Due to the heterogeneity of ER quality and industry characters,
the functional relations among them is uncertain. Lanoie et al. empirically studied the impact of
environmental regulation on the productivity of 17 manufacturing industries in Quebec, Canada [32].
The results showed that the effect of ER on the productivity of manufacturing industries was positive
in the long term and negative in the short term. Yuan and Xie reported that a U-shaped relationship
existed between cost-type regulation and green industrial productivity, whereas a negative linear
relationship existed between investment-type regulation and green industrial productivity [33].

Most of the existing studies analyzed the relationship between ER, as well as economic growth
and pollutant emission, but the research on the influence of LM (the ratio of the number of land
lots to the total number of transferred land lots in the primary land market) and IS adjustment on
pollutant emission was rarely involved. The previous studies on the relationship among the three
still have the following shortcomings: First, carbon emission constraints were not included in the
analysis framework of eco-efficiency estimation, which is an important factor affecting the ecological
environment. Second, the efficiency value calculated based on Data Envelopment Analysis (DEA)
method led to the deviation of the actual efficiency level. Therefore, based on the shortcomings of
existing studies, this paper uses the provincial panel data from 2004 to 2016 and bootstrap method
to modify the value of efficiency, and conducts an empirical analysis on the threshold effect of the
openness to the outside world and IS adjustment on eco-efficiency under the background of ER.

3. Methodology and Data Specification

3.1. Eco-Efficiency Estimation Method

3.1.1. Mixed Directional Distance Function

Directional distance function can solve the problems of unsatisfactory output efficiency evaluation,
which is widely used in considering the purpose of the output efficiency evaluation [34–36]. It can be
used to calculate the optimal solution of the production feasibility set to reflect the use of environmental
technology in the process of economic activities after determining the investment portfolio. Directional
distance is expressed as follows:

⇀
D0(x, y, b; g) = max

{
β : (y, b) + βgεP(x)

}
(1)

where g = (y, −b) is the direction vector of output horizontal expansion, and β is the value of the
directional distance function. The maximum value of the desirable output (y) and the minimum value
of the undesirable output (b) are obtained by taking the set direction vector as the weight. If the radial
and output angle DEA are used to calculate the directional distance function, then given nonzero
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relaxation between input and output, the efficiency measurement value will be higher than the actual
efficiency of the evaluation object. When the output angle DEA measurement efficiency cannot reflect a
certain output, the input can be reduced. The non-radial and non-angular SBM (Slacks-Based Measure)
directional distance function is used to obtain the non-efficiency score by maximizing the average
relaxation of all inputs and outputs. When the input or output changes in the same proportion, this
method may be lower than the actual efficiency value of the evaluation object. [37]. Therefore, the
mixed directional distance function proposed by Tone will be applied in this paper to avoid their
defects [38].

Input matrix Xt
im is decomposed into radial one XRt

imεR
l1
+ and radial one XNRt

im εRl2
+(l1 + l2 = l),

namely Xt
im =

(
XRt

im
XNRt

im

)
. The desirable output matrix Yt

i is decomposed into radial one YRt
i εR

s1
+

and nonradial one YNRt
i εRs2

+(s1 + s2 = s), namely, Yt
i =

(
YRt

i
YNRt

i

)
. Similarly, the undesirable output

matrix Et
in is divided into radial one ERt

in εR
h1
+ and the nonradial part ENRt

in εRh2
+ (h1 + h2 = h), namely,

Et
in =

(
ERt

in
ENRt

in

)
. The direction vector is decomposed into six vectors, g =

(
gXt

im,gXNRt
im ,gYt

i ,
gYNt

i ,gEt
in,gENRt

in ,

)
,

finally, extending to the mixed directional distance function. The form of linear programming is
as follows:

⇀
D0

(
Xt

im, Yt
i , Et

in; g
)
= max wT

·β

s.t Xt
imλ ≤ Xt

im + βXRt
im
·diag

(
gXRt

im

)
XNRt

im λ ≤ XNRt
im + βXNRt

im
·diag

(
gXNRt

im

)
YRt

i λ ≥ YRt
i + βYRt

i
·diag

(
gYRt

i

)
YNRt

i λ ≥ YNRt
i + βYNRt

i
·diag

(
gYNRt

i

)
ERt

inλ = ERt
in + βERt

in
·diag

(
gERt

in

)
ENRt

in λ = ENRt
in + βENRt

in
·diag

(
gENRt

in

)
β = β·sgn

(∣∣∣g∣∣∣)T
, ≥ 0,

where w =
(
wXRt

im,wXNRt
im ,wYRt

i ,wYNRt
i ,wERt

in ,wENRt
in

)T
represents the standardized weight vector

corresponding to radial input, non-radial input, radial desirable output, non-radial desirable output,
radial undesirable output, and non-radial undesirable output; λ represents the weight of input X or

output Y. β =
(
βXRt

im,βXNRt
im ,βYRt

i ,βYNRt
i ,βERt

in ,βENRt
in

)T
≥ 0.

