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Environmental microbial diversity is often investigated from a molecular perspective
using 16S ribosomal RNA (rRNA) gene amplicons and shotgun metagenomics. While
amplicon methods are fast, low-cost, and have curated reference databases, they can
suffer from amplification bias and are limited in genomic scope. In contrast, shotgun
metagenomic methods sample more genomic regions with fewer sequence acquisition
biases, but are much more expensive (even with moderate sequencing depth) and
computationally challenging. Here, we develop a set of 16S rRNA sequence capture
baits that offer a potential middle ground with the advantages from both approaches
for investigating microbial communities. These baits cover the diversity of all 16S
rRNA sequences available in the Greengenes (v. 13.5) database, with no sequence
having <78% sequence identity to at least one bait for all segments of 16S. The
use of our baits provide comparable results to 16S amplicon libraries and shotgun
metagenomic libraries when assigning taxonomic units from 16S sequences within the
metagenomic reads. We demonstrate that 16S rRNA capture baits can be used on
a range of microbial samples (i.e., mock communities and rodent fecal samples) to
increase the proportion of 16S rRNA sequences (average > 400-fold) and decrease
analysis time to obtain consistent community assessments. Furthermore, our study
reveals that bioinformatic methods used to analyze sequencing data may have a greater
influence on estimates of community composition than library preparation method used,
likely due in part to the extent and curation of the reference databases considered.
Thus, enriching existing aliquots of shotgun metagenomic libraries and obtaining modest
numbers of reads from them offers an efficient orthogonal method for assessment of
bacterial community composition.

Keywords: amplicon, microbial diversity, microbiome, mock communities, next generation sequencing, shotgun
libraries, target enrichment
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INTRODUCTION

The study of microbes is critically important, as they have many
essential roles in ecosystem function, disease pathology, host
physiology, and possibly assessing infectious disease outbreaks
(Dueker et al., 2018; Gallardo-Escárate et al., 2020). As microbial
communities can often be highly diverse and complex, it can
be challenging to identify rare taxa in complex environmental
samples (e.g., soil, freshwater, etc.) with traditional and modern
techniques (i.e., culturing, 16S amplicons, or metagenomic
shotgun libraries). Advances in sequencing technologies have
transformed traditional microbiology. Microbial communities
that were previously considered indiscernible or unstudied, can
now be investigated at greater depths than ever before from
many different environmental systems (Gilmour et al., 2010;
Kustin et al., 2019).

For decades, the 16S small subunit ribosomal RNA (rRNA)
gene has been the gold standard marker for microbial molecular
taxonomic research (Woese and Fox, 1977; Meola et al.,
2015), as this highly conserved gene contains nine rapidly
evolving hypervariable regions that aid in species identification
(Yuan et al., 2015). Amplicon sequencing, targeting the 16S
rRNA, is a cost-effective and high-throughput method used to
study aquatic, terrestrial, food- and host-associated microbial
communities (Logares et al., 2014; Polka et al., 2015; Jiang
et al., 2016; Jousselin et al., 2016; Jouglin et al., 2019;
Suenami et al., 2019; Ziegler et al., 2019). However, studies
relying on 16S rRNA amplicon sequencing have limitations
and biases. Relevant biases in 16S rRNA amplicon sequencing
are associated with DNA extraction, amplification via PCR,
sequencing, and sequence analysis (Kennedy et al., 2014; Knight
et al., 2018). Specifically, PCR biases include primer bias
(Klindworth et al., 2013; Kelly et al., 2019) and varying GC
content (Aird et al., 2011). Additional limitations associated
with amplicon sequencing include challenges in the taxonomic
characterization of microbial communities, as well as accuracy
and availability of reference databases (Kennedy et al., 2014;
Poretsky et al., 2014; Ritari et al., 2015; Knight et al., 2018).
Furthermore, the selection of the hypervariable region used for
the amplicon analysis (i.e., V1–V3; V3–V4; V4; etc.) can lead
to differences in bacterial identification (Vetrovsky and Baldrian,
2013; Martinez-Porchas et al., 2016).

In more recent years, metagenomic shotgun sequencing
has aimed to characterize taxonomic profiles of unique clade-
specific marker genes to provide a balanced view of community
composition and function (Neelakanta and Sultana, 2013; Knight
et al., 2018). However, metagenomic sequencing has its own
limitations; genomic DNA may contain non-target DNA (e.g.,
human DNA), which can affect downstream analysis (e.g., mis-
assemblies of sequence contigs, spurious reads) thus leading
to inaccurate conclusions (Schmieder and Edwards, 2011;
Gasc and Peyret, 2018). Also, metagenomic libraries are more
expensive, take longer to prepare, and are much more complex
than amplicon libraries, requiring more computational effort
(Sekse et al., 2017). In particular, it is difficult to identify
low abundance genetic traits and rare taxa using metagenomic
libraries, and extensive deep sequencing is often required to

do so (Lasa et al., 2019). In summary, shotgun sequencing
is less biased and yields data on many genomic regions, but
the main tradeoffs are higher costs of library preparation,
sequencing, analysis, and potential for differences vs. 16S
amplicons (see below).

Mock communities can be used to help establish ground
truth in microbial diversity studies, in particular when comparing
different library preparation methods (Costea et al., 2017; Rausch
et al., 2019). Rausch et al., 2019 provided a comparison of 16S
rRNA amplicon sequencing and metagenomic sequencing, and
revealed similar community makeup (i.e., abundance and taxa
diversity) of their shallow mock community regardless of library
type. Conversely, other studies have found key differences in
abundance and taxa of mock communites attributed to wet-
laboratory methods (Costea et al., 2017; Rausch et al., 2019).
However, some of these differences may be attributed to varying
bioinformatic tactics.

