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Abstract

Hotspots of meiotic recombination can change rapidly over time. This instability and the reported high level of inter-individual
variation in meiotic recombination puts in question the accuracy of the calculated hotspot map, which is based on the
summation of past genetic crossovers. To estimate the accuracy of the computed recombination rate map, we have mapped
genetic crossovers to a median resolution of 70 Kb in 10 CEPH pedigrees. We then compared the positions of crossovers with
the hotspots computed from HapMap data and performed extensive computer simulations to compare the observed
distributions of crossovers with the distributions expected from the calculated recombination rate maps. Here we show that a
population-averaged hotspot map computed from linkage disequilibrium data predicts well present-day genetic crossovers.
We find that computed hotspot maps accurately estimate both the strength and the position of meiotic hotspots. An in-depth
examination of not-predicted crossovers shows that they are preferentially located in regions where hotspots are found in
other populations. In summary, we find that by combining several computed population-specific maps we can capture the
variation in individual hotspots to generate a hotspot map that can predict almost all present-day genetic crossovers.
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Introduction

Meiotic crossovers are tightly clustered into hotspots in many

organisms, including human, mouse and yeast [1–4]. Although

hotspots may not be necessary to explain patterns of linkage

disequilibrium in human populations [5], their existence is strongly

supported by numerous experimental studies [6–9] (for review see

[3,4]) and detailed studies of the MHC class II region indicate that

hotspots are mainly responsible for the patterns of linkage

disequilibrium in that region [10]. High resolution experimental

studies also show that hotspots are surrounded by regions of very low

recombination rates, much lower than the genome average [8,11,12].

Although hotspots exist, their existence as well as their

transmission from generation to generation is puzzling. According

to current models of meiotic recombination [1–3] the fragment of

DNA around the double strand break (DSB) from the initiating

chromosome is replaced with the DNA sequence from the non-

initiating chromosome. Therefore, if this initiating DSB is caused

by a genetic element located inside or near the hotspot, theoretical

studies predict that hotspots will self destruct (the hotspot paradox)

[13]. As a consequence, theoretical analyses and computer

simulations show that there should be a constant turnover of

hotspots [14–16]. Thus, it is difficult to explain the existence and

relative abundance of strong hotspots [16], although simulations

suggest that genetic drift can lead to fixation of weaker hotspots

[14,15]. Some potential solutions of the hotspot paradox include

alternative activation mechanisms [17,18] or incorporation of

natural selection in the analysis [19].

In agreement with theoretical analyses, a high level of variation

in meiotic recombination has been observed in humans (for review

see [4,20–23]). It has been shown that there is essentially no

correlation in the positions of the hotspots of meiotic recombina-

tion between chimpanzee and human in the roughly 1.5 Mb

region compared [24–26]. In the shorter timescale of human

evolution, variation in meiotic recombination between individuals

and populations has been seen using both cytogenetic and genetic

methods [23,27,28], by computational studies of patterns of

linkage disequilibrium in several dozen human genes [29–35] and

by the direct observation of polymorphisms in hotspots detected by

sperm genotyping [7,8,11,36–41]. Interestingly, on a megabase

scale recombination rates appear to be similar between popula-

tions [42,43] and even in distantly related species, such as human

and mouse [44], suggesting the existence of constraints on domain-

wide recombination rates.

The mechanisms responsible for hotspot formation and the

regulation of hotspots in humans are poorly understood. If in yeast,

for example, the presence or absence of short sequence motifs can

turn on and off meiotic recombination at specific locations (see [2]

for review); in mammals the situation appears to be more complex.

Although a redundant 13-mer CCNCCNTNNCCNC has been

identified in the human genome as associated with higher

recombination rates [45] it is relatively non-specific and is found

near only 40% of hotspots. Thus, it is unlikely that this motif can

explain all hotspots in humans. Nevertheless, strand asymmetry in

the initiation of meiotic recombination has been observed in several

human [36,37,40,41] and mouse hotspots [46–51]. It has been also
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shown that this haplotype-specific variation in meiotic recombina-

tion can be inherited [41]. This differential activity of haplotypes

indicates that subtle sequence or epigenetic differences can

dramatically influence meiotic recombination both at the level of

hotspots and, as reported, on a more global level as well [27,52]. In

terms of the mechanism of regulation, both cis- and trans-activating

genetic factors have been identified in human [53] and mouse

[46,49,50]. Several chromatin modifications, notably H3K4 tri-

methylation are associated with meiotic recombination in yeast

[54,55] and mouse [56]. A combination of such epigenetic and

genetic factors is likely responsible for the high level of variation in

meiotic recombination in humans.

Studies of the regulation of meiotic recombination are

hampered by the fact that currently there is no practical way to

experimentally determine genome-wide hotspot map in human. A

commonly used approach suitable for defining genome-wide

hotspot map is to calculate recombination rates from patterns of

linkage disequilibrium in human populations. There are many

potential reasons why the computed map may be different from

the actual distribution of present-day crossovers. One possibility is

rapid change in the meiotic hotspots. Another possibility is errors

inherent in calculating recombination rate profiles from popula-

tion variability data. The inaccuracy in defining recombination

rates from sequence variation data is high [34,57–59]. Current

methods rely on a rather simplistic population history model and

substantial deviations in local population history will affect rate

estimates [58,60]. Natural selection also may lead to both the

‘‘disappearance’’ [60] and ‘‘appearance’’ [61] (although these

findings were later disputed [62]) of hotspots. A lack of diversity in

population samples will also lead to an inability to accurately

reconstruct recombination rates (see [60] and references therein).

Thus, it is important to establish how well the computed map

predicts genetic crossovers.

Recently Coop et al. [52] performed a genome-wide mapping of

meiotic crossovers in Hutterites and compared the locations of

crossovers with the positions of computed hotspots. They reported

that while the majority of crossovers originate in hotspots,

approximately 40% of recombination events take place outside

of hotspots calculated from patterns of linkage disequilibrium.

