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Abstract
The elimination of tuberculosis (TB) cannot reasonably be achieved by
treatment of individual cases and will require an improved vaccine or
immunotherapy. A challenge in developing an improved TB vaccine has been
the lack of understanding what is needed to generate sterilizing immunity
against   (Mtb) infection. Several epidemiologicalMycobacterium tuberculosis
observations support the hypothesis that humans can eradicate Mtb following
exposure. This has been termed early clearance and is defined as elimination
of Mtb infection prior to the development of an adaptive immune response, as
measured by a tuberculin skin test or interferon-gamma release assay. Here,
we examine research into the likelihood of and possible mechanisms
responsible for early clearance in household contacts of patients with active
TB. We explore both innate and adaptive immune responses in the lung.
Enhanced understanding of these mechanisms could be harnessed for the
development of a preventative vaccine or immunotherapy.
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Introduction
Tuberculosis (TB) is a leading cause of infectious disease mor-
tality worldwide, accounting for approximately 6.3 million 
new cases and 1.4 million deaths in 2016 (World Health  
Organization [WHO] TB Report 2017). The recent emergence of 
strains of Mycobacterium tuberculosis (Mtb) resistant to nearly 
all effective drug therapy highlights the need for alternative  
strategies to TB control. The Bacille Calmette–Guérin (BCG)  
vaccine has been widely used but is controversial, as its efficacy 
for the prevention of adult TB has been variable. Moreover, 
despite the widespread use of the BCG vaccine worldwide, the  
incidence of TB has not dramatically decreased. The elimination 
of TB cannot reasonably be achieved by treatment of individual  
cases and will require an improved vaccine or early detection 
of those likely to progress1,2. The main challenge in develop-
ing an improved TB vaccine has been the lack of understanding  
correlates of protective immunity. What is needed to generate  
sterilizing immunity against Mtb infection, unlike in many other 
preventable infectious diseases, is still unknown.

Mtb is transmitted via the aerosol delivery of small particulates 
into the lung. Here, a dynamic interplay between host immune  
mechanisms and the virulent bacterium begins with the innate 
immune system. Innate immunity provides functional and  
immediate defenses against microbial infection through shared 
germline-encoded processes and receptors. In addition to the 
direct recognition and control of microbial infection, innate 
immunity plays a central role in the initiation and maintenance of  
subsequent adaptive immune responses. In the lung, Mtb can  
interact with and infect different cell types, including macro-
phages, and can establish stable intracellular infection3. When  
infection overcomes initial physical and immunological defenses, 

exposure to pathogen-derived antigens leads to an adaptive  
immune response over the ensuing two to six weeks. This response 
relies upon clonal expansion of antigen-specific lymphocytes 
and forms the basis for immunological memory3. Tuberculin 
skin tests (TSTs) and interferon-gamma release assays (IGRAs)  
measure immune sensitization to Mtb and can reflect whether  
infection has occurred. Individuals who test positively with a 
TST or IGRA but have no evidence of TB are considered to have  
latent tuberculosis infection (LTBI). Among LTBI individu-
als, the estimated lifetime risk of developing TB is roughly 10%  
(WHO Global TB Report 2016). Neither the TST nor the IGRA 
can serve as a reflection of bacterial burden4. Nonetheless, in the  
setting of a household exposure, both tests have excellent  
negative predictive values in that they predict those who are  
unlikely to get TB5,6.

Upon exposure to Mtb, a number of disparate outcomes can 
occur. These outcomes include no infection, early clearance of  
infection, LTBI, and TB (Figure 1). Although about one-quarter 
of the global population is thought to be infected with Mtb, these 
epidemiological observations indicate that humans have evolved 
mechanisms to control or eradicate infection with Mtb. First, 
some individuals repeatedly exposed to Mtb never demonstrate  
evidence of immune sensitization by TST or IGRA. These  
individuals may have been able to eradicate Mtb with an  
effective innate immune response before an adaptive immune 
response develops. This phenomenon is termed early clearance. 
Second, a subset of individuals with a positive TST or IGRA  
have been observed to revert to a negative result over time7.  
Reversion of these tests may indicate a decrease in bacterial load 
or clearance of infection and is suggestive of control of Mtb  
infection. Third, of the individuals considered to have LTBI,  