3.1.2. Bootstrap–DEA Approach

The DEA evaluates the performance through estimating the true and unobservable production
frontier based on finite sample, which may give rise to a corresponding efficiency metric which is very
sensitive to the sampling variations of the obtained frontier. However, the traditional DEA method
could not show the characteristics of non-parameter statistics well and the results of bootstrap–DEA
model are more reliable and accurate. To solve this problem, a smooth bootstrap method proposed
by Simar and Wilson was used to study the sampling characteristics of DEA estimators, and the
robustness of DEA point estimators was evaluated by constructing confidence intervals [39]. The basic
idea of the bootstrap method is to carry on the numerical stimulation by using the original samples and



Int. J. Environ. Res. Public Health 2019, 16, 1679 5 of 20

generate many stimulated samples to be used to be calculated the DEA efficiency values. The sample
distribution obtained by the bootstrap method can be used for simulating the distribution of the original
sample estimator, correct the deviation of the values of efficiency, and provide the confidence interval
of the measured efficiency values to avoid the error of the efficiency evaluation by the DEA model and
the problem of statistic test. Thus, this paper analyzes the eco-efficiency value after rectification and
the estimation steps are as follows:

(1) Calculate the original efficiency scores β̂X−t
m,i , β̂Y−t

i , β̂E−t
n,i (i = 1, . . .Z; m = 1, . . .M; n = 1, . . .N;

t = 1, . . .T) by solving the linear programming model (1).
(2) Generate a random sample β̂X−t

m,1b . . . β̂
X−t
m,Zb; β̂Y−t

1b . . . β̂Y−t
Zb ; β̂E−t

n,1b . . . β̂
E−t
n,Zb with replacement from

β̂X−t
m,1 . . . β̂

X−t
m,Z ; β̂Y−t

1 . . . β̂Y−t
Z ; β̂E−t

n,1 . . . β̂
E−t
n,Z .

(3) Take desirable output (Y) as an example, and smooth the sampled values using the following
formula:

β̃Y−t,∗
i =

 βY−t
ib + hY−tεY−t,∗

i i f βY−t
ib + hY−t,∗

≤ 1
2− βY−t

ib − hY−tεY−t,∗
i otherwise

 ε∗i ∼ N(0, 1) (2)

where hY−t and εY−t,∗
i represent a smoothing parameter and a randomly drawn error term respectively.

For the estimation of hY−t, this study maximizes a likelihood cross-referencing function using methods
developed by Simar and Wilson.

(4) Take desirable output (Y) as an example, and obtain the corrected smoothed bootstrap sample
by adjusting the smoothed sampled values using the following formula:

βY−t,∗
i = β

Y−t
+
β̃Y−t,∗

i − β
Y−t
i√

1+(hY−t)
2

σ̃2
βY−t

(3)

where β[β =
(

1
n

) n∑
i=1

βY−t
ib ] denotes the average resampled value and σ̆2

βY−t [σ̆
2
βY−t =

(
1
n

) n∑
i=1

(
β̂Y−t

ib − β
Y−t
ib

)2
]

is the variance estimate of the measured efficiencies β̂Y−t
i .

(5) Adjust the original desirable output using the ratio Rt∗
m,ib =

[
1−β̂X−t

m,i

1−βX−t,∗
m,i

]
Xt

m,i,

Yt∗
ib =

[
1+β̂Y−t

i

1+βY−t,∗
i

]
Yt

i , Et∗
n,ib =

[
1−β̂E−t

n,i

1−βE−t,∗
n,i

]
Et

n,i.

(6) Calculate the bootstrapped efficiency β̂X−t,∗
m,i , β̂Y−t,∗

i , β̂E−t,∗
n,i by solving the DEA model (1) using

the pseudo-variable inputs obtained in Step 5.
(7) Repeat Steps 2–6 B times to obtain robust efficiency scores β̂X−t,∗

m,ib , β̂Y−t,∗
ib , β̂E−t,∗

n,ib (i = 1, . . . Z;
m = 1, . . . M; n = 1, . . . N; t = 1, . . . T).

(8) Compute confidence intervals for the performance indicators. Calculate the bias of the original
estimate using the following formula:

b̃ıas
(
β̂X−t

m,i

)
= B−1

B∑
b=1

β̃X−t,∗
m,ib − β̂

X−t
m,i ,

b̃ıas
(
β̂Y−t

i

)
= B−1

B∑
b=1

β̃Y−t,∗
ib − β̂Y−t

i ,

b̃ıas
(
β̂E−t

n,i

)
= B−1

B∑
b=1

β̃E−t,∗
n,ib − β̂

E−t
n,i .
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Calculate the bias corrected estimator of the true value of βi using the following formula:

β̃X−t
m,i = β̂X−t

m,i − b̃ıas
(
β̂X−t

m,i

)
= 2β̂X−t

m,i − B−1
B∑

b=1

β̃X−t,∗
m,ib ,

β̃Y−t
i = β̂Y−t

i − b̃ıas
(
β̂Y−t

i

)
= 2β̂Y−t

i − B−1
B∑

b=1

β̃Y−t,∗
ib ,

β̃E−t
n,i = β̂E−t

n,i − b̃ıas
(
β̂E−t

n,i

)
= 2β̂E−t

n,i − B−1
B∑

b=1

β̃E−t,∗
n,ib .

Take desirable output (Y) as an example, and compute the confidence intervals as follows:

Pr = −b̃α ≤ β
Y−t,∗
ib − β̂Y−t

i ≤ −̃aα) = 1− α

Pr = −b̃α ≤ β̂Y−t
i − βY−t

i ≤ −̃aα) ≈ 1− α

β̂Y−t
i + ãα ≤ βY−t

i ≤ β̂Y−t
i + b̃α

According to the above steps, we can obtain the corrected efficiency values and 95%
confidence interval.

3.1.3. Data Specification

China has 34 provincial administrative regions: four municipalities (Beijing, Tianjin, Shanghai,
and Chongqing), five autonomous regions (Inner Mongolia, Guangxi, Tibet, Ningxia, and Xinjiang),
23 provinces (including Taiwan), and two special administrative regions (Hong Kong and Macau). China
can be further divided into seven economy-geography areas: East (Shanghai, Jiangsu, Zhejiang, Anhui,
Fujian, Jiangsu, and Shandong), North (Beijing, Tianjin, Shanxi, Hebei, and Inner Mongolia), Central
(Hebei, Hubei, and Hunan), South (Guangdong, Guangxi, and Hainan), Northeast (Heilongjiang, Jilin,
and Liaoning), Northwest (Shaanxi, Gansu, Ningxia, Qinghai, and Xinjiang), Southwest (Chongqing,
Sichuan, Guizhou, Yunnan, and Tibet). Lacking of data from Tibet, Hong Kong, Macau, and Taiwan,
30 provincial regions remain to be analyzed. Available statistical data of China generally have a lag of
1–2 years, and the research period is from 2004 to 2016. To measure eco-efficiency comprehensively
and accurately, the variables (Table 1) used in this paper include the following:

(1). Desirable Output

The output values (Yit) are measured by real Goss Domestic Production (GDP) at the provincial
level in the unit of 100 million renminbi (RMB) and are converted to the 2004 constant price using the
GDP deflator. The data can be obtained from the China Statistical Yearbook (2005–2017).