In terms of bioinformatic analyses, advantages and limitation
of methods, reference databases, and software have been vastly
described for both 16S rRNA and metagenomic strategies
(Truong et al., 2015; Callahan et al., 2016; Costea et al., 2017;
Escobar-Zepeda et al., 2018; Rausch et al., 2019). The variation
among these can lead to a lack of sensitivity and specificity that
may contribute to wrong classifications and/or no classification at
a specific taxonomic level, and erroneous abundance assignments
(Escobar-Zepeda et al., 2018). In particular, it can be challenging
to analyze environmental samples, as most reference databases
are based on human commensals (Dueholm et al., 2020).
Furthermore, the number of 16S rRNA gene copies can vary
widely between bacterial species, and may contribute to biases in
abundance estimates (Vetrovsky and Baldrian, 2013).

Both strategies (i.e., 16S rRNA amplicon and metagenomic
shotgun libraries) present their own challenges and variations
in analyses (Knight et al., 2018), but metagenomic shotgun
libraries tend to perform at a higher sensitivity and specificity
than 16S rRNA amplicon data (Escobar-Zepeda et al., 2018). For
metagenomic data, programs like MetaPhlAn2 may be used to
classify and estimate the relative abundance of microbial cells by
mapping reads against marker sequences to classify the sequences
at the sub-species to higher taxonomic levels (i.e., marker-gene
approach) (Segata et al., 2012; Truong et al., 2015). Whereas
16S rRNA amplicon data is commonly analyzed by inferring
representative sequences using a variety of methods, some of
which are influenced by fragment size and 16S region (Edgar,
2013; Callahan et al., 2016). Furthermore, some methods used
to assign operational taxonomic units may result in limited
resolution at lower taxonomic levels (e.g., genus and species
levels), as even organisms that share 98.75% sequences may be
different species (Mysara et al., 2017). Reference databases for
16S rRNA are much more extensive than those for metagenomic
analyses, which is key for superior analysis, particularly in
samples that are not from human commensals (Escobar-Zepeda
et al., 2018). However, variation in taxonomic classification and
abundance has also been associated with the use of different
reference databases (Jovel et al., 2016; Rausch et al., 2019).

Hybridization capture (also known as sequence capture,
target capture, or targeted sequence capture) is an enrichment
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technique that uses a set of biotinylated DNA or RNA baits that
are complementary to DNA sequences of interest to increase
the proportion of DNA fragments of interest within DNA
libraries, subsequently characterizing the DNA by massively
parallel sequencing (Lasa et al., 2019). Hybridization capture
assays have been designed previously for the 16S rRNA gene,
using 15–1,402 baits (Gasc and Peyret, 2018; Barrett et al., 2020).
Additional hybridization capture bait sets have been designed for
a variety of microbial projects, such as sets of defined pathogens
or particular genes, including virulence genes for Vibrio spp.
that infect oysters (Lasa et al., 2019), bifidobacterial in the
gut of mammals (Lugli et al., 2019), and antibiotic resistance
genes (Guitor et al., 2019). Importantly, unlike other culture
independent techniques, hybridization capture provides greater
phylogenetic resolution and increased sensitivity, while requiring
fewer sequencing reads (Lasa et al., 2019; Barrett et al., 2020).
More specifically, 16S rRNA capture baits provide a cost-effective
way to identify bacteria in diverse environmental samples and
identify rare taxa.

Here, we present a hybridization capture method (i.e., 16S-
cap) to enrich metagenomic shotgun libraries for DNA sequences
of 16S rRNA genes. Our protocol improves on the existing
methods by including many more baits that better cover known
sequence variation in 16S databases, taking advantage of the
extensive reference databases and ease of analyses of 16S
rRNA sequences for taxonomic classification and decreasing
bias introduced from primer affinity, while reducing sequencing
costs per sample compared to unenriched metagenomic libraries.
For microbes, targeted sequence capture techniques for 16S
rRNA have shown more accurate representation of microbial
communities compared to traditional methods (i.e., 16S rRNA
amplicons, shotgun libraries) (Gasc and Peyret, 2018). We
provide a comparison of traditional methods for assessing
composition of microbial communities (i.e., 16S rRNA amplicons
and metagenomic shotgun libraries) with our 16S-cap method
to characterize in silico mock, in vitro mock, and real microbial
communities from genomic data.

MATERIALS AND METHODS

Samples and DNA Extraction
We used two commercial standard genomic DNA mock
community collections to characterize simple communities (HM-
276D, BEI Resources, Manassas, VA; D6306, Zymo Research,
Irvine, CA). For complex communities, we used a subset
of fecal samples from previous studies that examined the
impacts of environmental xenobiotic agents on the gut microbial
communities of rodent models (Gao et al., 2017; Wang et al.,
2018). The first study examined carbamate insecticide in male
C57BL/6 mice (i.e., Mus musculus) (Gao et al., 2017), and the
second examined green tea polyphenols in female Sprague-
Dawley rats (i.e., Rattus norvegicus) (Wang et al., 2018). DNA
was extracted using Qiagen Fast DNA Stool Mini Kit (QIAGEN,
Valencia, CA, United States) or PowerSoil DNA Isolation Kit
(Mo Bio Laboratories, Carlsbad, CA, United States). Details on

experimental design and extractions are previously described
(Gao et al., 2017; Wang et al., 2018).