Figure 1. Outcomes of exposure to Mycobacterium tuberculosis (Mtb). Mtb exposure can lead to infection, early clearance, latent 
tuberculosis infection, or, ultimately, tuberculosis. Early clearance occurs before the development of an adaptive immune response detected 
by a tuberculin skin test (TST) or interferon-gamma release assay (IGRA). Understanding of the underlying mechanisms dictating the 
outcomes of exposure to Mtb could greatly facilitate the definition of correlates of protective immunity to Mtb infection and generate targets 
of a preventative vaccine. Possible mechanisms responsible for early clearance in household contacts of active tuberculosis patients that are 
explored in this review are listed on the right (orange).
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most contain infection without developing TB, indicating the  
development of protective immunity. Although those with 
LTBI are at risk of reactivation, studies of nursing and medical  
students in the early twentieth century suggest that a history 
of infection with Mtb correlates with less risk of TB over a life-
time in a subset of individuals. This suggests that prior expo-
sure to Mtb could be protective8,9. Evidence to support these 
three cases of resistance to Mtb has been highlighted in two  
reviews published in 201410,11. Nevertheless, early clearance of 
Mtb infection has been the focus of intensified research over the 
past three years. Understanding of these events could greatly  
facilitate the definition of correlates of protective immunity to Mtb 
infection.

In this commentary review, we present and summarize recent 
research advances in understanding the epidemiology of early 
clearance of Mtb infection. We include studies of loci of  
resistance, mechanisms of early clearance, and natural trans-
mission model systems and instigate discussion of the relevance  
of these advances to vaccines to control infection by Mtb.

Evidence for early clearance
A difficulty in studying early clearance of Mtb infection has 
been discerning it from non-exposure, as lack of converting a  
TST or IGRA could reflect either situation. In the absence of a  
gold standard for diagnosing Mtb infection, it is possible that 
either test could miss instances of infection. However, given the  
excellent negative predictive value of both tests, we will consider 
either negative test as a reflection of resistance to infection5,6. 
Nevertheless, longitudinal studies of household contacts (HCs) 
of active TB cases have allowed for the definition of risk factors 
of Mtb infection. For example, a Uganda–Case Western Reserve  

University research collaboration has been conducting a long-
standing study of HCs since 1995. Recently compiled data  
from this study were used to define risk factors of Mtb infection 
as measured by TST positivity in over 1,300 individuals. Among 
adult HCs, there were no significant differences in a multifacto-
rial risk score between individuals who were persistently TST- 
negative and those who had a positive TST or converted to a  
positive TST over two years12. This result was further supported 
by a culminating analysis of over 2,500 HCs from the same  
cohort13. Here, persistently TST-negative adults did not differ 
in epidemiologic risk score from other clinical groups. These  
data suggest that there is still evidence for early clearance even 
when the degree of exposure is controlled for.

A number of different studies have tried to establish the preva-
lence of early clearance. Here, the prevalence of early clearance of  
infection can be defined by a persistent negative TST or IGRA 
in the setting of Mtb exposure. In humans, our best examples of  
early clearance come from longitudinal (two-plus years) analy-
ses of HCs of TB patients, or those residing in high TB-burden 
areas, where immune sensitization is carefully monitored. Table 1 
and Table 2 summarize longitudinal studies of HCs categorized as 
persistently TST-negative (Table 1) or persistently TST- or IGRA-
negative or both (Table 2). As illustrated in Table 1, studies with 
at least two years of longitudinal observation of HC conversion 
of TST demonstrated a frequency of early clearance ranging from 
3.4%14 to 26.8%, both in Uganda15. Whereas the TB Network study 
that followed HC conversion of IGRA demonstrated that about 
58% of exposed HCs lacked evidence of immune sensitization, 
other studies had a less rigorous definition, as they varied by time 
of follow-up with individual as well as the likelihood of expo-
sure to TB16–20. Presumably, in some of these studies, higher rates  

Table 1. Studies that have determined persistent tuberculin skin test 
negativity in household contacts.