(2). Undesirable Output

The types of land involved in this paper include cultivated land, construction land, woodland,
garden land, grassland, water area and unused land. The carbon sink mainly comes from the net CO2

from the atmosphere into the ecosystem. Carbon source mainly comes from the carbon produced by
energy consumption, industrial production, transportation and agricultural production. Since the
perspective of this paper is based on the carbon emission caused by the change of land use type caused
by human activities, the carbon emission of construction land only considers the carbon emission
generated by energy consumption. Carbon source mainly comes from the carbon produced by energy
consumption, industrial production, transportation and agricultural production, the carbon emission
of this paper is generated by the energy consumption of construction land as the main carbon source.
We refer to the methods of Intergovernmental Panel on Climate Change (IPCC, 2007) and Energy
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Research Institute of National Development and Reform Commission in China (2003) to estimate
the CO2 emissions generated by construction land in various provinces through relevant calculation
formulas [4,40]. The calculation methods are as follows:

Eg = E f + Em + Ei = G f ·A + (Am·B + Wm·C) + Ai·D (4)

Ek =
∑

ei =
∑

Ti·δi (5)

Et =
∑

Eti =
∑

Eni··θi· fi (6)

E = Eg + Ek + Et (7)

where Eg represents the carbon emission of cultivated land; E f stands for carbon emissions from
fertilizer use; Em represents the carbon emissions generated by the production and use of agricultural
machinery; Ei represents the carbon emission in the irrigation process; Ei is the amount of fertilizer used;
Am represents the total sown area of crops; Wm represents the total power of agricultural machinery;
Ai is irrigation area; Ek represents the total carbon absorption; ei represents the amount of carbon
absorption generated by different land use types; Ti· represents the area of the functional land type of
carbon sink; δi is the carbon emission (absorption) coefficient of different land types, with positive
carbon emission and negative carbon absorption. Et represents the carbon emission of construction
land; Eti represents various energy carbon emissions; Eni· represents the consumption of various
types of energy; θi represents the coefficients of various energy transformations to standard coal; fi
represents the carbon emission coefficient of various energy sources. E represents the net land use
carbon emissions.

Fossil fuels are consumed from raw coal, crude oil and natural gas, with carbon factors of
0.7476, 0.5854, and 0.4479 tC/tce, respectively. Cultivated land is carbon source and carbon sink.
The production and use of agricultural irrigation, chemical fertilizers, agricultural film, and pesticides
and the transportation of agricultural machinery in the production and management process produce
much more carbon emissions than carbon absorption. The carbon emission conversion coefficients
(A, B, C, D) in the process of fertilizer, seeding, usage of agricultural machinery, and irrigation are
895.6 kg/t, 16.47 kg/hm2, 0.18 kg/kw, and 266.48 kg/hm2, respectively [41]. This paper only considers
the carbon source of cultivated land. According to the complex land use structure characteristics in
China, the factors of carbon absorption of woodland, grassland, garden, water area, and unused land
are −6.44, −0.39, −6.44, −0.245, and −0.05 t/hm2 a, respectively [42].

The calculated standard energy carbon emission is the sum of the total consumption of various
types of energy and the product of energy conversion standard coal coefficient and energy carbon
emission coefficient. The selection of coefficients is calculated with reference to the coefficient values in
the IPCC report. The carbon emissions of cultivated land are calculated by the use of chemical fertilizer,
total planting area of crops, total power of agricultural machinery and irrigation area multiplied by
their conversion coefficients. The carbon absorption of woodland, grassland, garden, water area and
unused land are calculated by the product of their area and corresponding coefficients. All data of
energy terminal consumption and conversion are taken from the regional energy balance table (real
quantity) in the China Energy Statistical Yearbook (2005–2016). The data of land use area in each
province are obtained from China Land and Resources Statistical Yearbook (2004–2016).

(3). Factor Inputs

The data of capital investment for each province are denoted by the capital stock. The method
proposed by Shan is more scientific in terms of depreciation rate and base period capital stock calculation
method for improvement based on the method of Zhang [43,44]. In this paper, the depreciation rate
is 10.96%, and the base period is calculated by the sum of the average annual growth rate and the
depreciation rate of the total amount of real fixed capital formation in the five years after the base
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period. The related data are derived from historical data of China’s GDP 1952–2004, China Statistical
Yearbook (2005–2016), and compilation of statistical data of the 60 years of new China.

The data on labor inputs for each province are denoted by the number of employees in three
industries taken from the China Provincial Statistical Yearbooks (2005–2017) at yearend.

Energy consumption contributes to Chinese economic development. The data on energy inputs
for each province are denoted by the total energy consumption characterization taken from the China
Energy Yearbook Statistical Yearbooks (2005–2017). Due to the differences in regional economic
development level and geographic characteristics, the determination of eco-efficiency index system in
this paper follows the practice of You [45]. Finally, fixed capital stock is selected as capital input, total
employment as labor input, and total energy consumption as energy input.

Table 1. Summary of input and output indicators.

