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Abstract

Purpose: High-dose chemotherapy using methotrexate (MTX) frequently induces side effects such as mucositis that leads to
intestinal damage and diarrhea. Several natural compounds have been demonstrated of their effectiveness in protecting
intestinal epithelial cells from these adverse effects. In this paper, we investigated the protection mechanism of lutein
against MTX-induced damage in IEC-6 cells originating from the rat jejunum crypt.

Methods: The cell viability, induced-apoptosis, reactive oxygen species (ROS) generation, and mitochondrial membrane
potential in IEC-6 cells under MTX treatment were examined in the presence or absence of lutein. Expression level of Bcl2,
Bad and ROS scavenging enzymes (including SOD, catalase and Prdx1) were detected by quantitative RT-PCR.

Results: The cell viability of IEC-6 cells exposed to MTX was decreased in a dose- and time-dependent manner. MTX induces
mitochondrial membrane potential loss, ROS generation and caspase 3 activation in IEC-6 cells. The cytotoxicity of MTX was
reduced in IEC-6 cells by the 24 h pre-treatment of lutein. We found that pre-treatment of lutein significantly reduces MTX-
induced ROS and apoptosis. The expression of SOD was up-regulated by the pre-treatment of lutein in the MTX-treated IEC-
6 cells. These results indicated that lutein can protect IEC-6 cells from the chemo-drugs induced damage through increasing
ROS scavenging ability.

Conclusion: The MTX-induced apoptosis of IEC-6 cells was shown to be repressed by the pre-treatment of lutein, which may
represent a promising adjunct to conventional chemotherapy for preventing intestinal damages.
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Introduction

Cancers are leading causes of mortality in both adults and

children. Multiple drugs have been developed to treat cancers. An

antifolate, methotrexate (MTX) is widely used to treat cancers and

a number of other malignant and nonmalignant diseases. The

effect of MTX is attributed to its inhibition of dihydrofolate

reductase, purine synthesis or blocking DNA repair, but can cause

an acute injury to the intestinal epithelium characterized by

reduced mitosis in the crypts and shortened villi [1,2]. High-dose

MTX treatment is often accompanied by adverse effects, such as

severe enterocolitis, weight loss, anorexia, diarrhea and intestinal

atrophy [3,4]. MTX induces damage to the villi of the small

intestine, leading to decreased surface area of the small intestine.

Shortened villi of the small intestine change the physical structure

of brush-border membranes and compromise the components of

the small intestinal mucosa such as proteins and lipids, and. The

chemical and morphological changes in the small intestinal may be

triggered by crypt cells injury. In addition to the morphological

changes, MTX is known to be a source to decrease the intestinal

absorption of nutrients and drugs [5,6]. MTX is also known as a

pro-oxidant compound that causes depletion of the dihydrofolate

pool. It directly affects the synthesis of thymidilate, suppresses

DNA synthesis, inhibits epithelial proliferation, and induces

apoptosis in the small intestinal crypts [7]. Therefore, MTX is

widely used for cancer and also for rapidly-dividing cells of the

intestinal crypt. Nevertheless, MTX raises an important compli-

cation for patients who are undergoing cancer chemotherapy. The

clinical application of this drug is limited by its toxic dose-related

side effects. Methotrexate has been shown to decrease viability and

to induce apoptosis in the small intestine in rats [8]. In order to

minimize the side effects in patients taking MTX as chemother-

apeutic agent, it is important to reduce the damages and to

stimulate tissue repair [9]. Growth factors such as insulin-like

growth factor 1 and keratinocyte growth factor were reported to

protect mice from gastrointestinal injury by stimulating growth of
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the damaged intestine [10,11]. Other studies using vitamin A

[6,12], aged garlic extract (AGE) [8], apricot, beta-carotene [13],

melatonin [14] and prostaglandins [15], showed protective effect

on the MTX-induced damages to the small intestine in rats.