16S rRNA Amplicon Metabarcoding
The primer pairs targeting the V3 and V4 16S regions (S-D-
Bact-0341-b-S-17 and S-D-Bact-0785-a-A-21) (Klindworth et al.,
2013) were used for amplification of the 16S rRNA gene in
rat fecal samples and mock communities; and the primer pair
targeting the V4 region (515-F and 806-R) (Caporaso et al.,
2012) was used on the mouse fecal samples. We created indexed
fusion primers with TruSeq compatible sequencing oligos as
previously described using the Adapterama I and Adapterama
II systems (Glenn et al., 2019a,b) to generate amplicon libraries
using two rounds of PCR [Method 5 of Table 3 from Glenn
et al. (2019b)]. For the first PCR, we prepared individual 25 µL
PCR reactions for each sample using KAPA HiFi reagents (KAPA
Biosystems, Wilmington, MA, United States). Each PCR reaction
mix included 5 µL 5× KAPA HiFi buffer, 0.75 µL 10 mM dNTPs,
0.5 µL KAPA HiFi HotStart, 1.5 µL 5 µM forward indexed-
fusion primer, 1.5 µL 5 µM reverse indexed-fusion primer, and
1 µL of 20 ng/µL DNA. PCR conditions were as follows: initial
denaturation at 95◦C for 3 min; 15–18 cycles of 95◦C for 20 s,
60◦C for 30 s, and 72◦C for 30 s; final extension at 72◦C for 5 min.

In preparation for the second PCR, we normalized
individually indexed PCR products with a SequalPrep
Normalization Plate Kit (Invitrogen, Carlsbad, CA,
United States) according to manufacturer’s protocols or by
pooling them together based on agarose gel band brightness.
These pools served as the template for a second limited cycle
PCR. Each 25 µL PCR reaction mix included: 5 µL 5× KAPA
HiFi buffer, 0.75 µL 10 mM dNTPs, 0.5 µL KAPA HiFi HotStart,
2.5 µL of 5 µM forward iTru5 primer, 2.5 µL of 5 µM reverse
iTru7 primer, and 5 µL of product from the first PCR. The
following were used as PCR conditions: initial denaturation at
95◦C for 2 min; 10 cycles of 95◦C for 20 s, 60◦C for 15 s, and
72◦C for 30 s; final extension at 72◦C for 5 min. These PCR
products were purified with Sera-Mag magnetic beads (Thermo
Fisher Scientific, Waltham, MA, United States). We quantified
the final products with a Qubit 2.0 Fluorometer (Thermo Fisher
Scientific, Waltham, MA, United States) and pooled them in
equal molar ratios for sequencing. Samples were sequenced using
an Illumina MiSeq v2 600 cycle kit (Illumina, San Diego, CA,
United States) at the Georgia Genomics and Bioinformatics Core
(Athens, GA, United States).

Metagenomic Libraries
Extracted DNA was sheared on a Bioruptor UCD-300
(Diagenode, Denville, NJ, United States) to an average size
of about 500 bp. We input ∼100 ng of fragmented DNA into
each reaction of a KAPA HyperPrep Kit (KAPA Biosystems,
Wilmington, MA, United States) following manufacturer’s
protocol at half volume reaction size with 14 PCR cycles using
iTru adaptors and indexed primers (Glenn et al., 2019b). Samples
were sequenced on an Illumina HiSeq 3000 with PE150 reads
(Oklahoma Medical Research Foundation, Oklahoma City,
OK, United States).
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16S rRNA Bait Design
We used Prokka v1.11 with default settings, to annotate and
extract all 16S rRNA sequences in GreenGenes v13.5 to ensure
that only 16S rRNA regions were represented in the final bait
set (Seemann, 2014). The GreenGenes database was chosen
because it is freely available, widely used, and still reasonably
comprehensive. Stretches of up to 25 Ns were replaced with T
bases to facilitate probe design across short unknown regions. We
then used USEARCH v8.1 (Edgar, 2010) to sort by length (large to
short) and cluster (query coverage 90%, identity 90%) sequences,
retaining one centroid from each cluster. We then designed
120-mer baits with flexible ∼50% overlap. These baits were
then clustered using USEARCH (query coverage 75%, identity
78%), and one centroid per cluster retained. These clustering
parameters were chosen because they allow for a comprehensive
bait set, without an excessively large number of individual
baits. Furthermore, hybridization baits can tolerate substantial
sequence divergence, which we used to our advantage when
collapsing at 78% identity (Li et al., 2013). This combination of
bait design and bait length facilitates the bait set capturing 16S
sequences not present in the GreenGenes database (both filling
in gaps and reaching out to new, unknown, sequences).

16S rRNA Hybridization Capture
Enrichments
Metagenomic libraries were combined into 500 ng pools of eight
samples for rodents or two samples for mock communities.
Target enrichments of each pool were performed using myBaits
kit (Arbor Biosciences CAT # 308616, Ann Arbor, MI,
United States) using the designed 16S rRNA Capture Baits
following manufacturer’s protocol (v3.01) with a 24 h 65◦C
hybridization. Following hybridization, we used Dynabeads M-
280 Streptavidin magnetic beads (Life Technologies, Carlsbad,
CA, US) for capturing and washing each biotinyalted bait
library. We then performed a post-enrichment amplification
using Illumina P5/P7 primers (Illumina, San Diego, CA,
United States) and KAPA HiFi HotStart reagents (KAPA
Biosystems, Wilmington, MA, United States) using 98◦C for
45 s, followed by 16–22 cycles of 98◦C for 20 s, 60◦C for
30 s, and 72◦C for 60 s, ending with a final extension of
72◦C for 5 min. PCR products were cleaned 1:1 with Sera-
Mag beads (Glenn et al., 2019a), quantified on Qubit and
pooled in equimolar ratios for sequencing paired-end 150 and
300 bp reads on Illumina HiSeq 3000 (Oklahoma Medical
Research Foundation, Oklahoma City, OK, United States) and
MiSeq (Georgia Genomics Bioinformatics Core, Athens, GA,
United States), respectively.

