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Abstract: Cardiovascular disease is the leading cause of death and disability in the Western world. In
order to safeguard the structure and the functionality of the myocardium, it is extremely important to
adequately support the cardiomyocytes. Two cellular organelles of cardiomyocytes are essential for
cell survival and to ensure proper functioning of the myocardium: mitochondria and the sarcoplasmic
reticulum. Mitochondria are responsible for the energy metabolism of the myocardium, and regulate
the processes that can lead to cell death. The sarcoplasmic reticulum preserves the physiological
concentration of the calcium ion, and triggers processes to protect the structural and functional
integrity of the proteins. The alterations of these organelles can damage myocardial functioning.
A proper nutritional balance regarding the intake of macronutrients and micronutrients leads to
a significant improvement in the symptoms and consequences of heart disease. In particular, the
Mediterranean diet, characterized by a high consumption of plant-based foods, small quantities of
red meat, and high quantities of olive oil, reduces and improves the pathological condition of patients
with heart failure. In addition, nutritional support and nutraceutical supplementation in patients who
develop heart failure can contribute to the protection of the failing myocardium. Since polyphenols
have numerous beneficial properties, including anti-inflammatory and antioxidant properties, this
review gathers what is known about the beneficial effects of polyphenol-rich bergamot fruit on
the cardiovascular system. In particular, the role of bergamot polyphenols in mitochondrial and
sarcoplasmic dysfunctions in diabetic cardiomyopathy is reported.

Keywords: diabetic cardiomyopathy; myocardial metabolism; myocardial dysfunction; role of
mitochondria and sarcoplasmic reticulum in the myocardium; bergamot polyphenols; bergamot
polyphenolic fraction

1. Introduction

Cardiovascular diseases represent the main cause of death and disability in the West-
ern world; in recent decades, there has been an increase in disorders caused by heart failure
(HF). Several risk factors [1–5] contribute to the onset of HF that can be distinguished into
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non-modifiable, (sex, age, family predisposition, genetic factors, aging) [6], partially modi-
fiable, (obesity, diabetes mellitus, hypercholesterolemia, arterial hypertension, increase in
radical species, increase in systemic inflammatory processes) [7–9], and modifiable (alcohol
and drug abuse, physical inactivity, high-calorie diet rich in saturated fat and salt) [10–14].
In addition, HF often occurs in patients with comorbidities such as diabetes, hypertension,
and dyslipidemia [15].

Diabetic cardiomyopathy is generated by insulin resistance, hyperinsulinemia, and
hyperglycemia. These metabolic changes can occur independently of other heart disorders,
including coronary artery disease and hypertension [16]. In fact, the risk of developing
heart failure is increased in diabetic patients (about 2.4 times in men and 5 times in women)
compared with those without diabetes. Heart disease, linked to diabetes, is responsible
for structural and functional adaptations that sequentially occur. In the early stages of
diabetic cardiomyopathy, frequent pathophysiological changes occur, such as the impaired
autophagy of cardiomyocytes, the increased death of cardiomyocytes, the inappropriate
activation of the renin–angiotensin–aldosterone system, oxidative stress, and maladaptive
immune responses, responsible for the onset of fibrosis and substantial cardiac stiffness.
In addition, metabolic disorders such as reduced insulin signaling, decreased glucose
uptake, increased myocardial absorption of non-esterified fatty acids, and mitochondrial
dysfunction are responsible for heart remodeling, fibrotic diastolic dysfunction, and de-
creased ejection fraction [17,18]. In later stages of diabetic cardiomyopathy, changes in
myocardial structure are more pronounced and include necrosis, increased connective-
tissue cross-linking, interstitial fibrosis, collagen accumulation, hypertrophy, and capillary
microaneurysms [19]. Further changes are associated with coronary microcirculation, and
diastolic and systolic dysfunction [20]. Hyperglycemia and glucotoxicity emphasize multi-
ple instances of cell damage, including the glycation of biological macromolecules such
as proteins and lipids. In particular, the deposition of advanced glycation end products
contributes to the increase in connective-tissue cross-linking and fibrosis, worsening dias-
tolic relaxation and cardiac stiffness. Lastly, these compounds are involved in an increase
in reactive oxygen species (ROS) and inflammatory processes [21]. Impaired metabolic
insulin signaling is also associated with diabetic cardiomyopathy. Under physiological
conditions, cardiomyocytes, via the PI3K/Akt signaling pathway, stimulate the recruitment
of glucose carrier GLUT4 to the plasma membranes, which results in glucose uptake. When
insulin resistance is activated, PI3K/Akt pathway is altered, resulting in a reduction in
glucose in the heart [22]. A poor diet, rich in refined fats and carbohydrates, and physical
inactivity contribute to the reduced metabolic signaling of cardiac insulin [23,24]. The
mammalian heart requires a high level of energy, and cellular mitochondria are essential to
ensure this function, as they generate over 95% of the ATP used by the heart. Therefore,
the proper metabolism of cardiomyocytes is responsible for the optimal functioning of the
myocardium [25]. Furthermore, cardiomyocytes also regulate cell signaling and death,
and the availability of the calcium ion, responsible for the muscle-contraction mechanism;
cardiomyocyte mitochondria also regulate cell signaling and death. The extent of muscle
contraction depends on the availability of calcium ion levels. The sarcoplasmic reticulum,
together with the mitochondria, is able to regulate the homeostasis of intracellular calcium,
essential for the process of the excitation–contraction of the heart [26]. Therefore, the proper
functioning of the mitochondria, the sarcoplasmic reticulum, and their appropriate cross-
talk is the basis for the functioning of the cardiomyocytes and the myocardium [27]. The
onset of diabetic cardiomyopathy at the systemic, organ, and cellular levels is represented
in Figure 1.
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must be perfectly balanced in the diet [29,30]. Current scientific knowledge shows that a 
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in vivo study was conducted on male mice fed with a high-fat diet for 28 weeks [33]. At 
the end of the experimental period, cardiac parameters, myocardial lipid content, and mi-
tochondrial function and morphology were evaluated. The results obtained showed a sig-
nificant increase in myocardial fat, marked cardiac hypertrophy, and morphological ab-
normalities of the mitochondrial structure in mice treated with a high-fat diet compared 
to the control group fed a normal diet. In addition, in the same experimental group, the 
abnormal expression of genes involved in mitochondrial dynamics, a reduction in the ex-
pression of mitochondrial respiration protein complexes, and a significant increase in the 
AMP/ATP ratio were observed [33]. Therefore, greater adherence to a healthy diet signif-
icantly reduces the risk of developing cardiovascular diseases [34,35]. In this context, the 
Mediterranean diet, consisting mainly of fruit, vegetables, whole grains, nuts, seeds, and 
legumes can reduce the excessive production of proinflammatory cytokines and the accu-
mulation of ROS [36–39]. 
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and glycosylated polyphenols, such as bruteridin and melitidin [40]. Bergamot was ini-
tially grown for its use in the perfumery, cosmetic, food, and confectionery industries, but 
is now known to possess several pharmacologically beneficial effects on various organs 
and tissue types. To date, the protective effects of the main polyphenols contained in high 
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To date, there have been many studies showing that proper nutrition could be an
important factor in the prevention of HF [28]. Food is the primary source of energy,
essential to support a proper myocardial contractility [6], and macro- and micronutrients
must be perfectly balanced in the diet [29,30]. Current scientific knowledge shows that
a high-fat diet is associated with heart failure and arrhythmias [31,32]. For example, a
recent in vivo study was conducted on male mice fed with a high-fat diet for 28 weeks [33].
At the end of the experimental period, cardiac parameters, myocardial lipid content, and
mitochondrial function and morphology were evaluated. The results obtained showed
a significant increase in myocardial fat, marked cardiac hypertrophy, and morphological
abnormalities of the mitochondrial structure in mice treated with a high-fat diet compared
to the control group fed a normal diet. In addition, in the same experimental group, the
abnormal expression of genes involved in mitochondrial dynamics, a reduction in the
expression of mitochondrial respiration protein complexes, and a significant increase in
the AMP/ATP ratio were observed [33]. Therefore, greater adherence to a healthy diet
significantly reduces the risk of developing cardiovascular diseases [34,35]. In this context,
the Mediterranean diet, consisting mainly of fruit, vegetables, whole grains, nuts, seeds,
and legumes can reduce the excessive production of proinflammatory cytokines and the
accumulation of ROS [36–39].