Index Parameters

Input
Land average capital stock

Land average labor
Land average energy consumption

Output Desirable output GDP
Undesirable output CO2

Note: GDP is an abbreviation of Gross Domestic Product.

3.2. Threshold Regression Model

3.2.1. Panel Threshold Model

The threshold regression developed by Hansen and Gonzalez et al. uses the relevant sample data
reflecting causal variables to estimate threshold values and the significance of parameters through the
model of divided sample groups [46]. When a certain economic parameter reaches a certain critical
value, the direction or quantity of another economic parameter will undergo a structural mutation,
and the critical value of this economic parameter is the threshold value [47]. It was presented by
Tong as a viable econometric method which has become quite popular in academic research [48].
The advantage of this model is that it avoids the randomness of traditional analysis and has no fixed
nonlinear equation form. Second, the number of samples determines the number of threshold values
endogenously, and the threshold is estimated with full consideration of the characteristics of data
samples. The model is described as follows:

Yit = µi + ϑ1XitI(qit ≤ γ1) + ϑ2XitI(γ1 < qit ≤ γ2) + ϑ3XitI(qit > γ2)

+
n∑

j=1
Controli jt + εit

(8)

where Yit represents the explained variable, Xit represents a vector of variables, qit is threshold variable,

γ1 and γ2 are threshold values, and
n∑

j=1
Controli jt represents the control variables. Equation (3) is a

multi-threshold model. I( ) is an indicator function of 0 or 1, subscript i indexes the individual, and
the subscript t indexes the time. The slope coefficients γ1 and γ2 represent the influence of variable Xit
on explained variable Yit. If the estimation of intermediate r1 < qit ≤ r2 is reduced, then it will become
a single-threshold model.

In this paper, to investigate the relationship between eco-efficiency and ERs, the corrected efficiency
value through bootstrap method is selected as the dependent variable, and the ER is the core explanatory
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variable. Ownership structure (OS) and the degree of COM are chosen as control variables. Thus, RD,
IS, and LM are selected as threshold variables. The threshold regression model is as follows:

Eco-efficiency = µi + ϑ1ERitI(qit ≤ γ1) + ϑ2ERitI(γ1 < qit ≤ γ2)

+ϑ3ERitI(qit > γ2) + τ1OSit + τ2COMit + εit
(9)

where eco-efficiency denotes the values of eco-efficiency corrected by bootstrap method, ERit denotes
ER; OSit means OS; COMit means the level of COM; qit is threshold variable. The coefficient and
variable matrices are δ and Q, respectively:

δ =


τ11

τ2

ϑ1

ϑ2

ϑ3


Q =


OSit

COMit
ERitI(qit ≤ γ1)

ERitI(γ1 < qit ≤ γ2)

ERitI(qit > γ2)


Eco-efficiency = δTQit(γ) + µi + εit

The above function in matrix form is:

Y∗ = δQ(γ)∗T + e∗

For any given threshold value γ, coefficient δ can be calculated as:

δγ =
(
Q∗(γ)TQ∗(γ)

)−1
Q∗(γ)TY∗

The value of residual can be easily estimated as:

e∗Y = Y∗ −Q∗(γ)δγT

The sum of squared errors can be calculated as:

SSE(γ) = e∗γTe∗(γ) = Y∗T
[
I −Q∗(γ)T

(
Q∗(γ)TQ∗(γ)

)−1
Q∗γT

]
Y∗

where the threshold value can be estimated as follows:

ε̂ =
arg
ε minSSE1(ε)

The estimated scheme search can be applied for single, double and triple–threshold models.

3.2.2. Indicator Description and Data Processing

(1). Dependent and Independent Variables

The dependent variable is eco-efficiency, which is measured by the values corrected by
bootstrap—DEA model. According to the previous studies, we followed the practice of Ederington et al.,
and Levinson and Taylor to select the cost of emission reduction or investment in pollution control
to indicate the severity of ER [49,50]. In this paper, ER is measured by the intensity of investment in
pollution control. The higher the value is, the stronger the government’s ER will be.

(2). Control Variables

According to the existing literature [25–33,49], the eco-efficiency of land use is affected by many
factors in addition to the ER. (1) The freedom of market economy indicates the process of marketization,
which can improve the efficiency of economic factor allocation through market mechanism. The OS is
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measured by the proportion of the number of state-owned enterprises and total employment. (2) Local
governments take advantage of the one-sided pursuit of economic growth and fiscal revenue to win
political promotion opportunities, neglecting not only the environmental governance and investment,
but also the important institutional defect [28]. Referring to the practice of Wang and Xu, the number
of annual changes of party and government leaders in each province was used as an intermediate
variable to indicate the degree of COM [50]. If there is a change of party and government heads in the
province in that year, the intermediate variable of the province is assigned as the number of changes of
party and government heads in other provinces minus the number of changes of party and government
heads in the province. Given no replacement of the provincial party and government heads in that year,
the intermediate variable of the province is the number of replacement of other party and government
heads in that year. The replacement times of the provinces are then standardized as follows:

comm,n =

∑Pn
m,n km,n

2Pn
(10)

where, Pn represents the number of provinces and districts in the nth year, and b represents the number
of the replacement of party and government heads (secretaries and deputy secretaries, governors and
deputy governors) in the nth province.

(3). Threshold Variables

The secondary industry accounts for a relatively large accompanied with large amounts of energy
consumption, and the proportion of industrial added value accounts in regional GDP is selected to IS.
The proxy variable to measure RD is defined as the regional investment of research and development.
LM is represented by the ratio of the number of land lots to the total number of transferred land lots
in the primary land market. The method of land transfer in China has changed from the negotiated
transfer to the “bidding, auction and listing” transfer, avoiding the government behavior of “free
riding.” Through rational regulation by the market, the transaction of land use right is no longer
controlled by the government monopoly. In the transaction, the party with the highest bid gets the
land use right. Good market mechanism effectively regulates and controls land resources and greatly
improves the efficiency of resource utilization.