Simulating 16S rRNA Target Enrichment
Data
To test the efficiency of our bait set under ideal conditions, we
did an in-silico analysis to determine how well our baits works
during an error- and bias- free hybridization process. Three
metagenomes (i.e., Lindgreen synthetic metagenome (Lindgreen
et al., 2016); Zymo Mock Community DS6306 genomes; and BEI
Mock Community HM-276D) were used to simulate 16S rRNA

capture data. In summary, a fasta file containing our 120-mer bait
set was mapped to each metagenome fasta file (Supplementary
Datas 1–3) using Burrows-Wheeler aligner (bwa) v.0.7.17 (Li
and Durbin, 2009). Samtools v1.9 (Li et al., 2009) was used to
convert the obtained sam file into a bam file. Following this, we
obtained the mapping coordinates of the baits on the reference
metagenomes and extracted the sequences + 200 bp to the
upstream and downstream of the first position, if possible. Here,
we sought to simulate a hybridization of the bait to the core of an
∼500 bp fragment while obtaining the flanking regions typically
captured from use of biotinylated baits.

The software ART 2016.06.05 (Huang et al., 2012) was then
used to simulate > 200,000 paired-end 150 bp fastq reads from
these extended reference sequences from each metagenome.
These fastq files were mapped to Greengenes 97% similarity
database v.13.8 using BBmap v. 38.50 (Bushnell, 2014). For each
metagenome, we recorded the number of paired reads mapped to
Greengenes, number of forward reads, number of reverse reads
and percentage average total mapped, and compared these results
with those from real samples also mapped to the Greengenes
database (see below) (Altschul et al., 1990).

Sequencing Data Processing
After obtaining demultiplexed Illumina pair-end raw sequences,
we used library specific pipelines to process the data (Figure 1).
For 16S rRNA amplicon libraries, primers were removed using
cutadapt v1.15 (Martin, 2011). Following this, DADA2 (v1.8) was
used with customized parameters according to the quality profile
of DNA sequences for quality trimming and filtering (truncLen
was set to be 0.9 of sequencing length of forward reads and 0.8
for reverse reads; maxEE was set to be 6 for PE250 library, and
8 for PE300; maxN to be 0; default for the other parameters),
de-replication and sequence-variant inference, merging paired-
end reads, construction of feature tables, removal of chimeras,
and taxonomy assignment (Callahan et al., 2016). The relative
abundance was calculated by normalizing feature counts to the
total counts of a sample. The taxonomy assignment was based
on 97% clustered OTU of Greengenes v13.8 database using
Naïve Bayesian Classifier as implemented in the DADA2 pipeline
(Wang et al., 2007).

For 16S-cap libraries, the resulting quality filtered reads were
mapped to the 97% clustered OTU based on Greengenes v13.8
database using BBmap v37.78 (Bushnell, 2014). The resulting
mapping information was filtered, and a hit was recorded if both
ends of paired read hit the same reference, or only one end
of the paired read hit a reference. The relative abundance was
calculated by normalizing feature counts to the total counts of a
sample. Also, we assessed the presence of non-target reads in the
quality-filtered dataset by (1) running MetaPhlAn2 v2.7.8 (Segata
et al., 2012; Truong et al., 2015), and (2) mapping to the rat
and mice genomes using Burrows-Wheeler aligner (bwa) v.0.7.17
(Li and Durbin, 2009).

For unenriched metagenomic libraries, Trimmomatic v0.36
(Bolger et al., 2014) was used for quality trimming using a
sliding window of three nucleotides with an average Q > 20,
and minimum length of 75 nucleotides. Reads that passed
initial quality filtering (including both paired reads and orphan
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FIGURE 1 | Overview of data analysis methods on the three library types (i.e., 16s amplicon, 16s hybridization bait capture, and metagenomic libraries).

reads) were fed to MetaPhlAn2 v2.7.14 for taxonomy assignment
(Segata et al., 2012; Truong et al., 2015). The relative abundance
was estimated based on the database hit and marker gene length
by MetaPhlAn2. To further compare to the results from 16S-
cap analysis, we performed the same 16S mapping steps to the
GreenGenes database as described for 16S-cap libraries for the
unenriched libraries.

Statistical Analysis
After obtaining feature tables from the above libraries using
different bioinformatic tools, statistical summary and tests were
carried out in R (R Development Core Team, 2010). Fold changes
of observed relative abundance to theoretical relative abundance
for the mock communities are calculated and ANOVA with
Duncan’s multiple range test was used to compare different
library types and analytical methods. Bray-Curtis distance matrix
were generated using the relative abundance estimates from
different libraries and methods as mentioned above, which
was then analyzed by prinicle coordinate analysis (PCoA)
to reveal clustering pattern. Additionally pairwise between-
library/methods Bray-Curtis distance were compared by ANOVA
with Duncan’s multiple range test. A significance level of 0.05 is
used for the Duncan’s test.

RESULTS

16S rRNA Capture Bait Design
The 1,262,986 sequences comprising Greengenes v13.5 were
annotated and 1,261,075 16S rRNA sequences were retained.
A total of 117 sequences containing consecutive runs of 25 or
more ambiguous bases (Ns) were removed. A total of 18,649
centroidal sequences were obtained from USEARCH clustering.
From these sequences, 413,480 120-mer baits were designed.
These baits were then clustered using USEARCH, retaining one
centroid per cluster, for a total of 37,745 baits (i.e., unique probe

sequences), indicating there are an average of ∼3,000 probes at
each nucleotide position of the 16S rRNA.