Bergamot (Citrus bergamia, Risso et Poiteu), is a citrus fruit that grows almost exclu-
sively in southern Italy, in a restricted area of the Calabrian coast; it is characterized by a
unique profile in flavonoid glycosides, including neoeriocitrin, neohesperidin, naringin,
and glycosylated polyphenols, such as bruteridin and melitidin [40]. Bergamot was initially
grown for its use in the perfumery, cosmetic, food, and confectionery industries, but is now
known to possess several pharmacologically beneficial effects on various organs and tissue
types. To date, the protective effects of the main polyphenols contained in high concentra-
tion in bergamot are well-known. In particular, important beneficial effects on the nervous
system [41–43], the mineralization of bones [44], the regulation of keratinocytes [45], the
regulation of the metabolism [46,47], against adipose-tissue inflammation [48] and during
myocardial regeneration [49] were reported. These protective effects of bergamot have
been found in many of its formulations: extract (BE), juice (BJ), essential oil (BEO), and
polyphenolic fraction (BPF). In particular, although there are not many studies carried
out on animal models concerning the protective effect of bergamot in muocardium, it
is known that the treatment with BPF (10 or 20 mg/kg/daily for 30 days) reduces the
total cholesterol, LDL, and triglycerides, enhancing fecal sterols excretion, compared to
controls and this treatment does not generate toxicity related to liver detoxication [50]. The
studies on humans reported a cardio-protective effect of a single daily dose of BE (150 mg
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of flavonoids), with 37% of naringin, 47% of neohesperidin and 16% of neoeriocitrin for
6 months [51]. Other studies agree that the administration of BPF per 30 days, at a daily
dose of 500 mg or 1000 mg, is able to support heart health in humans and again these
dosages do not interfere with liver detoxification metabolism [52,53].

In particular BPF, an enriched polyphenolic formulation obtained from the juice
and albedo of bergamot, has protective activities in the management of atherosclerosis,
metabolic disorders, and cardiotoxicity due to its antioxidant, anti-inflammatory, and lipid-
lowering effects [54–57]. Furthermore, BPF reduces serum cholesterol and triglyceride
levels, improving systemic inflammation and endothelial function [58–61]. Interesting
experimental data also demonstrate the beneficial protective action of BPF in preventing
hyperglycemia [62,63].

Therefore, the present review reports two important topics in depth:

• The functional role of mitochondria and sarcoplasmic reticulum in cardiomyocytes in
physiological conditions and in the onset of diabetic cardiomyopathy.