Location Duration of 
observation

Household 
contacts

Percentage 
TST-negative

Reference

Ugandaa 2 years 97 26.8 15

Ugandaa 2 years 2,585 9.9 21

Tanzania and Uganda Up to 8 years 469c 48 22

Venezuelab 3 years 102d 18.6 23

Ugandaa 2 years 601 14.5 24

The Gambiab 6 months 64 60 20

Ugandaa 2 years 1,318 11.7 12

Ugandaa 1–2 years 529 3.4 25

South Africa None 350 40 14

Pakistan 2 years 93 25 26

Ghana None 2,346 5.5 19

Ugandaa 2 years 803 10.5 27

aSubjects were from the same cohort; bnot a high tuberculosis burden area; call patients 
were HIV-positive and only 46% of persons enrolled were household contacts; dtuberculosis 
hospital workers, not household contacts. TST, tuberculin skin test.
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of TST- and IGRA-negative HCs could be explained by dimin-
ished exposure to Mtb. Nonetheless, extensive epidemiologi-
cal information collected from the studies in Table 1 and Table 2 
suggests that when exposure variables are controlled for, there  
remains a population of individuals who may be better able to  
control infection12,15,21,24–27. In this review, we explore possible  
determinants of early clearance of Mtb infection.

Mechanisms of early clearance of Mycobacterium 
tuberculosis infection
Initial recognition of aerosolized Mtb occurs in the lung, 
which leads to the production of pro-inflammatory cytokines,  
chemokines, and antimicrobial peptides (reviewed in 28,29). What  
determines the outcome of exposure to Mtb? Is infection  
determined by the virulence of the microbe or more dependent  
upon host response? Is the immediate response in the respira-
tory tract important to host protection? Is infection determined by 
the ability of Mtb to establish a niche in a specific inflammatory  
microenvironment? Or does the quality, quantity, or organization 
of lung-resident lymphocytes influence early killing of Mtb and  
ultimate protection of the host?

I. Early recognition of Mycobacterium tuberculosis 
The airway is a complex immune organ and likely critical in 
determining the outcome of Mtb exposure. It exhibits anatomic 
and functional heterogeneity and contains a diverse array of  
mechanisms to prevent pulmonary infection, including muco-
ciliary clearance, secreted antibodies, and antimicrobial proteins 
such as defensins28. Although most research has focused on the  
alveolus as the initial site of infection, Mtb has ample oppor-
tunity to interact with the entire respiratory tract, like other  
aerosolized particulates. However, how these interactions result 
in clinically relevant outcomes such as infection and progression 
to disease is poorly understood. Reuschl et al. used polarized  
human lung epithelial cells in conjunction with myeloid cells to 
model these early interactions. Following Mtb infection, they 
mapped global transcriptomic changes in host cells. Interest-
ingly, they found that myeloid cells could license epithelial  
cells, through interleukin-1 beta (IL-1β) and type I interferon, 
resulting in enhanced mycobacterial control30. Additionally,  
following Mtb infection in the mouse, cathelicidins and related 
antimicrobial proteins produced by lung macrophages and  
epithelial cells were required for early clearance of infection31. 
Mounting evidence suggests a role of humoral immunity, includ-
ing antibodies, and antibody-responsive innate immune cells 