Sequencing Summary Statistics
A summary of average sequence statistics for each sample
and library preparation type is given in Table 1. For the
16S rRNA amplicon data, the number of total raw read
pairs per sample ranged from 49,828 for the Zymo mock
community to 136,184 for the BEI mock community, with
rodent fecal samples having intermediate depth. More reads
(∼77%) remained from the rodent fecal samples after the
denoising steps through the rigorous DADA2 pipelines vs.
the mock communities. Low percentages of high quality
reads remained following filtering for both the BEI and
Zymo mock communities (38.7 and 48.8%, respectively).
For the BEI mock community, initial index matching in
R2 reads caused ∼30% loss of data (vs. less than 5%
typically observed in other samples) and DADA2 quality
trimming lost another ∼30% of data. For the Zymo mock
community, the loss of data was mainly due to chimeric filtering
(∼30% of data loss).

For the unenriched libraries, the highest number of total
raw read pairs ranged from 4,985,957 in the Zymo mock
community to 28,219,552 in the insecticide-treated mouse feces.
The percentage of reads retained after filtering was greater than
65% for all unenriched libraries. The average percentage of reads
mapped to GreenGenes ranged from 0.1 to 0.2% in the BEI and
Zymo mock communities.

For 16S-cap libraries, the PE150 reads had higher numbers
of reads on average per sample type than PE300 reads. The
highest number of raw reads (i.e., 11,474,476) was obtained
for the insecticide-treated mouse feces with PE150 reads. The
percentage of reads after filtering were greater than 70% for
all 16S-cap libraries. The average percentage of mapped reads
was greater than 50% for all 16S-cap libraries, with the highest
percentage of mapping in the 16S-cap BEI mock community
sequenced with PE300 at 75.7%. On average among all sample
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TABLE 1 | A brief overview of the average summary statistics (i.e., number of samples, total raw read-pairs, average filtered/bar, average mapped/filtered) for each
sample type of each library type (i.e., 16S amplicon libraries, 16S-cap enriched, and unenriched).

Library type Read
length

Sample
type

N samples Total raw
read-pairs

Total filtered
reads

Average
filtered/Raw
(Mean ± SD)

Average
mapped/Filtered

(Mean ± SD)

Amplicon-16S/V3V4 PE300 Rat feces 5 318,561 247,781 (77.3 ± 6.2)% NA

Amplicon-16S/V3V4 PE300 BEI Mock 1 136,184 52,734 38.7% NA

Amplicon-16S/V3V4 PE300 Zymo
Mock

1 49,828 24,301 48.8% NA

Amplicon-16S/V4 PE250 Mice
feces

8 526,754 389,000 (77.6 ± 7.1)% NA

Enriched PE150 Mice
feces

8 11,474,476 8,321,081 (70.1 ± 5.4)% (59.1 ± 0.8)%

Enriched PE150 Rat feces 5 9,470,428 6,450,541 (72.9 ± 2.1)% (57.8 ± 4.1)%

Enriched PE150 BEI Mock 1 8,203,396 5,345,638 76.7% 70.4%

Enriched PE150 Zymo
Mock

1 5,140,030 3,359,376 76.5% 70.1%

Enriched PE300 Mice
feces

8 1,573,122 1,050,608 (75.1 ± 3.2)% (59.9 ± 2.1)%

Enriched PE300 BEI Mock 1 1,108,481 737,309 75.2% 75.7%

Enriched PE300 Zymo
Mock

1 721,740 467,250 77.2% 73.8%

Unenriched PE150 Mice
feces

8 37,894,050 28,219,552 (68.6 ± 6.4)% 0.1%

Unenriched PE150 Rat feces 5 28,448,468 16,266,683 (87.4 ± 0.9)% 0.1%

Unenriched PE150 BEI Mock 1 8,889,636 6,263,379 71% 0.2%

Unenriched PE150 Zymo
Mock

1 7,001,503 4,985,957 70.2% 0.2%

types, the proportion of on target reads was increased 435-fold
when compared to unenriched libraries (range 283–499 fold
increase, Suppplementary Table 2).

16S rRNA Target Enrichment Simulated
Reads
Summary information for simulated reads is given in Table 2.
We observed a higher percentage of total mapped reads in
our simulated mock communities than for the real data from
those communities (Table 2). For example, the real data from
the Zymo mock community had an average total mapping of
78.15% to GreenGenes, compared to 91.43% from the simulated
data. Similarly, the BEI mock community had an average total
mapping of 78.62% for the real data, compared to 92.37% for
the simulated data.

Validation on Mock Community Samples
We initially prepared amplicon libraries, unenriched
metagenomic libraries, and performed target enrichment
for 16S rRNA (i.e., 16S-cap) on metagenomic libraries using
two mock communities (Table 1). At the phylum level both
samples appear to provide accurate identification of the microbes
with good estimates of abundance, regardless of library type
or data analysis method used (Figure 2). Additionally, in both
the unenriched and 16S-cap libraries analyzed with a 16S
mapping approach, Cyanobacteria was found in low abundance
even though it was not expected to be present in the mock

community. However, when analyzing the unenriched library
using marker gene approach, Cyanobacteria was not found and
instead Ascomycota was identified.