Lutein is one of the most commonly found carotenoids in deep-

yellow vegetables and fruits, including cooked spinach, lettuce,

Broccoli, peas, lima beans, orange juice, celery, string beans, and

squash [16]. The structure of lutein is similar to that of beta-

carotene. Lutein derivatives have various biologic properties such

antioxidant, anti-inflammatory and anti-tumor potential. Further-

more, lutein has neuroprotective effects in the retina mainly

through its antioxidant ability [17]. Studies also demonstrated that

lutein prevents the ischemia reperfusion injury induced by free

radical species in the rat small intestine [18]. Apricot and beta-

carotene that are structurally similar to lutein also protect the

impairment of oxidative stress in the small intestine of rats from

MTX-induced damages [13]. However, lutein was reported to

suppress cancer cell growth by inducing apoptosis [19,20]. Thus, it

has been suggested that lutein has different effects on tumor cells

and normal intestinal cells.

IEC-6 is an immortalized epithelial cell line derived from

neonatal rat ileum and has been extensively used as an in vitro

intestinal model for the research of floate and its transport

derivatives [21]. In the present study, we examined the effects of

lutein to protect the intestine from MTX-induced cytotoxic

injuries in an IEC-6 intestinal epithelial cell chemotherapy damage

model.

Materials and Methods

Materials
MTX was purchased from Sigma (St. Louis, MO, USA). Stock

solution of MTX was prepared in 0.1 M NaOH at 1 mg/ml and

diluted 1:10 in 0.1 M phosphate buffered saline (PBS) before the

use; the pH of the solution was adjusted to 7.4. Lutein was

purchased from ChromaDex Inc. (Irvine, CA, USA) and was

dissolved in dimethyl sulfoxide (DMSO). Reagents for cell culture,

including Dulbecco’s modified Eagle’s medium (DMEM), penicil-

lin and streptomycin antibiotic mixture, glutamax, sodium

pyruvate and fetal bovine serum were from Invitrogen (Carlsbad,

CA, USA). The tetrazolium salt WST-1 (4-[3-(4-Iodophenyl)-2-[4-

nitrophenyl]-2H-5-tetrazolio]-1,3-benzene disulfonate) was pur-

chased from Roche Diagnostics (Roche Applied Science, Penz-

berg, Germany). JC-1 (5,59,6,69-tetrachloro-1,193,39-tetraethyl-

benzimidazolylcarbocyanine iodide), PI (propidium iodide), and

H2DCFDA (6-carboxy-29,79-dichlorodihydrofluorescein diace-

tate), were purchased from Sigma. Caspase 3 substrate, (Z-

DEVD)2-R110 was purchased from Bachem (Torrance, CA,

USA). Other chemicals unless otherwise stated were obtained from

Sigma.

Cell culture
IEC-6 cells (ATCC#CRL1592) were obtained from American

Type Culture Collection (Rockville, MD). Cells were cultured in

DMEM supplemented with 10% fetal bovine serum (FBS;

Invitrogen), 2 mM GlutaMAX-I (Invitrogen), 100 units/ml pen-

icillin, and 100 mg/ml streptomycin (Invitrogen). Cells were

incubated at 37uC in 5% CO2. The culture medium was changed

every 2 days.

Cell viability assay
The effects of MTX, alone or in combination with lutein, in cell

viability were determined by WST-1 reagent, according to the

manufacturer’s recommendations. In brief, 46103 cells were

seeded on a 96-well plate and allowed to attach for 24 h. the cells

were then treated with MTX, lutein, or MTX in the present of

lutein. After the indicated time period, cells were incubated for 1 h

with 10 ml of WST-1 reagent and the absorbance was measured

using a microplate reader (PowerWave 6340, Bio-Tek Instru-

ments, Inc., Winooski, USA) at 450 nm. In the pretreatment

experiment, cells were pretreated 2 h or 24 h with lutein prior to

MTX exposure and measured of cell viability.

Apoptosis assay
Apoptosis induction by MTX was assessed by (a) activation of

caspase 3 activity; (b) detection of caspase 3 cleavage by Western

blot.