bearing Fc-receptors, in protective immunity to Mtb32–35. While 
studying patients already infected with Mtb, Lu et al. explored  
70 different antibody features of total serum IgG from patients 
with LTBI compared with active TB. The authors’ data suggested 
an innate antibody Fc effector profile which led to the restric-
tion of bacterial survival within macrophages33. When evaluating  
HCs of patients with active TB, Chin et al. observed a differ-
ent IgA antibody V-gene/D-segment repertoire in those without 
LTBI compared with those with LTBI, suggesting that a specific 
type of secretory IgA may promote mucosal protection from Mtb  
infection36. A recently published genome-wide association study 
of persistently TST-negative HIV-positive HCs investigated  
mechanisms of resistance to infection22. Here, HIV-positive con-
tacts who resisted Mtb infection were postulated to have robust 
innate immunity. Sobota et al. found a significant association 
between TST negativity with a single-nucleotide polymorphism 
(SNP) at 5q31.1, which is located between SLC25A48, a mito-
chondrial amino acid transporter, and IL-9, a cytokine22. IL-9 has  
been implicated in bronchial hyperreactivity and as a growth  
factor for mast cells and T cells22. In an effort to search for 
biomarkers of stages of Mtb infection, Bark et al. evaluated HCs  
prospectively for differences in serum proteins over two years 
using mass spectrometry. They compared changes in host pro-
teins in those who were persistently TST- and IGRA-negative, 
had LTBI, or had TB15. Tissue integrity proteins, such as keratins, 
hornerin, lumican, and a component of the extracellular matrix, 
were more highly expressed in the serum of HCs who did not con-
vert their TST and IGRA. It is interesting to speculate whether 
these proteins contribute to an essential early barrier against infec-
tion. Taken together, these data suggest a distinct role for the  
respiratory tract as the first line of defense against Mtb infection.

II. Cell-intrinsic mechanisms of host resistance
Mtb virulence is a critical determinant of disease outcome fol-
lowing exposure. Although virulence must be broadly defined, 
one aspect is certainly the ability of the microbe to circum-
vent host immunity, such that the outcome reflects this complex  
interaction. It has been observed that the acquisition of adaptive 
immunity following infection with Mtb is delayed compared  
with other infections37,38. As a result, it has been postulated that 
Mtb has developed immune-evasive mechanisms to orchestrate this 
delay, allowing unrestricted replication in the lung. In fact, while 
using a low-dose aerosol model of TB in non-human primates, 
Gideon et al. asked whether there are differences in the immune 
response upon initial infection that determine the severity of the 

Table 2. Studies that have determined persistent interferon-gamma release assay 
negativity in household contacts.

Location Duration Test for Mycobacterium 
tuberculosis exposure

Household 
contacts

Percentage 
IGRA-negative

Reference

Brazil 8–12 weeks TST and IGRA 838 30.2 16

USAa 8–10 weeks TST and IGRA 569 52 17

Brazil 1 year TST and IGRA 64 26.5 18

Europea 2 years IGRA 5,020 58.2 5

aNot a high tuberculosis burden area. IGRA, interferon-gamma release assay; TST, tuberculin skin test.
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outcome39. Through longitudinal blood transcriptome analysis, 
these data suggested that a highly orchestrated innate and adaptive 
immune response was crucial for containment of the bacilli.

To determine whether HCs who resist infection or have LTBI  
differ in their ability to produce innate cytokines in response to  
Mtb infection, Mahan et al. employed a whole blood enzyme- 
linked immunosorbent assay. Here, the responses to a panel of 
innate receptor ligands indicated no differences between HCs 
with or without LTBI25. Although these data imply similar innate  
immune capabilities between those who remain TST-negative and 
those with LTBI, the authors state the need for more comprehen-
sive study of innate protective mechanisms. Correspondingly,  
a subsequent study in HCs from the same district indicated that 
initial recognition of Mtb by distinct innate receptors contrib-
utes to controlling infection. Hall et al. performed comparative  
candidate immune gene SNP analysis in HCs with or without LTBI. 
They found SNPs in NOD1, NOD2, SLC6A3, STAT1, IL12RB1, 
IL12RB2, and TLR4 that associated with a persistently nega-
tive TST24. As these are intracellular and extracellular sensors of  
bacteria, this suggests the need for recognition of infection and 
activation of the host cell in resistance. Interestingly, NOD2  
signaling is increased post-BCG vaccination for up to one year 
through a phenomenon called trained immunity40–42. Trained  
immunity is defined as resistance to reinfection and is thought 
to reflect persistent changes in innate pathways that can lead to 
memory. Further information from Manzanillo et al. supports 
intracellular sensing; phagosome acidification of Mtb can be 
triggered through another cytosolic surveillance pathway rec-
ognizing microbial cyclic dinucleotides and DNA43. These data 
indicate that intracellular sensing of Mtb in the host cell is a  
crucial trigger to controlling the early infection.