• The potential beneficial role of bergamot polyphenols in diabetic cardiomyopathy.

1.1. Myocardial Metabolism

Cardiomyopathies are pathological conditions consisting of myocardial alterations
that often lead to heart failure. The American Heart Association distinguishes primary and
secondary cardiomyopathies: the former are disorders that only affect the heart, while the
latter describe conditions in which the cardiac alteration is accompanied by dysfunctions
in other bodily districts [64,65]. Although this distinction is currently recognized, the
symptoms of one form can often overlap with those of another [66,67].

The first fundamental aspect that should be addressed, which concerns myocardial
cells, is the available energy sources in order to ensure excitation–contraction. Cardiomy-
ocytes are capable of utilizing all classes of energy substrate to produce ATP, including
carbohydrates, lipids, amino acids, and ketone bodies. Of the energy needed by myocar-
dial cells to ensure muscle contraction, 70% is obtained from the oxidation of fatty acids.
The absorption of circulating fatty acids occurs in cardiomyocytes by passive diffusion or
facilitated transport by the translocation enzyme of fatty acids located near the plasma
membrane [68]. However, the transport of fatty acids into the mitochondria is quite differ-
ent. In this case, support is required for a specific translocation, a protein that binds to fatty
acids and transports them inside the mitochondria [69]. The entry of acyl-CoA into the
mitochondria is a finely regulated process carried out by the carnitine-palmitoyl-transferase
I (mCPT-1) enzyme, present on the outer portion of the inner mitochondrial membrane,
which catalyzes the transfer of acyl-CoA to carnitine [70]. The action of mCPT-1 is the
phase that determines the level of entry of fatty acids into the mitochondria, and enzymatic
activity is allosterically regulated by the malonyl-CoA inhibitor [71]. In response to low
levels of chemical energy, a regulated reduction in malonyl-CoA levels and increased
activity of the mCPT-1 enzyme are triggered. Once in position, fatty acids are degraded in
the Krebs cycle generating FADH2 and NADH, which are the reducing equivalents that
feed the electron transport chain resulting in the consumption of oxygen and the final
formation of ATP. Although fatty acids are the main source of energy, cardiomyocytes have
low storage capacity [72]. In addition, under conditions of low oxygen concentrations,
energy is derived from the cleavage of other substrates such as glucose, lactate, and ketone
bodies. The oxidation of pyruvate is regulated by the pyruvate dehydrogenase enzyme.
Ketone metabolism produces acetyl-Coa, while the catabolism of amino acids produces
ketoacids that are further metabolized to enter the Krebs cycle [73]. The degradation of
glucose and lactate by glycolysis and dehydrogenation, respectively, ensure an amount of
energy equal to 10–30% of cardiomyocyte needs and, although the production of ATP is
greater by the oxidation of fatty acids, the degradation of glucose and lactate is more effec-
tive because it consumes fewer oxygen molecules [74]. The transport of glucose inside the
cardiomyocytes is facilitated by the glucose transporters (Gluts) present on the membranes
of the sarcolemma. The most expressed isoforms are GLUT1, constitutively active, and
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GLUT4, which results in its expression in the sarcolemma in response to insulin production.
In general, enzymes involved in the oxidative metabolism of fatty acids or the degradation
of glucose are finely regulated at the transcriptional level [75]. In light of the foregoing
regarding myocardial metabolism, the need for cardiomyocytes to possess a large number
of mitochondrial organelles to satisfy the demand for large amounts of energy is justified.
For this reason, cardiomyocytes are the cells with the highest number of mitochondria,
and it is estimated that these organelles occupy about one-third of the cell volume of the
cardiomyocyte. Mitochondrial dysfunction, which occurs in pathological conditions, re-
duces the oxidative metabolism by generating changes in the myocardium [76,77]. Several
scientific studies showed that there is a link between the altered metabolism of cardiac
energy substrates and the accumulation of ROS [78,79].

1.2. Role of Calcium Ion in the Myocardium

The calcium ion is a key element in all eukaryotic cells, as it is involved in many sig-
naling processes such as differentiation, proliferation, apoptosis, excitation, cell contraction,
and neuronal plasticity [80]. In the myocardium, calcium is involved in both electrical
activity and cardiac contractility [81], and also influences the regulation of gene expression;
this process is excitation–transcription coupling [82]. The direct consequence is that there
are forms of the strict regulation of calcium ion in order to maintain its correct homeostasis.
In particular, calcium transport mechanisms are present between the cell cytosol and the
extracellular environment, and between the cell cytosol and calcium deposits maintained
in the sarcoplasmic reticulum. The increase in the cellular availability of calcium occurs
mainly, but not exclusively, as a result of the release of this ion from the sarcoplasmic
reticulum. Calcium determines conformational changes in the troponin–tropomyosin
complex, the sliding of the actin and myosin filaments, and muscle contraction. Conversely,
sarcomere relaxation occurs as a result of cytosolic calcium reduction, the reuptake of the
sarcoplasmic reticulum through the SERCA pump, and/or by the Na+/Ca2+ exchanger [83].
In cardiomyocytes, changes in calcium ion homeostasis are related to many forms of heart
failure, and dysfunctional ion transport from the sarcoplasmic reticulum was found in
the pathophysiology of heart failure [84]. Diabetic cardiomyopathy is associated with
a reduced reuptake of Ca2+, which causes an increase in the potential of action and a
slowdown in diastolic relaxation. These effects are responsible for inducing the apoptotic
and necrotic death of cardiomyocytes. Furthermore, autophagic impairment, which occurs
with alterations in autophagosomal and lysosomal fusion, is also involved in diabetic
cardiomyopathy [85].