Moreover, they observed a great variation in the usage of

LD-defined hotspots in different individuals. In up to a third of

individuals the estimated hotspot usage (fraction of recombination

events that originate in hotspots) is below 50% and even reaches

0% in two individuals (95% confidence interval less than 50%

usage). This observation suggests that the calculated map may not

accurately describe the distribution of meiotic recombination

events in some individuals.

We, however, believe that some of the calculations in the Coop

et al. paper are may not accurately reflect the similarity of the

crossover distribution to the computed map. The most important

conclusions in the Coop paper are based on the use of an indirect

estimate for the true fraction of crossovers that originate in

hotspots that did not take into account differences in hotspot

strength and the variation in the background recombination rate.

All calculations are based on ‘‘hotspot usage’’ as defined by Coop

et al. This usage, however, would be identical whether a very

strong hotspot is surrounded by areas of low recombination rate or

a very weak hotspot is in a region with a high background. To

evaluate the accuracy of the computed map we have mapped

crossovers in CEPH pedigrees and then estimated how well this

map predicts the positions of the crossovers. In our work we are

not only asking if hotspots explain all crossovers, but also if the

distribution of crossovers is consistent with the computed map.

Results

Mapping crossovers in CEPH families
To define regions recombining in the present day we

determined 4778 intervals containing crossovers in 69 siblings

from ten large CEPH Utah reference families (CEPH/UTAH

Pedigrees 1334, 1340, 1341, 1350, 1362, 1408, 1420, 1447, 1454

and 1459, grandparents and parents from these families were

previously genotyped by the HapMap project [32,63] as a part of

the CEU population) using the Affymetrix 500K mapping set (see

Methods). To map crossover positions from SNP genotype data we

developed an algorithm that phases chromosomes in nuclear

families with multiple siblings and then determines regions where

derived chromosome sequence switches from one of the parental

chromosomes to the other. We first determined phase in the

positions where trivial haplotype inference is possible (SNPs

homozygous in one parent and heterozygous in the other) and

then in the positions heterozygous in both parents (for details see

Text S1). The uncertainty in defining crossover positions ranges

from 50 bp to over 30 Mb (a crossover mapped to centromere of

chromosome 9) with a median of ,70 Kb (Figure S1, Table S1,

Table S2). The patterns of the distribution of crossovers such as an

excess of maternal crossovers, and telomeric distribution of

paternal crossovers are consistent with previously reported

observations (Figure S2). We achieved substantially higher

resolution of crossover mapping (70 vs 93 Kb) than has been

reported before [52], although it is not clear whether this

improvement is due to the more precise crossover mapping or

results from differences between the CEPH and Hutterite datasets.

The higher resolution of crossover mapping may be partially

explained by the ,10% higher number of genotyped SNPs in our

study and by the larger number of children per CEPH family (6.9

on average) compared to the number of children per Hutterite

family.

We used a coalescence-based computational approach [57] (see

Methods for details on computational procedures) to estimate the

Author Summary

In eukaryotes genetic crossovers are responsible for
generating genetic diversity and ensuring the proper
segregation of chromosomes. Genetic crossovers are
tightly clustered in hotspots. Although the existence of
hotspots in humans is clearly proven, mechanisms of their
formation and the regulation of meiotic recombination in
general remain poorly understood. An additional compli-
cation in studies of meiotic recombination is the fact that
the direct experimental mapping of human hotspots on a
genome-wide scale is not feasible with current methods.
The best available indirect methods compute the position
of hotspots from patterns of historic associations between
genetic markers in population samples. In this study we
determined the positions of genetic crossovers in ten
pedigrees of European origin and then compared the
positions of crossovers with the hotspots computed from
HapMap data. Importantly, we find that the population-
averaged computed map is in close agreement with the
observed distribution of genetic crossovers. We also find
that cryptic hotspots that are not easily detected in the
computed European map can be more effectively identi-
fied if other populations are included in the analysis. Our
analysis shows that high-resolution recombination profiles
are highly similar between distantly related populations
and that by including computed hotspots from several
populations we can predict nearly all crossovers.

Computed Recombination Map Predicts Crossovers
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genome-wide recombination rates for each of the populations

represented in Phase II of the HapMap dataset [32] and then we

identified hotspots in each of the population-specific recombina-

tion rate maps and in a population-averaged map (Figure S3,

Table S3). Hotspots were defined as peaks in the recombination

rate profile less than 100 Kb in width with strength above

0.01 cM. The use of this definition results in the identification of

45,872 hotspots in the CEU sample (see Text S1 for details). In

addition to using the peak-based definition of the hotspots, we also

included in the analysis 32,996 hotspots previously inferred from

the HapMap Phase II dataset using the likelihood-ratio test

implemented in LDHot [32,63]. LDHot hotspots were defined as

hotspots detected in more than one population and thus they are

not population specific. The work by Coop et al [52] is based

exclusively on LDHot hotspots and did not take into account

differences in the strengths of the hotspots.

The population-averaged map accurately describes the
distribution of present day crossovers

First we asked how well hotspots predict CEPH crossovers.

Since the average size of crossover-containing intervals is

comparable with the distance between hotspots, some crossover

intervals overlap hotspots due to our inability to map them

precisely. To address this issue we analyzed separately three

subsets of crossovers mapped to intervals of different size (Figure 1).

Smaller crossover intervals are less likely to overlap hotspots by

chance (Figure S4).

In general, the distribution of present-day crossovers is clearly

non-random. Crossovers are relatively well predicted by either

LDHot- or peak-defined hotspots. The majority of crossover

intervals overlap hotspots and the proportion of predicted

crossovers is significantly higher (P,0.001 by simulation) than

for identically sized crossover intervals randomly distributed in the

genome. While 68%–74% of crossover intervals smaller than

20 Kb overlap hotspots, only 22 and 30% of randomly distributed

crossovers intervals are expected to overlap hotspots (Figure S5,

for details on simulation see Text S1). Nevertheless, we find that

26% of the present-day crossover intervals smaller than 20 Kb do

not overlap CEU hotspots and 32% of crossover intervals do not

overlap LDHot hotspots (Figure 1B and 1C). As expected, the

percentage of crossover intervals overlapping hotspots is depen-

dent on how accurately we can map the crossovers (Figure 1B and

1C, Figure S4). The percentage of not predicted (we consider

crossovers to be ‘‘predicted’’ if crossover intervals overlap at least

one hotspot) crossovers in the CEPH sample is very close to the

percentage of not predicted crossovers previously reported in

Hutterites (28% for crossover intervals smaller than 30 Kb [52]

and Figure S6).