A common feature of innate sensing of extracellular and intra-
cellular Mtb is host cell activation, resulting in microbial  
killing. Host cells can directly kill Mtb by the production of  
antimicrobial proteins, reactive oxygen species, and acidification 
of the phagosome44,45. Acidification leads to autophagy, which  
in turn may help prevent or limit infection. Horne et al. found  
that a human SNP in ULK1 was associated with infection.  
CRISPR/Cas9 gene editing to delete ULK1 revealed that its  
deficiency in macrophages resulted in augmented Mtb growth, 
diminished tumor necrosis factor-alpha (TNF-α) production, 
and diminished autophagy17. Other genes associated with the  
macrophage phagosome, such as SLC11A1 or natural resistance-
associated macrophage protein 1 (NRAMP1), have been linked 
to the development of TB previously46. Although its full function 
remains to be elucidated, three studies have identified phago-
some-associated NRAMP1 expression as a protein associated 
with resistance to infection with Mtb. A seminal study of HCs in  
Uganda27 used a genome-wide linkage analysis to reveal three 
regions associated with early clearance. Whereas the two most 
significant regions did not contain characterized genes, a third 
contained NRAMP1. Also, an NRAMP1 polymorphism in the 3′ 
untranslated region (UTR) was more common in Venezuelan hos-
pital workers who were persistently TST-negative than those with 
LTBI23. Additionally, the transcriptome of host cell monocytes 
derived from persistently TST-negative HCs compared with those 
with LTBI has been explicitly interrogated by Seshadri et al.21. 

Transcripts associated with histone deacetylase (HDAC) inhi-
bition were enriched among persistently TST-negative HCs. 
Using chemical inhibition of HDACs in monocytes in vitro, 
the authors observed a role for HDACs in the early immune  
response to Mtb infection. As HDACs are associated with 
closed chromatin, this study would support a role for epigenetic  
programming of host cells in the control of Mtb infection.

Lastly, macrophages capable of non-inflammatory apoptosis 
and efferocytosis have inherently improved mycobacterial  
control by limiting intercellular spread47. Recent work in ani-
mal models of natural transmission supports the hypothesis that  
augmented apoptosis can result in better control of Mtb infec-
tion. In this regard, cows that demonstrate resistance to  
Mycobacterium bovis infection have persistent TST negativ-
ity following herd exposure48–50. To explore these mechanisms in  
cattle, Wu et al. generated an sp110-TALEN-mediated knock-
in cow strain. The gene Ipr1/sp110 had been previously demon-
strated to be associated with innate immunity to TB in mice51.  
Sp110 is a nuclear body that permits apoptosis over inflamma-
tory cell death in infected macrophages which decreases the 
viability of Mtb and limits intercellular spread52. In a break-
through finding, transgenic cattle where murine sp110 is  
selectively expressed in macrophages were more resistant to  
M. bovis infection when a cow with active TB was placed in a  
herd53. Macrophages from transgenic cattle were better able to 
“restrain” intracellular Mtb and preferentially died by apoptosis 
over necrosis in vitro. Although nitric oxide (NO) is tradition-
ally thought to play a direct role in TB control, it is also shown 
to limit granulocytic inflammation and tissue damage in the 
context of Mtb infection, in part through modification of the  
inflammasome54. Subsequently, it is interesting that Mtb-infected 
macrophages from TST-negative cattle were recently shown to  
produce more NO50. Therefore, NO, a molecule made in abun-
dance in human lung epithelial cells, has additional functions  
that may contribute to preventing infection with Mtb. These  
studies advocate that non-inflammatory cell death and innate  
antimicrobial responses derived from genetics or trained  
epigenetics of the host cell can contribute to controlling Mtb  
infection.