1.3. Importance of Mitochondria and the Sarcoplasmic Reticulum in the Myocardium

The mitochondrial dysfunction of cardiomyocytes is related to the onset of myocardial
damage, which can evolve in the development of numerous diseases [86]. Any form of
mitochondrial insult is able to alter the shape and functions of these organelles, and the
membrane potential and its metabolism. In physiological conditions, mitochondria carry
out oxidative phosphorylation, producing ROS, which do not, however, cause damage
to myocardial cells due to the presence of endogenous antioxidant mechanisms that can
counteract its accumulation [87]. If an insult affecting myocardial cells reduces the levels
of endogenous antioxidants, the balance between pro- and antioxidant mechanisms is
disrupted, and ROS can interact and alter biological macromolecules such as proteins,
nucleic acids, and lipids. In particular, ROS can modify the structure and function of
proteins, alter DNA repair mechanisms, and generate lipid peroxidation, interfering with
biological membranes [88,89]. There is a complex mechanism in the cell, mitochondrial
quality control (MQC), which removes or repairs damaged mitochondria, and maintains
proper mitochondrial morphology, quantity, and function [90]. In particular, MQC is able
to implement post-translational modifications of mitochondrial proteins to collaborate in
mitochondrial biogenesis through mechanisms that lead to the fission and fusion of mito-
chondria, and to trigger mitochondrial autophagy (mitophagy), leading to an irreversible
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degradation in lysosomes when necessary [91,92]. Mitochondrial dynamics (including their
biogenesis, number, and shape) comprise several processes, such as fusion, fission, and
mitophagy [93]. Among factors responsible for the implementation of correct mitochon-
drial dynamics, one of the most important is the transcriptional coregulator peroxisome
proliferator-activated receptor γ (PPAR γ), coactivator 1α (PGC1α), which promotes the
transcription of numerous genes responsible for mitochondrial biogenesis. This protein
is expressed in all energy-consuming tissue types, including striated and skeletal muscle,
brown fat, the liver, and the brain [94]. Studies in the recent scientific literature showed that
the overexpression of PGC1α causes the accumulation of enlarged mitochondria in vitro
and the loss of sarcomeric structure with dilated cardiomyopathy in vivo [95]. Conversely,
the lack of PGC1α was not associated with abnormal mitochondrial and cardiac structure,
although it resulted in the deficient expression of mitochondrial proteins and contractile
cardiac dysfunction in vivo [96]. In view of the above, certain alterations in mitochondrial
dynamics can be determined under pathological conditions (direct damage or exposure to
cardiotoxic agents), leading to mitophagy to save cellular homeostasis [97]. In addition
to biological macromolecules, these reactive species also damage mitochondrial DNA
(mtDNA). Under these circumstances, mutations and deletions accumulate, eventually
leading to the development of dilated cardiomyopathy and an aging-like condition [98];
for example, following ultrastructural analysis, myocardial mitochondria appeared to
be enlarged and swollen, with no crests, with a damaged matrix, and low levels of ATP
production. When mitophagy fails to eliminate damaged mitochondria, cardiomyocytes
undergo apoptosis [99]. In diabetic cardiomyopathy, hyperglycemia induces the oxidation
of intracellular glucose, generating an increase in pyruvate and its influx into the mitochon-
dria. The consequence is an elevated production of ROS, generated at complexes I and III
of the mitochondrial chain, a reduction in oxidative phosphorylation, and the generation
of mitochondrial ATP [100]. In addition, the increased absorption of mitochondrial fatty
acids exceeds mitochondrial respiration capacity, and induces an accumulation of toxic
lipid metabolites that cause mitochondrial dysfunction and cardiac lipotoxicity [101].

The heart needs calcium to function properly, and the main source of this ion is
the sarcoplasmic reticulum (SR). The release of calcium from SR is modulated by a set
of proteins, and particularly by the ryanodine receptor (RyRs). RyRs form a class of
intracellular calcium channels found in mammals, and are excitable in muscle and nerve
cells. Their role is to mediate the release of calcium ions from the sarcoplasmic reticulum
so that they can perform muscle contraction. There are three known isoforms of RyRs, and
RyR2 is the isoform expressed mainly in the myocardium, where it is responsible for the
excitation–contraction coupling process (E–C coupling). Mutations in RyR2 are associated
with changes in the heartbeat [102]. RyRs are very close to mitochondria, and the release
of calcium from RyR2 regulates the production of ATP in cardiomyocytes [103]. These
channels regulate the release of calcium ions via negative feedback modulated by cytosolic
calcium concentrations [104]. Two small molecules capable of modulating RyRs are Mg2+

and ATP; the Mg2+ ion inhibits these channels with two mechanisms:

• Reducing the opening of RyRs by competing with Ca2+ sites with higher affinity;
• Reducing the opening of RyRs by binding to less selective sites for Ca2+ [105].

Some RyRs can be activated even in the absence of Ca2+ [103]. ATP, ADP, AMP, cAMP
and adenosine can also activate RyRs, but ATP is more effective [104].

Another alteration involving the sarcoplasmic reticulum of cardiomyocytes is the
imbalance of the proteostasis network, which normally ensures the integrity of proteins.
Proteostasis includes the regulation of synthesis, folding, trafficking, and degradation.