Hotspots account for only 71–79% of the genetic map (Table

S3). Thus, even if crossovers would be distributed in perfect

agreement with the map, a fraction of crossovers proportional to

the fraction of the recombination rate map that lies outside

hotspots is expected to be not predicted by hotspots. An additional

complication in estimating the expected fraction of crossovers that

overlap hotspots by chance arises from the limited resolution of the

mapping of crossovers. The percentage of crossovers predicted by

chance depends on the size and distribution of hotspots and the

size of the crossover intervals. To calculate the expected fraction of

predicted crossovers we performed a computer simulation. We re-

distributed the experimentally determined crossover intervals

according to the computed recombination rate map (Text S1).

We generated 1000 datasets where crossovers were distributed

according to the CEU or the population-averaged maps (Figure 1B

and 1C).

Both the CEU and LDHot hotspots predict at least as many as

expected CEPH crossovers (Figure 1B, Figure S6) and Hutterite

crossovers (Figure S7) if we re-distribute crossovers according to

the population-averaged map. For both sets of hotspots the

fraction of not predicted crossovers is significantly lower than

expected for crossover intervals smaller than 50 Kb and all

crossover intervals (P,0.001 by simulation, Figure 1B, Figure S7,

S8) and not significantly different for crossover intervals smaller

Figure 1. A substantial fraction of present-day crossovers is not
predicted by historic recombination rate profiles. (A) Examples
of small present day crossover intervals that do not overlap historic
hotspots. (B,C) Percentage of present-day crossovers in CEPH families
not predicted by overlapping hotspots. The percentages of crossovers
that do not overlap CEU and LDHot hotspots were calculated for several
subsets of all crossovers defined with various degrees of accuracy. For
comparison, the same percentage was calculated for crossovers
distributed according to probabilities determined by population-
averaged (B) and CEU (C) recombination rate maps. Mean and 95% CI
are plotted on the graph. A large fraction of crossovers is not predicted
by hotspots.
doi:10.1371/journal.pgen.1000831.g001

Computed Recombination Map Predicts Crossovers
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than 20 Kb (P = 0.34 for CEU hotspots, P = 0.37 for LDHot

hotspots, Figure 1B, Figure S7, S8). Thus, the observed fraction of

not predicted crossovers agrees with the expected fraction of not

predicted crossovers if crossovers are distributed according to the

population-averaged map.

Unlike the results for the simulation with the population-averaged

map, we find that when crossovers are distributed according to the

CEU map the fraction of crossovers that are not predicted by the

CEU hotspots is significantly higher than expected (P,0.001 by

simulation for all sets of crossovers, Figure 1C, Figure S8). For

LDHot hotspots, the fraction of not predicted crossovers is

significantly higher than expected for crossover intervals smaller

than 20 Kb and 50 Kb (P,0.001, P,0.017 by simulation,

respectively) and is not different from expectations if we compare

all crossovers (P = 0.18) (Figure 1C, Figure S7). This excess of not

predicted crossovers is observed for all subsets of Hutterite

crossovers as well (Figure S7). Thus, our computer simulation is

sensitive enough to distinguish the population-averaged map from

the CEU map and the population-averaged map appears to be

closer to the observed distribution of crossovers.

Hotspots of different strengths are detected in the
computed map with comparable efficiency

The comparison of observed and expected fractions of predicted

crossover intervals did not take into account the relative strength of

individual hotspots. One can imagine that weak or strong hotspots

are predicted with different efficiency. To estimate the relative

impact of hotspots of different strength on present-day crossovers

we calculated how frequently hotspots of different strength overlap

crossover intervals. Because the number of hotspots in the human

genome is larger than the number of mapped crossovers in either

CEPH or Hutterite datasets, we cannot perform such an

assessment for the majority of individual hotspots. To account

for this relatively low number of crossovers we grouped together

hotspots of similar strengths. We ranked all CEU hotspots based

on their strength and divided them into twenty bins of equal

aggregate strength, so each of the bins is expected to predict an

equal fraction of crossovers. For example, the first bin contains the

261 strongest hotspots and the last bin (bin number 20) contains

the 11,837 weakest hotspots, but both are expected to predict 5%

of crossovers (Table S4). We then calculated the percentage of

crossovers actually predicted by each of the bins and plotted these

values (Figure 2 and plotted according to the minimal strength of

the hotspots in the bin in Figure S9, similar analysis performed for

LDHot hotspots is presented in Figure S10). This cumulative

recombination frequency graph indicates the relative capacity in

predicting crossovers of hotspots of different strengths.

In the ideal case if crossovers could be mapped precisely, if

hotspots could explain all crossovers and if the strength of hotspots

could be estimated without errors we would expect to see a straight

diagonal line with exactly 5% of crossovers per bin. The observed

shape of the cumulative frequency graph although not ideal, is

reasonably close to a straight line. This indicates approximately

equal contributions from hotspots of different strength. The

cumulative recombination frequency graphs are highly similar for

the CEPH and Hutterite datasets (Figure 2) and for LDHot-

defined hotspots (Figure S10). On the other hand, there is a

marked difference in the slope of the cumulative frequency graph

for subsets of crossovers mapped to larger and smaller intervals.

This difference in the slope cannot be completely accounted by

crossovers that overlap hotspots by chance (see Figure 2). This is

likely an expression of finer differences between the computed

map and the observed distribution of crossovers and indicates a

tendency for not predicted crossovers to locate near hotspots.