1. Caspase 3/7 activity. Activation of caspase-3 was assayed

using (Z-DEVD)2-R110 substrate as described [22]. Briefly, cells

were plated in 96-well plates and allowed to attach by overnight

incubation. The cells were then treated with DMSO (control) or

the desired concentrations of MTX in the presence or absence of

lutein for 24 h. Subsequently, the cells were directly lyzed by

adding caspase 3 assay buffer containing (Z-DEVD)2-R110

Figure 1. MTX induces dose- and time-dependent cell viability lost and activates caspase 3 activities in IEC-6 cells. IEC-6 cells were
treated with (A) different concentration of MTX (0, 0.01, 0.1, 1, 10 and 100 mM) for 24 hrs, or (B) 0, 1, 10, 100 mM of MTX for 24, 48, and 72 hrs, and the
cell viabilities were determined by WST-1 assay. (C) The caspase 3 activities were detected in cells treated with indicated concentration of MTX for
24 hrs. Values are means 6 S.D. of at least three independent experiments. *, p,0.05.
doi:10.1371/journal.pone.0072553.g001
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substrates and incubated at 37uC for 1 hour. The fluorescent

intensity of proteolytically released fluorophore R110 was then

measured using a plate reader (Victor X2; PerkinElmer, Waltham,

MA, USA) with an excitation of 485 nm and emission of 535 nm.

2. Detection of caspase 3 cleavage by Western blot. Cells

subjected to the indicated treatment were harvested and lysed, and

the protein concentration was determined by a BCA protein assay

(Pierce, Rockford, IL, USA). Protein samples were separated by

14% sodium dodecylsulfate polyacrylamide gel electrophoresis

(SDS-PAGE) and transferred to polyvinylidene difluoride (PVDF)

membranes (Millipore, Billerica, MA, USA) before probing with

antibodies (caspase-3 (active), Epitomics, Burlingame, CA; b-actin

(as internal control), Sigma). Subsequent immunoblotting proce-

dures were performed using a chemiluminescence procedure

(Millipore) per the manufacturer’s instructions. The intensity of

immunoreactive bands was determined using GeneTools software

(Syngene, Frederick, MD, USA) after scanning the developed

films. Results are expressed as mean 6 standard deviation (S.D.) of

three independent experiments.

Detection of mitochondrial membrane potential
Changes in the mitochondrial membrane potential in cells were

measured by flow cytometry using JC-1 as described [23]. Thirty

minutes prior to cytometric analysis, JC-1 is added to the cells to a

final concentration of 10 mM. Cells are then examined on a FL-1

(530 nm) versus FL-2 (585 nm) dot plot on a FACSCalibur flow

cytometer (Becton Dickinson, BD.; NJ. USA). JC-1 has dual

emission depending on the state of the mitochondrial membrane

potential. It forms aggregates in cells with a high FL-2 fluorescence

indicating a normal mitochondrial membrane potential. Loss of

the mitochondrial membrane potential results in a reduction in

FL-2 and with a concurrent gain in FL-1 fluorescence as the dye

Figure 2. Generation of ROS and disruption of mitochondrial membrane potential in MTX-treated IEC-6 cells. (A and B) Generation of
ROS and (C) loss of mitochondrial membrane potential were examined by H2DCFDA and JC-1 dye, respectively, through flow cytometry after 24 hrs
in cells treated with indicated concentration of MTX. Data were obtained from 10,000 events and presented as the percentage of cells positive for JC-
1 monomer or DCF (green fluorescent). The representative histograms showing increment of FL-1 positive cells were given in (A). The values are
shown as the mean 6 S.D. of three independent experiments. *, p,0.05.
doi:10.1371/journal.pone.0072553.g002

Figure 3. The effect of lutein on IEC-6 cells. (A) Cell viability and (B) caspase 3 activities of IEC-6 cells treated with 0, 0.1, 1, 2.5, 5 and 10 mM lutein
for 24 hrs were determined. Data are shown as mean 6 S.D. of quadruplicate measurements of each condition that were repeated three times.
*, p,0.05.
doi:10.1371/journal.pone.0072553.g003
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shifts from an aggregate to monomeric state. Therefore, the

retention of the dye in the cells can be monitored through the

increase in FL-1 fluorescence.

ROS assay
Intracellular ROS generation in cells treated with MTX was

measured by flow cytometry following staining with H2DCFDA as

described [24]. Briefly, 26105 cells were plated in 6-well culture

plates, allowed to attach overnight, and exposed to DMSO

(control) or the desired concentration of MTX for the specific time

intervals. The cells were stained with 10 mM H2DCFDA, and the

fluorescence was measured using a FACSCalibur flow cytometer

(BD), and the data were analyzed with CellQuest pro software

(BD). In some experiments, cells were pretreated for 2 h or 24 h

with Lutein prior to MTX exposure and analysis of ROS

generation.