4. Results and Analysis

4.1. Analysis of Eco-Efficiency Results

Bootstrap-DEA model was used to calculate the average eco-efficiency of 30 Chinese provinces
from 2004 to 2016, and then compared with the uncorrected efficiency results (Table 2). The comparison
results show that the average efficiency value of each year after deviation correction was lower than
that of the traditional efficiency measurement method, and all average errors were above 0, which
indicates that the eco-efficiency value directly measured by the fixed directional distance function was
higher than the real value. Traditional measurement methods were highly dependent on the original
data, which could not show the characteristics of non-parametric statistics. Hence, the results modified
by Bootstrap method were more reliable and authentic. In this paper, we chose to analyze the corrected
value of eco-efficiency.
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Table 2. Comparison between the eco-efficiency values and their modifications.

Year Eco-Efficiency Eco-Efficiency after
Modification Bias Derivation Confidence Intervals

2004 0.7872 0.6979 0.0893 0.0488 [0.6052, 0.7740]
2005 0.7740 0.6776 0.0964 0.0523 [0.5784, 0.7595]
2006 0.7750 0.6803 0.0946 0.05198 [0.5822, 0.7618]
2007 0.7720 0.6764 0.0955 0.0510 [0.5790, 0.7570]
2008 0.7813 0.6870 0.0943 0.0499 [0.5880, 0.7661]
2009 0.7904 0.6991 0.0913 0.0487 [0.6028, 0.7764]
2010 0.5871 0.4756 0.1114 0.0553 [0.3777, 0.5687]
2011 0.8085 0.7178 0.0906 0.0490 [0.6213, 0.7931]
2012 0.8132 0.7253 0.0878 0.0488 [0.6280, 0.7990]
2013 0.8116 0.7238 0.0878 0.0491 [0.6232, 0.7965]
2014 0.8117 0.7238 0.0880 0.0488 [0.6272, 0.7972]
2015 0.8049 0.7117 0.0933 0.0505 [0.6152, 0.7897]
2016 0.8131 0.7244 0.0886 0.0464 [0.6349, 0.7962]

Table 2 shows that the overall eco-efficiency in China was not so efficient compared with the
optimal frontier level and showed a trend of declining first and then rising. During 2004 to 2009, the
eco-efficiency values in China were in a fluctuating growth trend. As the last year of China’s ‘Tenth Five
Year Plan’, the government hoped to obtain the biggest economic boost to reflect their achievements in
the shortest possible time due to China’s promotion mechanism. As a result, the government failed to
consider ecological protection while pursuing economic development. Thus, the level of eco-efficiency
declined in 2005. During 2008 to 2009, the level of eco-efficiency increased, which was consistent with
the research results of Yang and Huang, proving that the fluctuation of eco-efficiency in China was
synchronized with economic development [51,52]. Since the reform and opening up, the southern area
(including Guangdong, Guangxi and Hainan) has achieved the highest level of eco-efficiency among the
seven regions by encouraging international trade and investment, integrating technology, equipment,
and management experience with international standards. Rapid economic development ensures that
a region has the conditions to expand investment demand for high-tech industries and environmental
governance, which not only promotes technological progress, but also improved the utilization of
resources and reduces ecological pollution. In November 2008, the executive meeting of the state
council of China put forward the fiscal and monetary policies to cope with the international economic
crisis in 2008 and stabilize the economy, which became the “four trillion yuan investment plan”. One of
the ten measures in the plan pointed out that key energy conservation and emission reduction projects
should be supported and ecological and environmental protection should be strengthened. The reason
for the improved efficiency levels seen in 2008, which continued into 2009, was the Beijing Olympic
Games in 2008. In preparation for the 2008 Beijing Olympics, China had taken several pollution
control measures to improve air quality. According to the State Key Laboratory of Environmental
Chemistry and Ecotoxicology at the Chinese Academy of Science, the government took numerous
measures to improve air quality during the 2008 Olympic Games. Pollution control measures included
improvement of vehicle emission standards, IS adjustment, relocation and closure of heavily polluting
industrial enterprises, adjustment of energy structure, and control of coal pollution [53]. From 2009 to
2010, the eco-efficiency decreased rapidly, making ecosystem suffer serious damage because of the
international financial crisis in 2008. To cope with the crisis brought by the financial crisis, China
proposed a four-trillion-yuan investment plan in 2009, which concentrated 80% of the investment in
resource-intensive industries to boost domestic demand. While promoting economic recovery, it led
to the overburdened capacity of resources, aggravation of pollution discharges and the decline of
eco-efficiency [54]. A large gap of eco-efficiency was observed between 2011 and 2010, because China
required coal consumption to be 63% and 58% more important than that in the Eleventh Five-Year
Plan of China (2006–2010) during the Twelfth Five-Year Plan (2011–2015) and the Thirteenth Five-Year
Plan (2016–2020), respectively [55]. To meet the requirements of the plan, China started to strictly
control energy consumption in 2011, greatly improving eco-efficiency in 2011 and maintaining its



Int. J. Environ. Res. Public Health 2019, 16, 1679 12 of 20

relatively stable level until 2016.The average efficiency value during period examined was only 0.6860.
If eco-efficiency is at the production frontier, then the efficiency value would be 1. Therefore, the gap
between production frontier efficiency and the average efficiency value in the region examined can
be considered as the room for improvement of eco-efficiency, which is 31.4%. Eco-efficiency has not
reached the ideal state overall, indicating that the regional economic development and the optimal
allocation of resources in China still has the potential for improvement.