The observed cumulative recombination frequency
graphs are similar to those expected from the
population-averaged map

Compared to the analysis presented on Figure 1 where all of the

hotspots were combined, the cumulative recombination frequency

graphs reflect the relative activity of hotspots of different strengths.

To better estimate how close the computed recombination rate

Figure 2. Hotspots of different strengths are equally active in recombination. Cumulative recombination frequency graphs of CEPH (A) and
Hutterite (B) crossovers. All CEU hotspots were ranked by the strength from the strongest (bin1) to weakest (bin20) and divided into twenty bins of
equal aggregate strength. For each bin we calculated fractions of CEPH (A) and Hutterite (B) crossovers predicted by hotspots from analyzed bin and
bins with stronger hotspots. For the analysis all crossovers were divided in sets based on the mapping accuracy. For comparison, we calculated the
fractions of crossovers that overlap hotspots by chance (see Text S1 for details on calculation) and plotted their mean values (dashed lines).
doi:10.1371/journal.pgen.1000831.g002

Computed Recombination Map Predicts Crossovers
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maps are to the observed distribution of crossovers we compared

the observed cumulative recombination frequency graphs with

those obtained by computer simulation (Figure 3, Figure S11).

Here we again clearly see that the crossover distribution both in

CEPH and Hutterite datasets resembles the population-averaged

map better than the CEU map. We must note, however, that the

observed distribution of crossovers is not identical to that of either

the CEU or the population-averaged map. For most subsets of

crossovers hotspots predict more crossover intervals than expected

from the population-averaged map. This suggests that the

population-averaged map slightly underestimates the strength of

hotspots and the peak rate inside them. For the CEU map we see

exactly the opposite effect — hotspots predict less crossovers than

expected. This means that the CEU map tends to overestimate the

strength of some hotspots and that the actual distribution of

crossovers is less concentrated in hotspots compared to what would

be expected from the CEU map.

How many crossovers are not predicted by hotspots?
Because some crossovers can overlap hotspots by chance, the

observed proportion of crossover intervals overlapping hotspots

can be higher than the true fraction of crossovers that were

initiated in hotspots. There are several ways to estimate the

proportion of hotspot-derived crossovers. One way is to calculate

the fraction of predicted crossovers assuming that the distribution

of not predicted crossovers is known. We have uniformly re-

distributed crossovers near their original location and Coop et al

[52] re-distributed crossovers normally. An application of this

approach results in estimates of 23%–33% for the fraction of not

predicted crossovers for smaller and larger crossover intervals

respectively (see Text S1, Figure S12, Table S5 for details).

Another way to estimate the true proportion of hotspot-derived

crossovers comes from examining cumulative frequency graphs. In

the ideal situation for a perfect correlation between the map and

the observed distribution of crossovers each bin would predict

exactly 5% of crossovers. The difference between the ‘‘ideal’’ 5%

slope and the observed slope in the cumulative recombination

frequency graph is an estimate of the proportion of not predicted

crossovers. This estimate is based on two assumptions: that in the

middle of graph the fraction of crossovers overlapping hotspots by

chance is low and that hotspots from all of the bins are equally

effective in initiating crossovers. The first assumption is justified by

the relatively low number of hotspots in the ‘‘stronger’’ bins. The

fraction of crossovers that overlap hotspots by chance depends on

the number of hotspots. The total number of hotspots in the first

ten bins is only 7,778, or approximately 1/6 of all hotspots. We

estimate that less than 0.5% crossovers per bin overlap hotspots by

chance (see Figure 2). The second assumption is justified by the

relatively linear shape of the graph.

Figure 3. The population averaged map is much closer to the distribution of meiotic crossovers than the CEU map. We calculated and
plotted cumulative recombination frequency graphs for CEPH (A) and Hutterite (B) crossovers and the cumulative recombination frequency graphs
for crossovers re-distributed according to the population-averaged or CEU maps.
doi:10.1371/journal.pgen.1000831.g003

Computed Recombination Map Predicts Crossovers
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The slope in the middle of the cumulative frequency graph is

between 0.034/bin and 0.042/bin for the smaller and larger

crossover intervals respectively, resulting in estimates of the not

predicted fraction of between 0.016 and 0.008 per bin or, if we

extend this estimate to all twenty bins we obtain 16–32% for all

hotspots. Thus, application of both approaches results in similar

estimates of 16–33% for the fraction of not predicted crossovers.

Which hotspots are best in predicting CEPH crossovers?
So far we have shown that the observed distribution of CEPH

crossovers closely resembles the distribution expected from the

population-averaged map. An independent question is which set of

hotspots is best at predicting crossovers. We have four populations-

specific sets of peak-defined hotspots, the population-averaged set

of peak-defined hotspots and LDHot hotspots. To compare these

six independent hotspot sets we again ranked hotspots based on

their strength calculated from either one of the population-specific

or the population-averaged maps. We then took the 10,000

strongest hotspots and compared the numbers of crossovers

overlapping them (Figure 4). First of all, all the sets of hotspots

have a very similar efficiency in predicting crossovers. These

10,000 strongest hotspots overlap between 46% and 50% of

crossover intervals smaller than 50 Kb. When we use either

population-specific or population-averaged recombination rate

estimates for ranking, the 10,000 strongest hotspots according to

the population-averaged map always predict more crossovers

(Figure 4). This again proves that the population-averaged map is

closer to the actual distribution of crossovers and provides the best

estimate of hotspot strengths. Out of all sets, the LDHot-defined

hotspots overlap the largest number of crossover intervals (50.2%).

Thus, LDHot-defined hotspots are most efficient in identifying

universally conserved, strongest hotspots. When we compare

observations to expectations, hotspots predict crossovers better

than expected from the population-averaged map (Figure S13).

Along with our previous comparison of cumulative recombination

frequency graphs this observation again suggests that the peak rate

in hotspots is slightly underestimated.

Where are the not predicted crossovers?
We find that 26–32% of crossovers cannot be explained by

either CEU hotspots or LDHot-defined hotspots, respectively.