At the genus level, 16S-cap and unenriched libraries
reflect more accurate microbial community composition
and abundance for most taxa (Figure 3). The 16S-cap
and unenriched libraries with 16S mapping missed three
genera: Escherichia, Listeria, and Bacillus for both mock
community samples. However, three families with no genus
identification, Enterobacteriaceae, Listeriaceae, Bacillaceae,
were found, suggesting these are likely the missing genera, and
are represented at a family level. In comparison, 16S rRNA
amplicon-based analysis identified nearly all genera in mock
samples, however, its estimates of abundance for Actinomyces,
Propionibacterium, Pseudomonas, and Rhodobacter all greatly
deviate from the nominal compositions. The unenriched
metagenomic libraries analyzed with a marker-gene approach
were able to identify all 18 genera in the mock communities,
however, its estimate of Bacillus abundance in both mock
communities deviate from the nominal composition (Figure 3).

In the BEI mock community libraries, relative abundance
estimates in the 16S-cap libraries were more accurate than the
amplicon and unenriched libraries as measured by fold change
being very close to 1 (Figure 4). In the amplicon library, several
genera (i.e., Pseudomonas, Actinomyces, Propionilbacterium, and
Rhodobacter) are beyond the twofold change of their nominal
compositions. In particular one genus, Rhodobacter, proved to
be challenging for all three library preparation methods for
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TABLE 2 | Summary statistics for simulated data and real data from mock communities, libraries were enriched for 16S using the 16S-cap enrichment and sequenced
on an Illumina MiSeq PE150 reads.

Sample ID Library
type

Avg. no. of
(Simulated) reads

No. of simulated
reads

Matched
pairs

Matched
forward

Matched
reverse

Total
mapped

Percent of avg.
total mapped

Simulated data

Zymo Mock Enriched-
PE150

412,520 206,260 171,708 190,964 186,216 377,180 91.43%

BEI Mock Enriched-
PE150

415,472 207,736 176,547 193,998 189,777 383,775 92.37%

Lindgreen et al. (2016) Enriched-
PE150

490,238 245,119 188,620 218,911 213,918 432,829 88.29%

Real data

Zymo Mock Enriched-
PE150

3,904,480 1,952,240 1,314,654 1,548,323 1,503,225 3,051,548 78.15%

BEI Mock Enriched-
PE150

6,260,110 3,130,055 2,127,656 2,486,274 2,435,425 4,921,699 78.62%

FIGURE 2 | Relative abundance of bacterial phyla in mock community controls sequenced and analyzed using different methods. Phyla listed as components of the
mock communities are shown. Black vertical bar in each row represents the nominal abundance of respective phylum. Row panel strips labels identify the mock
communities; colors identify library type (i.e., amplicon, enriched 16S-cap, unenriched metagenomic library) and analyzing strategy (i.e., denoising, 16Smapping, and
marker gene).

accurate estimation of relative abundance. Duncan’s multiple
range test revealed that there were significant differences
(p 0.05) between the BEI mock community amplicon and
16S-cap libraries, whereas the unenriched libraries were not
found to be significantly different than the amplicon or 16S-
cap libraries. For the Zymo mock community libraries, relative
abundance estimates in the 16S-cap libraries are more accurate
than relative abundance estimates for the amplicon library.
However, Duncan’s multiple range test did not detect a significant
difference between the three library types (i.e., amplicon,
unenriched, and enriched) (Figure 4).

Validation on Fecal Samples
Principle coordinate analysis was performed on mock
community samples and additional samples from laboratory
mice and rats to further validate the 16S-cap method. When

Bray-Curtis was used to construct the dissimilarity matrix,
which considers abundance estimates, we found that regardless
of analyses at the level of family (Figure 5A, left) or genus
(Figure 5B, right) similar themes emerged. We observed that the
mock community samples were similar to each other regardless
of library type. Conversely, in the mouse and rat samples, we
found that the unenriched libraries analyzed with a marker-
gene approach grouped together separately from amplicon,
unenriched, and 16S-cap libraries, all of which were analyzed
with the 16S mapping approach.

A comparison of Bray-Curtis distance was performed for
rodent fecal samples at the level of family and genus (Figure 6).
This analysis revealed similar trends regardless of sample type
or taxonomic rank. The 16S-cap and unenriched libraries
analyzed with 16S mapping approach showed to be the
most similar to each other, with a dissimilarity rate below
0.25. Bray-Curtis dissimilarity was higher when comparing
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FIGURE 3 | Relative abundance of bacterial genera in mock community controls sequenced and analyzed using different methods. Genera listed as components of
the mock communities are shown. Three families with no genus identification, Enterobacteriaceae, Listeriaceae, Bacillaceae, are plotted below the probable genus
(Escherichia, Listeria, and Bacillus), respectively. Black vertical bar in each row represents the nominal abundance of respective genus. Row panel strips labels
identify the mock communities; color identify library type (i.e., amplicon, enriched 16S-cap, unriched metagenomic library) and analyzing strategy (i.e., denoising,
16Smapping, and marker gene).

the amplicon libraries to both 16S-cap and unenriched
libraries. When comparing the unenriched libraries analyzed
with two different analysis strategies (i.e., mapping reads
to GreenGenes vs. gene-marker approach), we observed the
highest degree of dissimilarity at both the family and genus
levels with dissimilarity rates at approximately 0.75. Post-
hoc analysis revealed that there were significant differences
when comparing the unenriched and 16S-cap libraries to all
other library types, regardless of sample type or taxonomic
rank (Figure 6).