The spatial distribution pattern of China’s eco-efficiency in 2004, 2008, 2012 and 2016 are presented
successively with an interval of four years. The levels of eco-efficiency values are divided into four
grades: eco-efficiency ≤ 0.55 represents lower efficiency, 0.55 < eco-efficiency ≤ 0.7 represents medium
efficiency, 0.7 < eco-efficiency ≤ 0.85 represents good efficiency, and 0.85 < eco-efficiency ≤ 1 represents
higher efficiency. ArcGIS 10.0 software (ESRI, Redlands, CA, USA) was used to draw the spatial and
temporal distribution patterns of eco-efficiency in China (Figure 1).
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Overall (Figure 1), the spatial distribution of eco-efficiency in China was of inter-provincial
difference and non-equilibrium in 2004, 2008, 2012 and 2016. According to Figure 2, The proportion of
regions with higher eco-efficiency in China was flat and then increased, the portion of regions with
better eco-efficiency increased first and then decreased, the proportion regions with medium efficiency
presented a change trend of increase–decrease–increase and the proportion of regions with lower
efficiency changed from decreasing to increasing and became 0 finally.

From the perspective of region, the regions with higher eco-efficiency in China were only Beijing
and Hainan in 2004; the regions with good efficiency were distributed along the longitudinal axis from
the southeast costal area to the central area and northeast area to the northwest area; the regions with
medium efficiency were centered on Henan and related to the east, west, and south. In 2008, the areas
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with higher efficiency changed from south to southwest, the efficiency of Qinghai worsened, while the
efficiency of Sichuan increased and the quantity of lower efficiency areas decreased.
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In 2012, the regions with higher efficiency were transformed from Beijing and Sichuan into
Qinghai and Hunan, the efficiency level of areas on both sides of the vertical axis of Hubei-Jiangxi
was improved compared with that of 2008, whereas the number of areas with lower efficiency was
increased. In 2016, the number of regions with higher efficiency in land use in China doubled, most
of which were concentrated in the southeast coastal area, whereas the number of regions with good
efficiency decreased and the level of efficiency in northwest was reduced. The overall eco-efficiency in
China generally improved.
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Figure 3. Changing trends of eco-efficiency in China’s seven regions from 2004 to 2016. East: Shanghai,
Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, and Shandong; North: Beijing, Tianjin, Shanxi, Hebei, and
Inner Mongolia; Central: Henan, Hubei, and Hunan; South: Guangdong, Guangxi, and Hainan;
Northeast: Heilongjiang, Jilin, and Liaoning; Northwest: Shaanxi, Gansu, Qinghai, Ningxia, and
Xinjiang; Southwest: Chongqing, Sichuan, Guizhou, and Yunnan.

Figure 3 depicts the eco-efficiency on a map of China’s seven regions. The entire China performed
fairly well on the production frontier, which indicates that economic growth in China decoupled well
from resource inputs and environment pressure. The values of seven regions’ eco-efficiency were all
over 0.6, whereas northwest area performed worst among them with the average values less than 0.7,
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implying more than 30% of the resource inputs was not converted into GDP. South area performed best
among them with the average values more than 0.75, implying less than 25% of the resource inputs
was wasted in these regions as indicated by the red color in Figure 1.

4.2. Testing of Threshold Effects and the Analysis of Threshold Regression

The testing process of panel threshold regression includes determining whether the threshold
effect exists. If it exists, then the threshold value and the significance level of the threshold effect will be
further estimated. On the basis of the above analysis, the panel threshold model was processed with
Stata MP 14.0 software in this paper. One thousand bootstrap replications were used to test whether
the model has threshold effects and estimate the threshold value of each variable (Table 3).

Table 3. Summary statistical for variables.

Variables Sum Minimum Maximum Mean Standard Error

Eco-efficiency 390 0.0025 0.9086 0.6861 0.1433
ER 390 0.008 0.1857 0.0424 0.0284
OS 390 0.0168 0.8343 0.1431 0.1308
RD 390 0.0491 6.6651 1.7399 2.4396
IS 390 0.197 48.9 3.6374 11.163

COM 390 0.7333 2.9167 1.5089 0.5941
LM 390 0.0429 5.9249 0.6065 0.3911

Note: ER, OS, RD, IS, COM and LM are abbreviation of environmental regulation, ownership structure, research
and development, industrial structure, official competition and land marketization, respectively.

As shown in Table 4, the panel threshold effects were tested by considering three threshold
variables (RD, IS, and LM) on eco-efficiency under the constraint of land use carbon emission in an
attempt to determine the non-linear connection between ERs and eco-efficiency.

(1) When RD was taken as the threshold variable, ERs had a double-threshold effect on eco-efficiency.
A double-threshold model was used for regression analysis, and the influence direction and degree
were affected by the value of RD. According to Tables 4 and 5, the values of threshold were 0.3735 and
0.4175 for eco-efficiency. As RD exceeded the threshold point, the level of carbon-reduction technology
increased and then exerted a better influence on eco-efficiency. The threshold points were identified at
0.3735 and 0.4175 with coefficients at −0.0337, −6.4322 and 0.8347 respectively, which means that the
effect of innovation on eco-efficiency remains negative until the level of technical innovation exceeded
the second threshold. With an increase in RD level, the effort of ER on eco-efficiency followed a
U-shaped curve. As the RD reached a higher level, the effect of the coefficient of ER on eco-efficiency
became positive gradually. The implementation of ER could promote the eco-efficiency, which is similar
to the finding of Luo and Wang [56]. The improvement of RD could boost the innovation of clean
production technology, which could accomplish clean production at the source, reduce the intensity of
resource consumption, and obtain more expected output while reducing more undesirable output.
The pollutant emission will not be reduced in the short term while the technical innovation level was
low. By contrast, the ERs will curb the pollutant and promote eco-efficiency. The eco-efficiency of
environmental regulations under the constraint of carbon emission conforms to the Porter hypothesis.
Reasonable ERs can reduce the cost by stimulating the innovation of green production technology
to achieve a win-win situation between the environment and outputs. Through the analysis of the
sample data, only nine provinces including Beijing, Shanghai, Tianjin, Hubei, Sichuan, Shaanxi, Gansu,
Jilin and Liaoning crossed the second threshold of RD in 2004, and the rest did not exceed the first
threshold. By 2010, only Hainan did not cross the first threshold, whereas all other provinces exceeded
the second. This phenomenon showed the importance of scientific and technological innovation to the
development of land gradually coming into focus. In the initial stage of the study, most of the nine
provinces that exceeded the second threshold were economically developed regions or regions with
great development potential. Compared with 21 other provinces, the science and technology resources
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of these regions had more advantages and higher investment in education finance. The country’s
increasing emphasis on science, technology and education also contributed to the gradual improvement
of regional eco-efficiency.