First we asked if there is one or several large genomic regions

where the distribution of crossovers strongly deviates from the

hotspot map. An examination of the genomic distribution of not

predicted crossover on a large scale does not show a strong

tendency towards accumulation in specific genomic region(s)

(Figure S14). Thus, it is unlikely that all not predicted crossovers

can be explained by such local deviations.

The finding that the population-averaged map is in closer

agreement with the distribution of crossovers compared to the

CEU map suggests that hotspots from other populations may be in

fact active in the CEU sample but not detected in the CEU profile.

Thus, we asked where such not predicted crossovers are located

relative to hotspots detected in other populations. We find that,

depending on the accuracy of mapping, between 50 and 61

percent of not predicted crossovers overlap at least one hotspot

from another population (YRI, CHB or JPT) (results for CEPH

crossovers are shown in Figure 5 and for Hutterite crossovers are

shown in Figure S15). Importantly, this proportion is significantly

higher than expected if crossovers would be distributed randomly

(P,0.001 by simulation, see Figure 5 and Figure S15 for all

crossovers; data are not shown for other subsets of crossovers)

meaning that crossovers are preferentially located in regions where

hotspots are found in other populations. Furthermore, as one

might expect, the fraction of not predicted crossovers that overlap

at least one hotspot from another population is similar to the

Figure 4. All sets of hotspots are similarly efficient in
predicting crossovers. We calculated and plotted the fraction of
crossover intervals smaller than 50 Kb overlapping 10,000 strongest
hotspots defined in several ways. We have used LDHot hotspots
(LDHot) and peak-based hotspots from the population-averaged map
(HM) and four population specific maps (CEU, YRI, JPT, and CHB). For
ranking, we have used either four population-specific or population-
averaged strength estimates.
doi:10.1371/journal.pgen.1000831.g004

Figure 5. Most CEPH crossovers not predicted by CEU hotspots
overlap hotspots from other populations. The fraction of
crossover intervals not predicted by CEU hotspots that overlap hotspots
found in YRI, CHB, JPT, or any of the other HapMap PhaseII populations
(YRI, CHB, or JPT) is plotted. For comparison, the same fraction of
crossovers overlapping hotspots from other populations (mean and
95% CI) is plotted for crossovers re-distributed according to the
population-averaged map and randomly distributed crossovers.
doi:10.1371/journal.pgen.1000831.g005

Computed Recombination Map Predicts Crossovers
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expected proportion if crossovers would be distributed according

to the population-averaged map (Figure 5, Figure S15).

A potential explanation for the preferential co-localization of

crossovers not predicted by CEU hotspots with the hotspots from

the other populations could be the increased power to detect

hotspots in the larger combined population set. To check whether

adding individuals from the same population sample increases our

ability to predict crossovers as well as adding individuals from a

different population we generated 100 subsets from the CEU and

CHB samples and then calculated hotspots as for the full samples.

We find that hotspots from subsets of the CHB sample overlap

more not predicted crossovers compared to hotspots from

matching subsets of the CEU sample (Figure S16). A lack of

SNP diversity in population sample decreases the power of LD-

based coalescent analysis to accurately estimate recombination

rates. Thus, one interpretation of the more frequent association of

not predicted crossovers with the hotspots found in other

populations is a lack of SNP diversity in the CEU sample. To

evaluate the effect of the SNP diversity on identification of weaker

hotspots we compared average minor allele frequencies in the four

population samples in predicted and not predicted crossover

intervals smaller than 50 Kb. (Figure S17). The average minor

allele frequency (MAF) for SNPs located inside not predicted

crossover intervals is not lower than the MAF in predicted

crossovers. Thus, other underlying differences are likely respon-

sible for the preferential association of the not predicted crossovers

with the hotspots found in other populations.

Discussion

In this work we analyze the distribution of meiotic crossovers

mapped at high resolution and use this dataset to probe calculated

maps. Our main conclusion is that the calculated recombination

rate map is in good agreement with observations. Although we

estimate that more than 30% of crossovers are not predicted by

hotspots, a number in agreement with previous findings [52], this

does not necessarily mean that the distribution of crossovers is

different from the computed map. We calculate that if crossovers

are distributed according to the population-averaged map we

expect to find approximately as many not predicted crossovers,

roughly one third, as we estimate from crossover mapping data.

Moreover, the inclusion of hotspots from other populations allows

us to account for the majority of not predicted crossovers.

Coop et al. [52] reported less that 50% usage of LDHot hotspots

in roughly 30% of Hutterites. Taken by itself, this observation could

suggest relatively poor agreement between LDHot hotspots and

positions of crossovers in Hutterites. While Coop et al. have asked

whether all crossovers overlap hotspots we addressed an arguably

more relevant question whether the observed distribution of

crossovers is consistent with the recombination rate map. LDHot

hotspot usage utilized by Coop et al. to describe the similarity of

recombination map to observations is an indirect estimate of true

proportion of recombination events in hotspots. That analysis

considered only the location of hotspots and did not take into

account the non-uniformity of recombination rates. When we

carefully account for recombination rate variation in the computed

map, we don’t observe a strong disagreement between the positions

of genetic crossovers and computed hotspots. Both our analysis of

the CEPH dataset and our independent re-analysis of the Hutterite

data suggests that all crossovers taken together agree with the

computed map. This does not mean that there are no individuals

with substantial differences in hotspots use. We would argue,

however, that individuals in which meiotic crossovers occur mostly

outside of hotspots are relatively rare, at least in European

populations. Moreover, we observe a great degree of similarity in

the ability of population-specific hotspots to predict both CEPH and

Hutterite crossovers suggesting that a much lower than average

hotspot usage is rare in all populations.

Although 30% of crossovers are not predicted by hotspots, we

believe that this fact is largely a reflection of the properties of the

computed map itself and hotspot definition rather than a measure

of the dis-similarity of the crossover distribution to the map.