The correct structure and functioning of proteins are essential to ensure cardiac contrac-
tion: among the main ones are some ionic channels, proteins associated with the viability
of cardiomyocytes, growth factors, hormones, and proteins responsible for interaction
with other cell types [105]. An imbalance between the components of these networks can
lead to the accumulation of misfolded proteins, proteinopathy, or proteotoxicity. These
alterations in cardiomyocytes can lead to ischemic phenomena and hypertrophic or dilated
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cardiomyopathies [106]. An excess of misfolded proteins results in the production of toxic
polypeptides that can affect myocardial function and lead to heart failure [107]. In general,
three mechanisms through which cells are able to remove potentially toxic misfolded
proteins are recognized:

• Degradation through the ubiquitin proteasome system (UPS); UPS components are
located in specific regions of cells. For example, in cardiomyocytes UPS, elements are
found on the Z line of sarcomeres, in the cytoplasm, in the nucleus, and on the surface
of many organelles, such as SR, mitochondria, and lysosomes [108].

• A proteosome-independent process involving autophagy in different districts; this
activates mitophagy [109] or SR autophagy [110].

• A physiological response following the increase in unfolded proteins in the SR, which
activates the unfolded protein response (UPR) [111]. The ATF6 branch of UPR is
involved in many cellular processes, including a rearrangement of lipid synthesis
with the aim of reducing damage due to the accumulation of unfolded proteins [112].
The SR involves ATF6 in protein misfolding, cardiomyopathy, and heart failure [113].
ATF6 also participates in the induction of those genes that reprogram proteostasis,
reducing the death of cardiomyocytes and conferring cardioprotection [114].

In diabetic cardiomyopathy, the myocardium could be damaged as the main conse-
quence of hyperglycemia, hyperinsulinemia, and hyperlipidemia. A summary is shown in
Figure 2.
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Figure 2. Involvement of mitochondria and sarcoplasmic reticulum in stress induced by diabetic
cardiomyopathy, showing how diabetes, hyperglycemia, hyperinsulinemia, and hyperlipidemia
cause a stress condition involving dysfunction of the mitochondria and sarcoplasmic reticulum. In
particular, some events occur including an impaired calcium homeostasis, altered protein expression,
autophagy, and apoptotic cell death.

1.4. Sarcoplasmic-Reticulum Stress in Diabetic Cardiomyopathy

In the last decade, a correlation was found between SR stress and diabetic cardiomy-
opathy [101,115,116]. Pathological remodeling in this disease is accompanied by the
alteration of cellular proteins that can facilitate SR stress, and alterations in the intracel-
lular homeostasis of Ca2+ and UPR [117]. The factors that induce reticulum stress could
be hyperglycemia, free fatty acid accumulation, and insulin deficiency or resistance and
inflammation [118]: for this reason, SR stress is an early event in diabetic cardiomyopa-
thy [119]. In particular, hyperglycemia alters SR homeostasis, and glucose, normally used
as energy fuel, is metabolized to generate harmful compounds. Damage that can lead to
cardiomyocyte death occurs when a high glucose overload is also accompanied by lipid
accumulation, inducing oxidative stress responsible for the dysregulation of protein home-
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ostasis [78,120]. In these circumstances, the UPR is involved: in the presence of glucose
overload alone, the PERK and ATF6 arms of UPR are activated [121]; in the case of both
glucose and lipid accumulation, signaling involving IRE-XBP1, the third arm of UPR, is up-
regulated [115]. In light of clinical evidence, the UPR of SR can demonstrate both adaptive
and maladaptive roles in the heart, and a prolonged or dysfunctional UPR can lead to heart
disease. In particular, an increase in CCAAT-enhancer-binding protein homologous protein
(CHOP) expression leads to cell death. CHOP is a transcription factor whose expression
is low under normal conditions but increases under SR stress. Overexpression of CHOP
promotes apoptosis in cardiomyocytes [122,123]. In diabetic cardiomyopathy, prolonged
SR stress determines the increase in the expression of CHOP and c-Jun N-terminal kinases
(JNK) responsive to stress stimuli, and caspase 12 activation [124]. Furthermore, the ac-
cumulation of saturated fatty acids inhibits SERCA channel activity due to the loss of
membrane fluidity, causing an alteration of Ca2+ and UPR, and triggering early lipotoxic
heart stress [125]. A recent scientific study highlighted the involvement of the SERCA
pump due high glucose concentrations [126]. Since there is cross-talk between calcium
homeostasis and the redox state in cells, hyperglycemia also alters oxidative homeostasis
in mitochondria [78,127]. This is the reason for the progressive accumulation of ROS and
reactive nitrogen species, advanced glycation, organelle dysfunction, and chronic inflam-
mation in diabetic cardiomyopathy [128]. Hyperinsulinemia also appears to be involved in
SR stress via two mechanisms [129,130]:

• The IRE1/JNK signaling pathway is activated, contributing to a further reduction in
cardiac function [131];

• The onset of an inflammatory state: during diabetic cardiomyopathy, it induces the
activation of macrophages, neutrophils, mast cells, platelets, and T lymphocytes,
leading to the release of proinflammatory cytokines and other molecules, such as ROS
and proteases, which have harmful effects on cardiomyocytes [132]. The induced
inflammatory response contributes to the onset and development of cardiomyopathy
and heart failure [133]. Figure 3 shows the phases that temporally occur during the
onset of myocardial damage caused by hyperglycemia in diabetic cardiomyopathy.
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2. Diabetic Cardiomyopathy and Bergamot Polyphenols