(2) The regression parameters related to LM are given in Tables 4 and 5. As expected, ERs had
significant influence on eco-efficiency, which had a double threshold, and the influence direction and
degree were affected by the value of LM. The influences of ER on eco-efficiency differed at various
LM levels. When the degree of LM exceeded 0.175, and was lower than 0.3219, the coefficient of
ER on eco-efficiency changed from 4.1022 to −0.4304. The coefficient was 1.2621 when the LM was
more than 0.3219. This indicated that the influence of LM on regional eco-efficiency was related to
its threshold values, and when land marketization crossed the threshold values, the direction and
degree of influence on regional eco-efficiency changed, and a difference was observed in the degree of
positive promotion of eco-efficiency before and after the LM level crossed the threshold level. In 2004,
five provinces, namely, Beijing, Shanghai, Zhejiang, Sichuan, and Xinjiang, did not cross the first
threshold, whereas 11 provinces, namely, Shanxi, Heilongjiang, Shannxi, Hainan, Jiangxi, Guizhou,
Henan, Hunan, Yunnan, Qinghai, and Gansu, did exceed the second threshold. By 2010, all provinces
had crossed the first threshold, with only four provinces between the first and the second threshold
of LM by the sample observation, which were Guangxi, Guangdong, Hunan, and Yunnan. With an
increase in LM level, the effort of ER on eco-efficiency followed a U-shaped curve because its level
could adjust the structure of supply and demand of land market. The “bidding, auction and listing”
supply mode increased the land remising price, and LM increased the acquisition cost of construction
land and land fiscal revenue, prompting local governments to increase the supply of construction
land. LM brings about the increase of monetary liquidity, and the reduction of land and capital factor
price leads to the decrease of industrial land price. Due to the uniqueness of China’s land use system,
the government can supplement the price of industrial land by obtaining more land income from
commercial and residential land, and the labor cost of enterprises is increasing. Therefore, land finance
will promote the development of the secondary industry in the short term, and the large consumption
of resources will lead to the increase of pollution emissions, thereby negatively affecting the ecological
efficiency. However, in the long run, the peak value of the secondary industry would be brought
forward and deindustrialization effect will occur. A positive effect on eco-efficiency is observed in the
later stage.

(3) When IS was as a threshold variable to study the role of ERs on eco-efficiency, a single
threshold effect was observed. The influence direction and degree were affected by the value of IS
level. According to Tables 4 and 5, the threshold value was 0.25 for eco-efficiency. When the IS was
below the threshold value of 0.25, the estimated coefficient was −1.4679. In this stage, the increase
of the IS level led to the decline of eco-efficiency. When the IS level crossed the threshold value of
0.25, the estimated coefficient was 1.0899. During the study period, only in 2007 and 2008 did all
provinces cross the threshold of IS. In other years, only Hainan and Beijing did not cross the threshold
successively. The acceleration of the IS level contributed to the improvement of the eco-efficiency level.
The single threshold divided the samples into two sections, and different levels of IS had different
effects on eco-efficiency.

Two reasons explained the positive and negative effects of LM on eco-efficiency. First, the
market-oriented reform of land transfer increased the competition in the land transaction market,
and the housing price was driven upward [57], which intensified the dependence on land transfer
and real estate and would inevitably cause the consumption of energy and building materials and
aggravate the environmental pollution [14]. This further explained the phenomenon that the coefficient
was negative when the LM failed to break through the threshold value. Second, with the long-term
implementation of LM reform, the reform of system of “bonus” to optimize the configuration of land
resources improved resource use efficiency [58] as well as reduced the waste of resources and played a
significant role in the improvement of the eco-efficiency, explaining why LM crossed the threshold
value and the positive direction of the coefficient value. Furthermore, the government was more
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inclined to measure the performance of the officials by the level of green economy. To improve the
official performance, the governments proposed more appropriate ERs for the reduction of pollution
emissions to improve the level of eco-efficiency and achieve the goal of Green Cyclical Economy.

According to Table 5, OS had a positive effect on regional eco-efficiency. Although state-owned
enterprises have inherent defects in the arrangement of property rights, they are faced with “survival
dilemma” and “growth drag” in the market environment [59]. However, with the implementation of
the property right reform, the state-owned enterprises preliminary established a modern corporate
governance structure with clear property right and responsibility, as well as separate government
functions and scientific management, which have enhanced competitiveness and vitality of the
enterprises. The survival dilemma has been greatly alleviated, and the technological progress
and production efficiency of state-owned enterprises have been greatly improved [60]. The total
factor productivity of state-owned enterprises after property right reform has exceeded that of
non-state-owned enterprises in recent years. The improvement of resource utilization rate increases the
economic benefits of enterprises, which is helpful to the improvement of eco-efficiency. The degree of
COM had a negative effect on regional eco-efficiency. Local officials are still dominated by large-scale
and extensive investment during their tenure, and have not paid sufficient attention to energy
conservation and emission reduction. Not much efforts were exerted to reduce the carbon emission
in the year before or in the year before the key party congress promotion. However, after the party
congress, that incentive waned. In the long run, no normal, endogenous mechanism has been formed,
which still has a negative effect on the eco-efficiency of the regions.