Neither peak-based nor LDHot hotspots account for more than

79% of the total genetic map length. So, most not predicted

crossovers can be accounted for by this ‘‘outside of the hotspots’’

part of the map. Why is not all of the genetic map captured by

hotspots? Does it mean that not all recombination events occur in

hotspots? Although this question is difficult to address directly

based on crossover mapping data, the preferential location of not

predicted crossovers where hotspots are found in other populations

suggests otherwise. Multiple sperm genotyping studies show very

low levels of background, non-hotspot recombination [7,12,36–

38]. It is likely that weaker and difficult to detect hotspots are

responsible for most of the not predicted crossovers. Computa-

tional methods are not sufficiently sensitive to detect these weaker

and/or polymorphic hotspots. Difference in population sample

histories and random errors in the estimation of recombination

rates may result in a more efficient detection of some weak

hotspots in other populations. It is also possible that these

undetected hotspots are stronger in other populations.

Our analysis shows that in addition to hotspot position, our

computed estimates of hotspot strength are largely accurate. One

consequence of that is that both very strong and very weak

hotspots exist. For example, the 700 strongest hotspots (Bins 1 and

2, mean strength 0.41 cM and representing 10% of the total

hotspot strengths) account for 9% of all CEPH crossovers

(Figure 2). Even if we conservatively estimate that half of these

9% of all CEPH crossover intervals overlap these 700 hotspots by

chance, we still find support for more than several hundred

hotspots stronger than 0.2 cM. Thus, in agreement with

observations by Jeffereys [40] and Coop et al. [52] we find that

very strong hotspots do exist. A similar logic supports the existence

of weak hotspots. Bin 20 which contains more than 10000 hotspots

between 0.01 and 0.016 cM accounts for 4–6% of crossovers.

Then, how many hotspots of meiotic recombination exist

in humans? This number clearly depends on how hotspots are

defined. The application of the rather conservative LDHot

method to the HapMap Phase II dataset results in the

identification of nearly 33,000 hotspots [32,63]. If we look simply

for peaks in the recombination rate profile, we find around 50,000

peaks with an estimated strength above 0.01 cM or more than

150,000 peaks if we don’t restrict hotspot strength. Our probing of

the calculated map with present day crossovers gives some further

insight into this question (Figure 6). There are several hundred,

perhaps up to a thousand strong hotspots (calculated strength

above 0.25 cM), but it is unlikely that they are responsible for

more than 10% of all crossovers. Around 50% of crossovers (see

Figure 2 and Figure 4) of crossovers is explained by roughly 10000

moderately strong hotspots between 0.1 and 0.25 cM. Then, there

are tens of thousands of weak and/or polymorphic hotspots.

Although individual hotspots are weak, more than 30% of all

crossovers are explained by hotspots weaker than 0.1 cM. We also

believe that the remaining 10% or so unaccounted for crossovers

(see below) are largely due to cryptic hotspots. It is likely that the

number of such cryptic hotspots is not smaller than the number of

the detected ‘‘weak’’ hotspots, roughly 35,000. We estimate,

therefore, that the total number of active hotspots, including

polymorphic ones may reach up to 60,000–80,000 or more.

Computed Recombination Map Predicts Crossovers
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What are the implications of our study for the mechanism of

hotspot variability within a population and between populations?

We find that inclusion of hotspots from other populations allows us

to account for 61% of crossovers (here we consider the set of all

crossovers not restricted by the accuracy of mapping) that do not

overlap CEU hotspots. In total, 95–97% of all of the observed

crossovers can be accounted for by the hotspots from all four

populations. Also, a comparison of different population-specific

hotspots shows that all of them are highly efficient in predicting

CEPH crossovers. Similarly, the better agreement between the

distribution of CEPH crossovers and the population-averaged map

rather than with the CEU map argues that there is a greater

similarity between the recombination rate maps of different

populations than what we are able to compute at this time. One

way to reconcile these data is that hotspots arise at a limited

number of potential sites. Consequently, different populations

have hotspots mostly at the same locations although their strengths

vary. The site selection for meiotic DSB formation is driven by

a genomic susceptibility profile, defined either by nucleotide

sequence or by chromatin structure, which determines propensity

to form meiotic DSBs at a given location, a universal re-

combinome for humans. This susceptibility profile results in a

set of potential hotspots which are sampled in different individuals

and populations and is further regulated at a higher, perhaps

domain-wide level. In yeast, for example, chromatin modifications

have a profound effect on meiotic recombination [54,55] and

trans-activating regulators has been described in mammals

[46,49,50,53]. We also suggest that this intrinsic genomic sus-

ceptibility profile is largely intact between populations and

individuals and most of the variation is seen at the level of the

strength of the hotspots. This situation is very much akin to the

variability in levels of gene expression in different individuals

[64–66]. Variation in gene expression is caused both by genetic

and epigenetic factors and is heritable to a large extent [65,66]. As

with the recombinome, all genes are present in all individuals but

the level of transcripts is highly variable among individuals.

What are practical implications of our analysis? First of all, we

find that the computed recombination rate map closely approx-

imates present-day recombination profiles. Second, we find that it

is important to include in the analysis samples from distantly

related population samples. Both the closer similarity of the

population-averaged profile to observations and the frequent

detection of cryptic hotspots in other population-specific profiles

clearly show that meiotic recombination in present-day individuals

of European descent is better described by looking at more than

one HapMap population. Presently and in the nearest future

the experimental determination of individual recombination rate

maps is still beyond our capabilities. We believe that the increased

availability of high resolution data from diverse population

samples, such as the ongoing Phase III of HapMap project, will

allow highly accurate computational reconstruction and will

provide further insights into hotspot variability and the regulation

of meiotic recombination.

Methods

Recombination rate calculations
To calculate recombination rates we used LDHat version 2 [57]

with minor modifications. We have used the complete Phase II

data (phased genotypes from release 21a) from the HapMap

project as a source of genotypes (www.hapmap.org and [32,63]).

Hotspots were defined as relatively narrow peaks (peak width

,100 Kb) having strength above 0.01 cM. All coordinates are

given relative to the NCBI35 version of the human genome

assembly. Statistical calculations were performed in JMP version 7.