Growing evidence suggests that a control of nutritional balance (with particular regard
to the intake of micronutrients and nutraceuticals), in patients with heart disease leads to
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a significant improvement in symptoms and outcomes [134,135]. Cardiomyocytes obtain
about 70% of the required energy by the mitochondrial β-oxidation of fatty acids; the excess
part is esterified and stored in the form of energy reserves in lipid drops in the cell cyto-
plasm. If the diet is based on excessive fat consumption, however, fatty acids accumulate in
the myocardium and around the heart; this can also generate deleterious effects on blood
circulation, since toxic metabolic derivatives such as ROS and ceramides can occur, causing
lipotoxicity phenomena, leading to severe dysfunctions in cardiomyocytes [136,137]. In
particular, numerous experimental in vitro and in vivo studies highlighted how a high-
fat diet is responsible for heart failure, myocardial hypertrophy, and myocardial lipid
accumulation [138]. A high-fat diet during gestation in several species causes deleterious
effects in newborns; in particular, altered gene expression, abnormalities in the functions of
antioxidant enzymes, the increased possibility of developing atherogenesis, and damage to
the cardiovascular system [139]. The reduction of fatty acids intake generally has several
benefits, such as a reduction in body weight, and cholesterol and triglyceride levels, and an
improvement in the functioning of the myocardium [140,141]. Polyphenols are bioactive
chemical compounds synthesized by plants that are mainly found in fruits and vegetables,
where they are responsible for color, flavor, and many pharmacological activities. The
very large family of polyphenols includes more than 8000 variants, classified according to
their chemical structure into flavonoids (flavones, flavonols, isoflavones, neoflavonoids,
chalcones, anthocyanidins, and proanthocyanidins) and non-flavonoids (phenolic acids,
stilbenoids, and phenolic amides) [142]. Polyphenols are found mainly in fruits, vegetables,
olive oil, nuts, seeds, roots, the leaves of different plants, herbs, whole wheat, red wine,
coffee, and tea. Polyphenols do not arise from the primary metabolic reactions of plants, but
from secondary metabolism [143]. This category of compound plays important metabolic
roles in the human body, and interest in polyphenols has exponentially grown over the last
two decades. The reasons for this growing attention are manifold: first, they are readily
available and particularly safe for health, reduce the perishable nature of food and are
consequently used to replace common synthetic food preservatives, and have beneficial
properties in many aspects of human health. With regard to this last point, polyphenols
demonstrate a wide range of biological activities, being also able to act synergistically;
among these activities, they have antioxidant, anti-inflammatory, immunomodulating,
antitumor, and protective benefits to the cardiovascular system [144,145]. To date, the
recommended daily intake of polyphenols is in the range from 0.1 to 1.0 g [146]. This
suggests that the long-term consumption of dietary polyphenols offers protection against
the development of many diseases. The traditional Mediterranean diet is characterized
by a high consumption of foods of vegetable origin, minimal quantities of red meat, and
high quantities of olive oil and its derivatives. This particular choice is based on the need
to reduce saturated and increase healthier unsaturated fats. The Mediterranean diet has
been a winning strategy for maintaining health, and much experimental evidence showed
a close correlation between the Mediterranean diet and a reduced incidence of developing
cardiovascular diseases and cancer [147].

In general, the exact composition of plant derivatives is variable and depends on
multiple factors including seasonality, the level of maturation of the product and the portion
of plant used. Nevertheless, the composition of the product of interest can be identified
with certainty by appropriate laboratory analysis. To date, the common techniques already
known for the identification of volatile components of an extract, are based on the use of
gas chromatography-mass spectrometry (GC-MS). The results obtained can be qualitatively
better if metabolomic strategies are also associated [148]. Among natural compounds,
bergamot (Citrus bergamia, Risso et Poiteu) has particular importance thanks to its countless
pharmacological beneficial effects, including specific cardioprotective properties