DISCUSSION

Given the limitations of 16S rRNA amplicon and shotgun
metagenomic libraries outlined in the introduction, we sought to
provide an alternative method to identify microbial community
composition by creating a 16S rRNA hybridization capture assay
(i.e., 16S-cap). Our study revealed two important things: (1) our
16S-cap method is an efficient way to obtain sequences from
the complete 16S rRNA gene to accurately reflect microbial
community composition and abundance and (2) bioinformatic
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FIGURE 4 | Fold change (i.e., upper or under) comparing the relative abundances of respective genera in each library to its nominal abundance. Duncan’s multiple
range test was performed to compare each library type for each mock community. Letters indicate whether significant differences were detected.

analysis methods greatly influence community composition in
host-related samples, regardless of library type. In our study
we observed that sequences from 16S-cap were not significantly
different than sequences from unenriched shotgun libraries when
analyzed using similar bioinformatic methods and databases.
However, we did find that the 16S-cap assay requires far fewer
reads, thus allowing enriched libraries to be characterized on
benchtop sequencers, including Illumina MiSeq instruments,
at reasonable cost while overcoming the previously mentioned
limitations with direct 16S rRNA approaches and metagenomic
approaches. These limitations include selection and drift bias in
PCR during amplicon library preparation and the potential for
non-target DNA (e.g., human DNA) in metagenomic libraries,
which can lead to errors in downstream analyses.

Enrichment for genes of interest is an important technique in
characterizing complex environmental and host-related samples.
Previous studies have found other capture enrichment methods
to increase the proportion of on target reads from ∼0.1% in
unenriched shotgun libraries to∼60% in enriched libraries (Gasc
and Peyret, 2018). Similarly, we found 0.1–0.2% of unenriched
libraries to map to the16S rRNA, whereas 58–76% of the
enriched reads mapped to the 16S rRNA (Table 1). On average

we achieved a 435-fold increase in reads mapped to the 16S
rRNA in our 16S-cap libraries compared to the unenriched
libraries (Supplementary Table 2). In silico simulations of 16S-
cap revealed that under ideal conditions, 88–92% mapping to
the 16S rRNA from mock communities could be achieved.
Therefore, our 16S-cap enrichment process helps to achieve a
very high percentage of on-target reads, but not quite as high as
theoretically possible.

Our 16S-cap method identified several species that were not
expected in the theoretical targets of the mock communities,
which may be attributed to several factors. First, the lack of genus
identification may be due to the mapping methods or clustering
level used in data analysis rather than the library preparation
method. Both the 16S-cap and unenriched libraries analyzed
with a 16S mapping method failed to identify three genera
Escherichia, Listeria, and some Bacillus in the mock communities.
However, there are three familes, Enterobacteriaceae, Listeriaceae,
and Bacillaceae, are associated with our missing genera. Thus, it
appears that reads for these three genera appear to be present,
but are not being assigned appropriately by the bioinformatic
program at the genus level. By designating these unidentified
genera as Escherichia, Listeria, and Bacillus respectively, the
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FIGURE 5 | PCoA plots were constructed using Bray-Curtis dissimilarity matrix at a family level (A) and genus level (B). Each project is represented by a colored dot
(i.e., orange = BEI mock community, green = mouse samples, blue = rat samples, and purple = Zymo mock community). Each library type, sequencing read length
and data analysis method is represented by a different shape (i.e., circle = amplicon library, square = 16S-cap enriched PE150 reads, diamond = unenriched PE150
analyzed with 16S mapping and triangle = unenriched PE150 analyzed with metagenome mapping). Numbers represent sample number.

16S-cap library is highly accurate in terms of taxonomic
classification and abundance. Taxonomic misassignment is a
known problem with 16S mapping methods (Park and Won,
2018; Abellan-Schneyder et al., 2021), and new software is in
development (Schloss and Westcott, 2011; Pollock et al., 2018;
Zinger et al., 2019; Djemiel et al., 2020). Moreover, several
other studies have found bioinformatic databases have difficulty
assigning Escherichia, Listeria, and Bacillus at a genus level (Park
and Won, 2018; Abellan-Schneyder et al., 2021). Additional
work on the mapping and assignment processes used here, as
well as comparisons of newly developed and commonly used
bioinformatic software is beyond the scope of this paper, but
warranted in future work.

We compared theoretical target values of the BEI resources
and Zymo mock communities to all three library types (i.e.,
amplicon, unenriched, and 16S-cap) (Figures 3, 4). We find that
the 16S-cap libraries are representative of the target abundance
values of the mock communities (Figure 3). Post-hoc analysis
revealed that the 16S rRNA amplicon library and 16S-cap library
made from the BEI mock community were significantly different
from each other (p≤ 0.05) based on relative abundance. A PCoA
revealed that in the mouse and rat samples the unenriched
libraries analyzed with a marker-gene approach grouped together
separately from 16S rRNA amplicon libraries and 16S-cap and

unenriched libraries analyzed with taxonomic binning approach
(Figure 5). Thus, enrichment and amplicon sequencing result
in similar library composition, as do 16S-cap and unenriched
libraries analyzed with a 16S taxonomic binning approach. This
indicates that our 16S-cap method may be less biased than
16S amplification, but that analysis methods or the reference
database may greatly influence community composition results.
Walsh et al. (2018) analyzed different species classifiers using
marker gene approaches and taxonomic binning, and found
that the results of the marker gene approach (i.e., MetaPhlAn2)
were different from taxonomic binning methods. Taxonomic
binning methods are influenced by the size of the reference
genome, whereas marker gene approaches are not (Droge and
McHardy, 2012; Balvociute and Huson, 2017; Walsh et al., 2018).
The use of hybridization capture baits may help alleviate some
of these issues.