This study utilized the high-performance computational capabil-

ities of the Biowulf Linux cluster at the National Institutes of

Health, Bethesda, MD (http://biowulf.nih.gov).

Crossover mapping
DNA samples from the CEPH/UTAH pedigrees 1334, 1340,

1341, 1350, 1362, 1408, 1420, 1447, 1454 and 1459 were

obtained from the Coriell cell repository. Samples were genotyped

using Affymetrix 500K genotyping array sets according to

recommendations of the manufacturer. To map crossovers we

developed a multi-step algorithm (see Text S1) based on

mendelian inheritance.

Supporting Information

Figure S1 Histogram of the distribution of sizes of crossover

intervals mapped in CEPH pedigrees. Summary statistics of the

distribution are shown on the right.

Found at: doi:10.1371/journal.pgen.1000831.s001 (0.55 MB TIF)

Figure S2 Present-day crossovers of paternal origin are

preferentially located in telomeric regions. The frequency of

crossovers in bins uniformly distributed along chromosome length

is shown on the graph. To allow cross-comparison of different

chromosomes the positions of individual crossovers relative to

chromosomes where they reside are shown in normalized

chromosome units. Chromosome units were defined as the

distance to the crossover from the short arm terminus divided

by the corresponding chromosome length. There is an excess of

paternal crossovers in telomeric regions but maternal crossovers

are distributed relatively uniformly. There is also 59% excess of

maternal crossovers over paternal crossovers (2,934 maternal

crossovers compared to 1,844 paternal crossovers).

Found at: doi:10.1371/journal.pgen.1000831.s002 (0.53 MB TIF)

Figure S3 Summary information on hotspot maps in four

HapMap Phase II samples. Histograms of the distributions of the

hotspot strength, inter-hotspot distance and hotspot width are

shown for CEU (A), YRI (B), CHB (C), and JPT (D) samples. In

addition, the figure shows quantiles and mean values calculated for

the corresponding distributions.

Found at: doi:10.1371/journal.pgen.1000831.s003 (0.05 MB PDF)

Figure S4 Proportion of randomly distributed crossover inter-

vals that overlap hotspots depends on the size of crossover interval.

The percentage of the crossover intervals overlapping CEU and

LDHot-defined hotspots is plotted against the size of intervals. The

percentage is averaged over 1,000 randomly generated samples.

Found at: doi:10.1371/journal.pgen.1000831.s004 (0.22 MB TIF)

Figure 6. Schematic representation of the relative input of
strong and weak hotspots to the total set of crossovers.
doi:10.1371/journal.pgen.1000831.g006
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Figure S5 Hotspots predict much larger fraction of present-day

crossovers than expected by chance. Percentage of present-day

crossovers in CEPH (A) and Hutterite (B) families not predicted by

overlapping hotspots. The percentages of crossovers that do not

overlap CEU and LDHot hotspots were calculated for three

subsets of all crossovers defined with various degrees of accuracy.

For comparison, the same percentage was calculated for randomly

distributed crossovers (see Text S1). Mean and 95% CI are plotted

on the graph.

Found at: doi:10.1371/journal.pgen.1000831.s005 (0.55 MB TIF)

Figure S6 Detailed simulation of crossover mapping confirms that

the distribution of CEPH crossovers agrees with population-averaged

recombination rate map. The percentages of CEPH crossovers that

do not overlap CEU and LDHot hotspots were calculated for several

subsets of all crossovers defined with various degrees of accuracy. For

comparison, the same percentage was calculated for crossovers

distributed according to probabilities determined by population-

averaged recombination rate maps. Mean and 95% CI are plotted

on the graph. In this analysis we simulated whole crossover detection

and downstream analysis as close as possible to crossover mapping in

CEPH families. We first re-distributed all CEPH crossovers

according to the population-averaged map and then generated

genotypes containing crossovers at defined positions. We then

mapped crossovers using our algorithm.

Found at: doi:10.1371/journal.pgen.1000831.s006 (0.25 MB TIF)

Figure S7 A substantial fraction of present-day crossovers is not

predicted by historic recombination rate profiles. (A,B) Percentage

of present-day crossovers in Hutterite families not predicted by

overlapping hotspots from the CEU profile. The percentages of

crossovers that do not overlap CEU and LDHot hotspots were

calculated for several subsets of all crossovers defined with various

degrees of accuracy. For comparison, the same percentage was

calculated for crossovers distributed according to probabilities

determined by CEU (A) and population-averaged (B) recombina-

tion rate maps. Mean and 95% CI are plotted on the graph. A

large fraction of crossovers is not predicted by hotspots.

Found at: doi:10.1371/journal.pgen.1000831.s007 (0.48 MB TIF)

Figure S8 Estimation of the statistical significance of the

differences between observed and expected numbers of predicted

crossovers. Hotspots predict a significantly smaller number of

CEPH crossovers than expected from CEU map (A) and

significantly larger number of CEPH crossovers than expected

from population-averaged map (B). On the graph the histograms

of the expected numbers of crossovers overlapping CEU and

LDHot hotspots are plotted (1,000 samples) for three subsets of

the crossovers (defined as in text before). For the estimation of

expected numbers of predicted crossovers we randomized

positions of crossover intervals in the genome according to

probabilities determined by CEU (A) and population-averaged (B)

recombination rates. The observed numbers of crossovers

overlapping CEU or LDHot hotspots for the crossovers mapped

in CEPH pedigrees are shown by arrows. The one-sided

probability of finding the observed number or fewer of randomly

distributed crossovers predicted by hotspots is in the range from

0.001 to 0.20 for crossovers distributed according to CEU map.

The one-sided probability of finding the observed number or more

of randomly distributed crossovers predicted by hotspots is less

than 0.001 for two larger subsets of crossovers distributed

according to population-averaged map.