Quantitative RT-PCR
The expression levels of Bcl-2, Bad, superoxidase dismutase

1(SOD), catalase (CAT) and Peroxiredoxin 1 (Prdx1) were measured

in MTX-treated cells with or without the pretreatment of lutein.

Total RNA was isolated using TRIzol reagent (Invitrogen). RNA

yields were measured using Nanodrop 2000 (Thermo Scientific,

Rockford, IL, USA). First strand cDNA was synthesized from total

RNA (2 mg) by First Strand cDNA Synthesis Kit (Thermo

Scientific) using oligo dT primers. Q-PCR was performed in a

10 ml reaction that contained 0.5 ml of the cDNA and 16KAPA

SYBRH FAST Universal qPCR Master Mix (Kapa biosystems,

Woburn, MA, USA), using the following PCR parameters: 95uC
for 3 min followed by 40 cycles of 95uC for 10 s, 60uC for 30 s

followed by melt curve: 65uC to 95uC increment 0.5uC for 5 s.

The expression level of GAPDH was used as internal control. The

relative expression was calculated using the comparative Ct and

expressed as fold of control. The specific primer pairs used to

amplify genes are listed in Table S1.

Statistical analysis
All experiments were performed in triplicate, and results are

presented as the mean 6 S.D. Student’s t-test was employed to

compare control and experimental parameters with P#0.05

considered as statistically significant. SigmaPlot (vers. 10) was

utilized for data analysis and graphical presentation.

Results

Dose- and time-dependent cytotoxicity in IEC-6 cells
upon MTX treatment

Most studies described a dose- and time-dependent effect of

MTX on the inhibition of cell proliferation and the induction of

apoptosis [25,26,27]. After exposing IEC-6 cells to different

concentrations of MTX for 24 hours, we observed a clear effect

made by the dose. As shown in Figure 1A, the cell viability was

reduced to 56.163.3 % and 40.762.9 % in cells treated with 10

and 100 mM MTX, respectively. MTX treatment also exhibited a

time-dependent reduction of cell viability in IEC-6 cells. When

treating cells with 10 mM of MTX, the cell viability at 24, 48 and

Figure 4. The impact of lutein on MTX-treated IEC-6 cells. Cells
with co-treatment of MTX and lutein, or pretreated with lutein for 2 or
24 hrs were measured for their (A) cell viability and (B) caspase 3
activity. (C) The cleaved caspase 3 (active-caspase 3) in MTX-treated
cells with or without lutein pretreatment for 24 hrs was detected by
Western blot. The relative expression level of active-caspase 3 was

quantitated by denstometric scanning and is presented as the fold of
the cells treated with 10 mM of MTX. *, p,0.05. (D) The relative
expression level of Bad/Bcl2 in MTX-treated cells with or without lutein
pretreatment for 24 hrs was measured by quantitative RT-PCR. Data
shown represent the means of quadruplicate measurements of each
condition and were repeated three times. The results are presented as
fold of untreated control (means 6 S.D.); *, P,0.05.
doi:10.1371/journal.pone.0072553.g004
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Figure 5. Pre-treatment of lutein suppresses MTX-induced ROS generation in IEC-6 cells. MTX-treated cells with or without the pre-
treatment of lutein for 24 hrs were measured for ROS generation. (A) The representative histograms of each condition. (B) The percentage of DCF-
positive cells. Data shown were from the means of triplicate measurements of each condition and were repeated three times. *, P,0.05.
doi:10.1371/journal.pone.0072553.g005
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72 h was reduced to 56.163.3, 41.562.1 and 32.362.5 %,

respectively (Figure 1 B). To test whether the reduced cell viability

is associated with the induction of apoptosis in MTX treated cells,

we detected the caspase 3 activity in cells treated with different

concentrations of MTX at 24 h. The result showed a dose-

dependent activation of caspase 3 (Figure 1C), indicating induction

of apoptosis and subsequently leading to cell death.