Other groups have designed a more limited bait set to
hybridize all known 16S rRNA gene sequences by focusing on
highly conserved regions and incorporating ambiguities (Gasc
and Peyret, 2018). When validating their bait set on a mock
community, they found that they detected 24 of 26 genera tested,
and that two less abundant species (i.e., Methanobrevibacter
smithii and Methanococcus aelocius at 0.00006%) were missed. In
addition, Cariou et al. (2018) tested hybridization capture probes
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FIGURE 6 | A comparison of the Bray-Curtis distance metric was performed for each library type at a genus level using box plots. Bray-Curtis distance is indicated
on the y-axis. Library type is indicated on the x-axis. Duncan’s multiple range test was performed to compare each library type for each mock community. Letters
indicate whether significant differences were detected.

designed by Gasc and Peyret (2018) on a previously characterized
pea aphid and found their enriched libraries to be representative
of the bacterial population. There are some key differences
between the design of our baits set and Gasc and Peyret (2018).
Foremost, is the number of baits included in the bait set. Our bait
set included 37,745 120-mer baits and was designed from all 16S
rRNA gene sequences in GreenGenes, whereas Gasc and Peyret
bait set include 15 baits that are 28—50-mer and was designed
by focusing on highly conserved regions of the 16S rRNA and
incorporation of degenerate sites. We used 120-mer baits because
120 nt is the maximum practical size for the Arbor Biosciences
platform and it maximizes the tolerance of non-complementary
bases with reasonable hybridization times. Additionally, using
more baits with more sequence variation among the baits helps to
capture a greater range of diverse targets and thus generates more
accurate abundance estimates of the full range of community
members. Having a more extensive bait set, such as ours, may
reduce some of the previous challenges, demonstrated by the

ability to detect all genera in the mock communities. These
aspects are critical when studying environmental and host-
related samples and searching for rare taxa. In addition, the use
of longer hybridization times or “double capture” (i.e., when
captured product is captured again) can improve the percentage
of on target reads and help capture rare sequences. Future work to
identify the optimal bait set(s) for various microbial communities
and research objectives should include a direct comparison of the
Gasc and Peyret (2018) bait set verses our bait set.

Preparing 16S-cap libraries can most readily be accomplished
by using an existing enrichment kit, which ranges in cost
from $1,500 to $5,200 depending on the number of reactions
purchased. To reduce reagent costs and hands-on time, we have
successfully pooled multiple samples (see section “16S rRNA
Hybridization Capture Enrichments”), which is commonly done
(Glenn and Faircloth, 2016). For example, pooling samples in
groups of eight reduces capture costs from $93.75 per sample
to $11.72 per sample (Supplementary Table 3). Larger numbers
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of samples can be pooled to further reduce costs, but there
are tradeoffs (see Glenn and Faircloth, 2016). Our baitset is
commercially available from Arbor Biosciences in ready-to-
use kit format, and the bait sequences are freely available to
the scientific community (Supplementary Data 4). Thus, our
baits can be modified and/or synthesized by any strategy any
researcher desires.

Sequencing 16S-cap libraries require less extensive sequencing
than unenriched shotgun metagenomic libraries, which reduces
costs (Supplementary Tables 4, 5). It is important to note
that the number of reads obtained for 16S-cap libraries here
(Table 1) is far more than are necessary or would be reasonable
when implementing this strategy. For example, a 100-fold 16S-
cap enrichment sequenced on an Illumina MiSeq Nano PE150
provides a cost-savings of approximately $315 compared to an
unenriched metagenomic shotgun library requiring 1 million
reads (Supplementary Table 4). Indeed, 16S-cap makes it
economically and logistically reasonable to routinely screen for
16S segments from enriched shotgun metagenomic libraries
on Illumina MiSeqs. 16S-cap decreases costs when using a
production scale Illumina sequencer (e.g., Illumina NovaSeq) to
less than $0.10 per sample when achieving a 100-fold enrichment
(Supplementary Table 5). However, because production scale
sequencers produce 400–2,500 million read pairs, to achieve low
cost for samples needing relatively few reads, each run requires
huge numbers of samples or a mixture of some samples needing
large numbers of reads (i.e., a mixture of projects; see Glenn
et al., 2019a). Due to the limited savings possible on production
sequencing costs (Supplementary Table 4), the savings in data
transfer, storage, and compute time may be more significant than
savings in sequencing costs.

In summary, our data demonstrates that the 16S-cap assay
and unenriched shotgun metagenomic libraries produce very
similar community profiles. Importantly, our 16S-cap library is
produced from a metagenomic library, which eliminates primer
(though not all PCR) biases. Additionally, our 16S-cap assay
provides a deeper community profile (i.e., more 16S reads
that can be queried to a database) with far fewer reads than
the unenriched shotgun metagenomic libraries. In host-related
samples, we routinely achieved > 400-fold enrichment. Thus,
expensive deep sequencing is unnecessary for 16S-cap libraries
because a few thousand reads provide the same number of 16S
rRNA sequences as millions of shotgun reads. By trading modest
additional library preparation costs for reduced sequencing
costs (Supplementary Tables 3–5), 16S cap is economical and
opens up the possibility of adding deep taxonomic sampling to
studies that are capturing other genes of interests e.g., antibiotic
resistance genes (Guitor et al., 2019; Oladeinde et al., 2019;
Thomas et al., 2020). In comparison to amplicon libraries, the
16S-cap assay will be more expensive, however, it provides
superior microbial community resolution, increased accuracy of

relative abundance, an orthoganol approach to marker genes, and
greater flexibility in terms of sequencer and kit choice. We believe
that our bait set is a valuable tool to efficiently and accurately
identify microbial community composition and would be well-
suited to be used in combination with other bait sets targeting
different genes of interest (e.g., antimicrobial resistance baits).
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