Found at: doi:10.1371/journal.pgen.1000831.s008 (0.03 MB PDF)

Figure S9 Hotspots of different strengths are equally active in

recombination. Cumulative recombination frequency graphs of

CEPH (A) and Hutterite (B) crossovers. All hotspots were ranked

by the strength from the strongest (bin1) to weakest (bin20) and

divided into twenty bins of equal aggregate strength. For each bin

we calculated fractions of CEPH (A) and Hutterite (B) crossovers

predicted by hotspots from analyzed bin and bins with stronger

hotspots and plotted this fraction against the minimum hotspot

strength from the analyzed bin. For the analysis all crossovers were

divided in sets based on the mapping accuracy.

Found at: doi:10.1371/journal.pgen.1000831.s009 (0.40 MB TIF)

Figure S10 Hotspots of different strengths are equally active in

recombination. Cumulative recombination frequency graphs of

CEPH (A) and Hutterite (B) crossovers. All LDHot-defined

hotspots were ranked by the strength from the strongest (bin1) to

weakest (bin20) and divided into twenty bins of equal aggregate

strength. For each bin we calculated fractions of CEPH (A) and

Hutterite (B) crossovers predicted by hotspots from analyzed bin

and bins with stronger hotspots. For the analysis all crossovers

were divided in sets based on the mapping accuracy.

Found at: doi:10.1371/journal.pgen.1000831.s010 (0.45 MB TIF)

Figure S11 The population averaged map is much closer to the

distribution of meiotic crossovers than the CEU map. We

calculated and plotted the ratio between the observed and

expected numbers of crossovers overlapping hotspots from each

of the 20 bins for CEPH (A) and Hutterite (B) crossovers. We

estimated expected numbers of crossovers overlapping hotspots for

crossovers intervals re-distributed according to the population-

averaged or CEU maps.

Found at: doi:10.1371/journal.pgen.1000831.s011 (0.85 MB TIF)

Figure S12 Estimation of true proportion of crossovers that

originate in hotspots. The percentages of crossovers that do not

overlap hotspots were calculated for all crossovers and subsets of

crossovers mapped to intervals smaller than 20 Kb and 50 Kb.

For comparison, the same percentage was calculated for randomly

distributed crossovers. Calculations were performed separately for

peak-defined CEU hotspots and LDHot-defined hotspots. In

addition, we plotted the adjusted percentage of non-predicted

crossovers (see Text S1 for details of calculations).

Found at: doi:10.1371/journal.pgen.1000831.s012 (0.48 MB TIF)

Figure S13 All sets of hotspots predict crossovers better than

expected from population-averaged map. We calculated and

plotted the observed and expected fraction of crossover intervals

smaller than 50 Kb overlapping 10,000 strongest hotspots defined

in several ways. We have used LDHot hotspots (LDHot) and peak-

based hotspots from population-averaged map (HM) and four

population specific maps (CEU, YRI, JPT, and CHB). For ranking,

we have used either four population-specific or population-averaged

strength estimates. For calculating expected fraction crossovers were

re-distributed according to population-averaged map.

Found at: doi:10.1371/journal.pgen.1000831.s013 (0.72 MB TIF)

Figure S14 Genomic distribution of non-predicted crossovers.

Found at: doi:10.1371/journal.pgen.1000831.s014 (0.36 MB TIF)

Figure S15 Most Hutterite crossovers not predicted by CEU

hotspots overlap hotspots from other populations. The fraction of

crossover intervals not predicted by CEU hotspots that overlap

hotspots found in YRI, CHB, JPT, or any of the other HapMap

PhaseII populations (YRI, CHB, or JPT) is plotted. For

comparison, the same fraction of crossovers overlapping hotspots

from other populations (mean and 95% CI) is plotted for

crossovers re-distributed according to the population-averaged

map and randomly distributed crossovers.

Found at: doi:10.1371/journal.pgen.1000831.s015 (0.19 MB TIF)
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Figure S16 CHB-A hotspots overlap more crossovers not

predicted by CEU-A hotspots compared to hotspots identified

from an identically sized CEU-B sample. We randomly divided 60

individuals from the CEU sample in two sub-samples, CEU-A and

CEU-B containing 30 individuals each and an identically sized

subset of CHB sample, CHB-A. We then calculated recombina-

tion rate maps and identified hotspots on chromosome 6 for each

of the 100 samples. (A) The fraction of crossover intervals (mean

and 90% CI) not predicted by CEU-A hotspots that overlap

hotspots found in CEU-B or CHB-A. (B,C) Histograms of the

numbers of chromosome 6 crossover intervals not overlapping

CEU-A, CHB-A, CEU-A & CEU-B and CEU-A & CHB-A

hotspots. (B) All CEPH crossovers mapped to chromosome 6

(N = 244), (C) Hutterite crossover interavals smaller than 20 Kb

mapped to chromosome 6 (N = 189).

Found at: doi:10.1371/journal.pgen.1000831.s016 (1.94 MB TIF)

Figure S17 The average MAF is not lower in the not-predicted

crossover regions compared to that in the predicted crossover

regions. We calculated and plotted mean value of minor allele

frequency in four population samples for all SNPs located inside

crossover intervals.

Found at: doi:10.1371/journal.pgen.1000831.s017 (0.11 MB TIF)

Table S1 Positions of crossovers mapped in CEPH pedigrees.

All coordinates are given relative to NCBI35 and NCBI36 versions

of human genome assembly.

Found at: doi:10.1371/journal.pgen.1000831.s018 (0.50 MB

XLS)

Table S2 Summary of the crossover detection simulation.

Found at: doi:10.1371/journal.pgen.1000831.s019 (0.02 MB

XLS)

Table S3 Percentages of genetic and physical map found inside

hotspots for each of the four population samples.

Found at: doi:10.1371/journal.pgen.1000831.s020 (0.02 MB

XLS)

Table S4 Summary of CEU bins.

Found at: doi:10.1371/journal.pgen.1000831.s021 (0.02 MB

XLS)

Table S5 Summary of Adjustment calculations.

Found at: doi:10.1371/journal.pgen.1000831.s022 (0.02 MB

XLS)

Text S1 Supplementary methods.

Found at: doi:10.1371/journal.pgen.1000831.s023 (0.03 MB PDF)
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