Table 4. Test on threshold effects and threshold value estimation.

Thresholds Variables Number of
Thresholds F-Statistic Threshold Value 95% Confidence

Interval

Technical Innovation (RD)
Single 12.41 *** 0.46 [0.42, 0.47]

Double
17.05 ** 0.3735 [0.3506, 0.3900]

0.4175 [0.4050, 0.4235]
Industrial Structure (IS) Single 8.55 ** 0.25 [0.240, 0.257]

Land Marketization (LM)
Single 7.52 ** 0.1750 [0.1355,0.1797]

Double 9.78 ** 0.1750 [0.1437, 0.1797]
0.3219 [0.2638, 0.3221]

Note: (1) p value and threshold value were obtained by Bootstrap 1000 times; (2) *** p < 0.01, ** p < 0.05, * p < 0.1.

Table 5. Estimation results of panel threshold model parameters.

Parameter Coefficient Parameter Coefficient Parameter Coefficient

OS 0.4375 **
(0.1811) OS 0.4855 ***

(0.1848) OS 0.6790 ***
(0.193)

COM −0.0776 ***
(0.0105) COM −0.0882 ***

(0.1064) COM −0.0834 ***
(0.011)

ER(rd ≤ γ1)
−0.337 *
(0.2057) ER(lm ≤ γ1)

4.1022 ***
(0.0863) ER(is ≤ γ1)

−1.4679 **
(0.0534)

ER(γ1 < rd ≤ γ2)
−6.4322 ***

(0.0767) ER(γ1 < lm ≤ γ2)
−0.4304 *
(0.4378)

ER(rd>γ2)
0.8347 **
(0.1336) ER(lm > γ2)

1.2621 ***
(0.0314) ER(is > γ1)

1.0899 ***
(0.0303)

R2 0.1882 R2 0.1423 R2 0.1322

Note: (1) the standard deviation of each coefficient was shown in brackets. (2) *** p < 0.01, ** p < 0.05, * p < 0.1.

5. Conclusions and Policy Implications

Using panel data for 30 provinces in China from 2004 to 2016, the eco-efficiency under the
constraint of land use carbon emission of 30 provinces in China was measured, and the nonlinear
relationship between ERs and eco-efficiency was investigated. At the same time, LM, IS, and RD were
chosen as threshold variables. Panel threshold model analysis confirmed that the effects of ERs on
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eco-efficiency under the constraint of land use carbon emission were highly connected to the three
different threshold variables affecting land use carbon emission:

(1) Based on land use carbon emissions as an undesired output, this paper measured the eco-
efficiency of 30 provinces in China from 2004 to 2016 with bootstrap method. The results indicated that
the average eco-efficiency value of each province after deviation correction was lower than that of the
traditional eco-efficiency measurement method, and the eco-efficiency directly measured by the mixed
directional distance function was higher than the real value. The spatial distribution of eco-efficiency
in China was different and unbalanced among provinces, and the distribution of efficiency level had
significant agglomeration effect. In terms of regions, the number of regions with high eco-efficiency in
China increased gradually, and the distribution range from the northeast and northwest longitudinal
lines was gradually concentrated in the southeast coastal area. The number of regions with high
eco-efficiency decreased, and the efficiency level of all 30 provinces was higher than the lower level.
The overall eco-efficiency of China improved.

(2) During the sample period, under the influence of different levels of RD, IS, and LM, the
change of the regional eco-efficiency would be different and presented significant threshold effects.
Hence, while improving regional eco-efficiency, we should not only pursue the output and the speed
of economic development, but also pay attention to the improvement of ecological environment as
well as the ER within a reasonable range. Compared with RD and IS, ER had a more noticeable
effect on eco-efficiency under the constraint of land use carbon emission when the level of LM was
used as the threshold variable. Therefore, in the process of developing Green Circular Economy, the
government should adopt more appropriate land transfer policies according to local conditions to
improve eco-efficiency.

(3) The nonlinear relationship between the IS and eco-efficiency presented insightful suggestions
for promoting eco-efficiency. Through the “structural effect,” the IS forced the city to improve the
technological level and the efficiency of resource allocation to reduce pollution emissions and optimize
eco-efficiency. In China, the IS level exerted a considerable positive effect on eco-efficiency only when
it was maintained at a suitable level. Otherwise, IS decreases the eco-efficiency level. The promotion of
officials depends on the election of the party congress. This intensive assessment of promotion idea
does not really consider green achievements, such as energy conservation, and emission reduction
in the promotion standard. The old promotion idea should be abandoned, the proportion of energy
conservation and emission reduction assessment should be increased, and the assessment should
be normalized.

(4) To improve the regional eco-efficiency of China and promote sustainable development, the
following suggestions are put forward: First, strengthen the financial investment in science and
technology, create a good environment for technology research and development, realize green and
clean production, drive pollution reduction and improve the level of eco-efficiency. Second, grab from
system root to increase the flexibility of election time for promotion of officials, and the proportion of
performance evaluation on energy conservation and emission reduction. Third, pollution emission
remains an important factor restricting eco-efficiency. While controlling pollution emission, the
formulation and implementation of ERs should be combined with the regional status quo to guide
the broad participation of the public and mobilize the initiative of pollution subjects to implement
emission reduction.

Although this study estimated the threshold effect of ERs on eco-efficiency under the constraint
of land use carbon emission based on bootstrap model and panel threshold model, some limitations
remain. The eco-efficiency presents certain agglomeration characteristics in space, so the next step of
the study can be combined with the spatial econometric model for a more in-depth analysis.
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