III. Unconventional lymphocytes coordinate early lung 
inflammation to limit Mycobacterium tuberculosis infection
Longitudinal case control studies (Table 1 and Table 2) would 
indicate that infection by Mtb can be controlled without an  
adaptive T-cell response18,20,25,55–58. In addition to macrophages, 
lymphocytes, especially T cells, could orchestrate this response 
to Mtb infection. In addition to antigen-specific HLA-I and HLA-
II restricted cells that can be reflected in a TST and IGRA, a  
variety of cells are capable of recognizing the Mtb-infected cell 
that may not be reflected in these assays. First, it is possible that a  
TST or IGRA test fails to reflect lung-resident memory T cells  
that do not circulate systemically59,60. Specifically, it has been 
argued that classically restricted tissue-resident memory T cells 
may recognize Mtb-infected cells and confer protection before 
the acquisition of a peripheral adaptive immune response61–63.  
Second, unconventional T cells, including CD1-restricted cells, 
MR1-restricted mucosal-associated invariant T (MAIT) cells, 
HLA-E/Qa-1-restricted cells, and γδ T cells, can also recognize 
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Mtb infection and are poised at mucosal sites such as the lung59. 
Each of these cell populations can also kill infected host cells 
through cytotoxic granules and produce cytokines in the con-
text of Mtb. Mouse models of TB have been used to decipher 
whether these subsets have a protective role in the antimicro-
bial immune response. Using mice deficient in the antigen- 
presentation element, researchers have observed a role for  
MR1-restricted MAIT cells and Qa-1-restricted cells in the early 
response to Mtb infection64–66. In parallel experiments, group I 
CD1-restricted T cells specific to Mtb-derived lipids conferred  
protection in human CD1-transgenic mice67,68. Mouse models 
of TB do not suggest a non-redundant role for natural killer  
T cells or γδ T cells in a chronic TB setting, although they do 
show changes in frequency and phenotype in association with  
human Mtb infection69,70. Moreover, group-I CD1-, HLA-E-, 
and MR1-restricted T cells specific to Mtb antigen have been 
detected in individuals with active or LTBI infection68,71–75.  
Collectively, these studies indicate a strong possibility that  
lung-resident T-cell populations play a role in the early immune 
response to Mtb in humans.

Lastly, natural transmission models of Mtb infection in guinea 
pigs have provided us with an important example of sterilizing 
adaptive immunity. Guinea pigs demonstrate a range of suscep-
tibility to Mtb infection in natural transmission experiments76,77.  
A unique set-up of these experiments includes the direct  
exposure of guinea pigs to air from patients. They reflect many  
features of human immunity such as variable progression to  
disease. Additionally, some guinea pigs displayed the early  
clearance phenotype in that they became infected and then 
reverted to a negative TST. Sterilizing immunity was supported 
by the observation that the animals did not have granulomas or  
cultivable mycobacteria, and conversion was prevented by  
irradiating the air. Furthermore, administration of dexamethasone 
did not result in TB. As the prevalence of sterilizing immunity 
in humans is uncertain, future lessons from model systems may  
provide a paradigm of immune memory that may be crafted into 
future vaccine strategy or immune therapeutics.

The immune race to control Mycobacterium 
tuberculosis infection
Viewed in aggregate, the studies presented here illustrate 
immune mechanisms that may facilitate early clearance or the  

eradication of Mtb before an adaptive immune response devel-
ops. In humans, our best indicators of early clearance come from  
longitudinal (two-plus years) analyses of HCs of TB patients or 
those residing in high TB burden areas, where exposure to Mtb 
and immune sensitization are carefully monitored. It is important  
to recognize that much of our knowledge of the host-defense  
mechanisms comes from the study of those with chronic  
disease. However, studies focusing on the early acute phases of  
Mtb infection have provided insights that support early and  
successful lung-resident immunity as key for preventing infec-
tion. As TB eradication will depend on preventing transmission,  
understanding immune correlates, such as improved macro-
phage function, mucosal antibodies, or enhanced recognition of 
the infected cell, will present new opportunities to prevent Mtb  
infection.
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