The high levels of flavonoids contained in BPF formulation, refs. [61,62] showed im-
portant protective activities in the management of atherosclerosis, metabolic disorders,
and cardiotoxicity, mainly due to its antioxidative, anti-inflammatory, and lipid-lowering
effects [54–57]. In fact, clinical studies carried out on animal and cellular models showed
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that BPF has hypolipemic and antiatherogenic effects by interfering with the autophagic
pathway and preventing pathogenic lipid accumulation [59,149,150]. In addition, BPF
possesses powerful antioxidant effects, decreases lipid peroxidation biomarkers, and pre-
vents ROS accumulation in different cell types [58–60]. BPF also improves the activity of
endogenous antioxidant enzymes, including superoxide dismutase, glutathione peroxidase,
and glutathione S transferase P1 [61]. Indeed, a recent double-blind study conducted on 60
patients with Type 2 diabetes mellitus and hyperlipemia identified interesting beneficial
effects of BPF. In particular, the patients were divided into three groups: one received a
placebo, the second received standard BPF, and the third received phytosomal formula-
tion (BPF Phyto). The results obtained showed a significant reduction in fasting blood
glucose, serum LDL cholesterol, and triglycerides, and an increase in HDL cholesterol
in the group treated with BPF and BPF Phyto, thereby highlighting a hypolipemic and
hypoglycemic effect of bergamot extract, both with the use of the standard formulation and
BPF Phyto [62]. Although no differences in therapeutic response were observed between
the BPF and BPF Phyto groups, a comparison of the pharmacokinetic profile of naringin
(the main component of BPF) in patients treated with BPF Phyto showed an increase of
at least 2.5-fold of its absorption, confirming a better profile of BPF Phyto compared to
that of the BPF standard in human studies [62]. Another recent study highlighted the
beneficial effects of citrus-derived polyphenols on postprandial blood glucose and insulin
in healthy individuals [46]. A group of volunteers were given breakfast based on a brioche
enriched with wheat bran and bergamot fiber, comparing it to the consumption of a canon-
ical brioche. The results obtained showed that the association between wheat bran and
bergamot fiber significantly affected glucose metabolism, exerting insulin-like effects [46].
The hypothesis of these results, if confirmed in a larger study, may suggest a strategy
to control the glycometabolic status in patients with Type 2 diabetes [150]. Analyzing
the pathophysiological mechanisms of diabetic cardiomyopathy, especially the onset of
oxidative stress, mitochondrial and SR dysfunctions were evidenced [151,152]. Under these
conditions, protective mechanisms that include the overexpression of endogenous antioxi-
dant enzymes, UPR, and autophagic responses are activated with the aim of antagonizing
the apoptotic cell death of myocardial cells [153]. Since BPF counteracts oxidative stress in
in vitro and in vivo cardiotoxicity models [49,50,53], in addition to reverting mitochondrial
dysfunction [94,148,153], it is likely to assume its protective role even in the early stages of
diabetic cardiomyopathy, in cardiac dysfunction, and in countering the development of
heart failure.

It should be noted that other compounds belonging to the genus citrus show in-
teresting pharmacological effects on cardiovascular protection. Citrus flavonoids that
should be mentioned are nobiletin, hesperidin, hesperetin, rutin, tangeretin, eriodictyol
and others [154,155].

2.1. Beneficial Properties of Bergamot Polyphenols on the Sarcoplasmic Reticulum in
Diabetic Cardiomyopathy

The main compounds of citrus fruits, contained in particularly high percentages in the
BPF formulation, are naringin, neoeriocitrin, neohesperidin, and glycosylated polyphenols,
such as bruteridin and melitidin [156,157]. Among these, naringin is the component present
in greater quantity. Naringin has numerous pharmacological activities, including antilipi-
demic [158], antiatherogenic, superoxide scavenging, antioxidant, and anti-inflammatory
activities [159]. Naringin is a flavanone glycoside and has a chemical formula of C27H32O14.
It is formed from the flavanone naringenin and the disaccharide neohesperidose; naringin
can be found in a diversity of vegetables (tomatoes, beans, Greek oregano, cocoa), bever-
ages (red wine, tea, coffee, water mint), fruits (grapefruit, sour orange, bergamot) and other
citrus fruits (Citrus aurantium L. and Citrus medica L.). In the case of citrus fruits, naringin is
responsible for the bitter taste of the juices of these fruits [160]. The naringin content of fruit
depends on a number of factors including the degree of ripeness at harvest, the season, the
part of fruit used, the washing and drying time of the fruit. For this reason, it is difficult to
affirm the exact content of naringin in every fruit without incurring errors or inaccuracies.
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What can be said without any doubt is that a ripe citrus contains a greater amount of
naringin than the same fruit that has not reached a similar level of ripeness [161]. Naringin
is isolated by three sequential steps: extraction, separation and purification. In general, the
main components are obtained from citrus fruits based on their UV and mass spectra. A
method based on microwave assisted extraction (MAE) and high-speed counter-current
chromatography (HSCCC) allows the extraction of about 200 mg of naringin, at a purity of
97% to 99.5%, from 1.5 g of crude citrus extract: naringin thus represents 13–15% of the
citrus fruits concerned [162,163]. In general, it is possible to affirm that, per kg of bergamot
fruit, we have 1 g of naringin, while in one Kg of BPF we have 140 g of narinigin [51,55].
Although these data are fairly approximate, due to the above-described naringin content
variation factors, the percentage of naringin in BPF is confirmed at about 14%. Since
the naringin LD50 is about 2000 mg/kg and and because of its inhibitory effect on liver
enzymes (cytochrome P450 enzymes), its high consumption can increase the concentration
of drugs that are metabolized in the liver altering the pharmacokinetics and leading to
toxicity [164].