Induction of ROS and loss of mitochondrial membrane
potential in IEC-6 cells treated with MTX

MTX was reported to induce ROS in the intestinal mucosa in

rats [28]. We therefore detected the induction of ROS in IEC-6

cells treated with different dose of MTX. As shown in Figure 2A

and B, the ROS-positive cells were increased to 19.863.1,

22.762.6 and 25.663.4 % in cells treated with 1, 10 and

100 mM MTX compared to control. Because mitochondria are

considered as the main source of internal ROS in the cells, we

further detected the changes of mitochondrial membrane potential

in IEC-6 cells treated with MTX. A dose-dependent loss of

mitochondrial membrane potential was observed as the fluores-

cent intensity of monomeric JC-1 increased to 1.760.2, 2.160.1

and 2.860.4 fold in IEC-6 cells treated with 1, 10 and 100 mM

MTX, respectively, compared to control (Figure 2C). These results

indicate that MTX induces the loss of mitochondrial membrane

potential and generation of ROS in IEC-6 cells.

The effect of lutein on IEC-6 cell viability and caspase 3
activation

Lutein is one of the naturally occurring carotenoids and has

been proved to reduce H2O2 induced ROS stress in cells

[29,30,31]. Therefore, we hypothesized that lutein could suppress

MTX-induced ROS and thus protect the damage of MTX in

IEC-6 cells. To test this theory, we first investigated the effect of

lutein on the viability of IEC-6 cells. As shown in Figure 3A,

administration of lutein raging from 0.1 to 10 mM showed no

effect on the viability of IEC-6 cells. And as expected, the caspase

3 activity was not altered by the administration of lutein in IEC-6

cells (Figure 3B).

Pretreatment of lutein inhibits MTX-induced cell viability
lost and apoptosis

To test whether lutein inhibits MTX-induced cell injury, we first

detected the effects of lutein in cells treated with MTX. The cells

were pretreated with lutein for 2 or 24 h prior to the

administration of MTX, or co-treated with lutein and MTX.

The cell viability was then detected. As shown in Figure 4A, cell

viability was reduced to 62.163.3 and 52.664.1 % in cells treated

with 1 or 10 mM of MTX. Co-treatment of 1, 2.5, 5 or 10 mM of

lutein had no effect on the viability lost in MTX-treated cells. Two

hours of lutein pre-treatment has little but no significant effect in

cells treated with 1 mM of MTX. Cell viability was slightly

increased in 10 mM MTX treated cells that pretreated with lutein

for 2 h. The rescue of cell viability lost was observed in cells pre-

treated with lutein for 24 h then treated with 1 or 10 mM MTX.

We next detected the activity of caspase 3 in MTX-treated cells

with the lutein co-treatment or pre-treatment. The results were

consistent with the cell viability, cells pre-treated with lutein for

24 h suppressed the MTX-induced activation of caspase 3

(Figure 4B). These results were further confirmed by direct

monitoring the expression levels of cleavage caspase 3 in MTX-

treated cells with 24 h lutein pre-treatment using Western blot

(Figure 4C). The apoptotic index (expression ratio of Bad/Bcl2)

also showed decreased apoptosis in MTX-treated cells with 24 h

pre-treatment of lutein (Figure 4D). The data suggests that lutein

may protect cells against MTX-induced apoptosis.

Lutein suppresses MTX-induced ROS generation
We next evaluated the anti-oxidant activity of lutein in cells

treated with MTX. We hypothesized that lutein suppresses MTX-

induced ROS generation to inhibit apoptosis induction that causes

lost cell viability. As shown in Figure 5, ROS generation in cells

treated with MTX was suppressed by the pre-treatment of lutein.

Pre-treatment of 5 and 10 mM of lutein suppressed the percentage

of DCF-positive cells from 30.861.83% to 18.260.79% and

12.060.41%, respectively, in 100 mM MTX-treated IEC-6 cells.

Expression of ROS scavenging enzymes in MTX-treated
IEC-6 cells with or without lutein pretreatment

To gain insight of the ability of lutein on suppressing ROS

generation induced by MTX, we monitored the expression of

Figure 6. The expression level of ROS scavenging enzymes in MTX-treated cells with or without lutein pre-treatment. The expression
level of (A) SOD, (B) catalase and (C) Prdx1 was measured in cells treated with 10 and 100 mM MTX with or without 5 or 10 mM of lutein pre-treatment
for 24 h. Data shown represent the means of quadruplicate measurements of each condition and were repeated three times. The results are
presented as percentage of untreated control (means 6 S.D.); *, P,0.05.
doi:10.1371/journal.pone.0072553.g006
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ROS scavenging enzymes, including SOD, CAT and Prdx1. The

expressions of these anti-oxidant enzymes were all decreased upon

MTX treatment (Figure 6). The expression of SOD was increased

in cells pre-treated with lutein for 24 h. The expression level of

SOD was even higher in lutein treated cells than the control cells.

The expression of CAT was also up-regulated in cells pre-treated

with lutein, but was lower than control. The expression of Prdx1

was reduced in MTX-treated cells and was not elevated with the

pre-treatment of lutein.

Discussion

In the present study, we have shown that MTX treatment

caused IEC-6 cell death in a time- and dose-dependent manner via

apoptosis, as demonstrated by the loss of IEC-6 cells viability, the

induced activation of caspase-3 activity and the increased cleavage

caspase 3. The MTX-induced loss of viable IEC-6 cells was

prevented by pre-treatment with lutein. Our data suggests that

lutein suppresses MTX-induced ROS generation by activating the

expression of ROS scavenging enzymes and therefore reduces

MTX-induced apoptosis in IEC-6 cells. These results suggested

that lutein may be useful for alleviating the adverse effects

generated by the cancer chemotherapy with MTX.

Caspases are crucial mediators of programmed cell death.

Among them, caspase-3 is a frequently activated death protease,

catalyzing the specific cleavage of many key cellular proteins.

Caspase-3 activity in IEC-6 cells exposed to MTX was signifi-

cantly up-regulated. Aged garlic extract (5 mM) was shown to

significantly reduce activation of caspase-3 induced by MTX [26].

Caspase-3, a key enzyme for execution of apoptosis in many

instances, also plays a central role for MTX-induced apoptosis in

IEC-6 cells.

The intrinsic apoptotic pathway is characterized by permeabi-

lisation of the mitochondria and by release of cytochrome c into

the cytoplasm. Cytochrome c then forms a multi-protein complex

known as the ‘apoptosome’ and initiates activation of the caspase

cascade through caspase 9. Active caspase 9 cleaves and activates

downstream caspases-3, -6, and -8, leading to apoptosis [32].

Mitochondrial permeability is also related to the increased

generation of reactive oxygen species (ROS), which plays a role

in the degradation phase of apoptosis [33]. In our study, the

MTX-treated IEC-6 cells were shown increased release of ROS

with disrupted mitochondrial membrane potential and active

caspase-3 that leads to apoptosis.

Recent reports demonstrated that MTX induces ROS gener-

ation and causes significant reduction in the antioxidant enzyme

levels, sensitizing the cells to ROS [18,28,34,35,36,37]. Oxidative

stress was reported to contribute to MTX-induced small intestinal

toxicity in rats [38]. Administration of N-acetylcysteine (NAC)

decreases the MTX-induced damage to the small intestine in rats

[39]. Oncologists contended that antioxidants interfere with

radiation and some chemotherapeutic treatments because those

modalities kill by generating free radicals that are neutralized by

antioxidants and that folic acid interferes with MTX. However, a

previous study reviewing fifty human clinical randomized or

observational trials involving 8,521 patients shown non-prescrip-

tion antioxidants and other nutrients do not interfere with

therapeutic modalities for cancer. Furthermore, they enhance

the therapeutic outcomes by decreasing side effects and protect

normal tissue [40]. We hereby showed that the pre-treatment of

lutein suppressed the ROS induced by MTX and increased the

expression of SOD and catalase in the intestinal epithelial cells.

SOD and catalase are ROS scavenging enzymes, and have been

demonstrated to protect small intestinal damages induced by

ischemia reperfusion [41]. Absorption of lutein in human intestinal

epithelium was demonstrated to be associated with the scavenger

receptor class B member 1 (SR-BI) protein [42]. Furthermore, the

bioaccessibility of lutein in small intestine is greater than b-

carotene or lycopene [43]. Our results indicate that pre-treatment

of lutein inhibited MTX-induced ROS generation and apoptosis

in IEC-6 cells, and suggest that lutein may have a potential role in

adjuvant cancer chemotherapy by reducing the intestinal damage

of anti-cancer drugs.
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