The effect of naringin was tested in vivo on streptozotocin-induced diabetic rats,
which eventually developed diabetic cardiomyopathy. Indeed, the induction of diabetes
caused changes in myocardial tissue, increased the content of malonildialdehyde (MDA),
decreased superoxide dismutase (SOD) enzyme activity, and increased protein expression
of GRP78 and CHOP, related to SR stress, and caspase 12, linked to apoptotic death [165]. In
this experimental model, naringin treatment alleviated damage to the myocardial structure,
decreased the content of MDA, and significantly increased SOD activities. In addition, the
protein expressions of GRP78 and CHOP were decreased, demonstrating a protective action
of naringin on SR stress of on mitochondrial oxidative stress induced by diabetes [166]. In
parallel, an in vitro study was conducted on vascular endothelial cells in which a condition
of stress that was induced by serum starvation and naringin was tested under the same ex-
perimental conditions at different concentrations and for different times [167]. In this case,
protection against impaired SR was highlighted. These results showed that the protective
action of naringin on SR occurs regardless of the type of damage that generated it [168].
Many cellular alterations present in the myocardium of patients suffering from diabetic
cardiomyopathy, including cardiac-cell apoptosis, oxidative stress, mitochondrial damage,
SR damage, proinflammatory cytokine production, myocardial hypertrophy, myocardial
remodeling, and cardiac fibrosis are related to the activation of the nuclear factor kappa
B (NF-κB) pathway both in vitro and in vivo: in fact, transcription factor NF-κB controls
most of the molecular processes within cardiomyocytes, and its dysregulation is involved
in many cardiovascular diseases [169]. Normally, NF-kB remains in the cell cytoplasm,
bound to the IkB factor that keeps it inactive. The activation of the NF-κB pathway in-
volves its detachment from IkB and translocation into the nucleus, where a specific subunit
binds to some specific genes regulating their expression [170]. The same pathophysiologic
process occurs in cardiomyocyte injuries induced by hyperglycemia. The cardioprotection
of naringin in an experimental hyperglycemia model was demonstrated [171]. In partic-
ular, the following mechanisms are activated: (1) nargirin activates glutathione (GSH),
ensuring a new antioxidant defense mechanism; (2) naringin prevents the progression of
hyperglycemia by increasing hepatic glycolysis and lowering hepatic gluconeogenesis;
(3) nargirin shows antidiabetic effects; (4) naringin inhibits the hyperglycemia-induced
NF-κB pathway [156]. The involvement of SR stress in diabetic cardiomyopathy was also
demonstrated by the important results obtained in an in vitro study on H9c2 embryonic rat
cardiomyoblast maintained in culture and exposed to high glucose concentrations [172]. In
this study, when the cells were exposed to exenatide, a drug used in the treatment of Type 2
diabetes mellitus, the inhibition of the NF-κB signaling pathway was observed, reducing SR
stress induced by hyperglycemia [162]. Since naringin, in addition to exenatide, can inhibit
the NF-κB signaling pathway and thus reverse SR stress, this natural constituent of BPF
could be a valid substitute and/or support for the treatment of diabetic cardiomyopathy.
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Metabolism of Polyphenols of Bergamot

After ingestion, flavonoids undergo extensive metabolization and absorption. These
phases occur in both the small and large intestines and a substantial assumed fraction
reaches the colon where flavonoids are exposed to the microbiota. In particular, the micro-
biome catabolizes unabsorbed flavonoids, by hydrolysis and fermentation, into smaller
molecules that can become bioavailable. Flavonoids initially undergo phase I metabolic re-
actions and the resulting metabolites are transported to the liver. In this organ they undergo
a further phase I metabolism followed by a series of phase II metabolic reactions that trans-
form the compounds into more polar structures, called glucoronides. These molecules can
be excreted through the kidneys in the urine or through the bile or transported back into the
intestinal lumen [173,174]. Recent literature studies have indicated in endothelial cells that,
following the intake of bergamot juice, 12 metabolites were identified in plasma and urine
samples of the volunteers: 5 metabolites were esperetin conjugates, 4 naringenin conjugates,
and 3 eriodictyol derivatives. It is interesting to note that these metabolites, to varying
degrees, have been found to reduce lipotoxic damage by decreasing the gene expression
of certain inflammatory cytokines (IL-1β, TNF-α and IL-8); in addition none of the tested
metabolites induced cytotoxic effects [175,176]. In order to evaluate cellular and molecular
mechanisms of action of flavanoids metabolites on endothelial cells, further studies have
been carried out. A well known paper reported that naringenin and hesperetin metabo-
lites (hesperetin-3′-sulphate, hesperetin-3′-glucuronide and naringenin-4′- glucuronide,
at concentration of 2 mM, were able to modulated the expression of genes involved in
atherogenesis, including those involved in inflammation, cytoskeletal organisation and cell
adhesion, providing a vasculoprotective effects of flavanones [177]. To confirm these data,
another important scientific work has evidenced, in human aortic endothelial cell (HAEC),
that glucuronides and sulfates metabolites of flavonoids (hesperetin 3′O-glucuronide, hes-
peretin 7′O-glucuronide, hesperetin 3′O-sulfate, hesperetin 7′O-sulfate and hesperetin) at
physiological concentrations where they are found after metabolism (1–10 um) are able
to attenuate cell migration, decrease the levels of thrombogenic plasminogen activator
inhibitor-1 (PAI-1) and reduce pro-inflammatory stimulus. Although further studies are
needed, it can be concluded that, following consumption of bergamot juice, circulating
phase-II flavonoids metabolites can contribute to cardioprotective effects [178].

3. Discussion and Conclusions

In summary, myocardial dysfunction is mainly caused by a condition of frailty of
the cardiomyocytes that, under stress, can collide with the physiological loss of the main
cellular organelles, such as mitochondria and SR [179–183]. In the early stage of diabetic
cardiomyopathy, there are collective metabolic disorders that promote cardiac remodeling
and fibrotic diastolic dysfunction. In the later stages, changes in cardiac structure are more
pronounced, and the functional dysfunction of the myocardium, reduction in the ejection
fraction, and cardiomyocyte necrosis occur [184,185]. There are many mechanisms that
contribute to reduced heart performance in diabetic cardiomyopathy. Among these, a key
role is played by hyperglycemia with the increase in fatty acids and cytokines. In this
condition, exposure to increased lipid levels leads to cardiac lipotoxicity [156,186]. The
formation of non-enzymatic advanced glycation end products also increases the harmful
effects. In particular, advanced glycation products activate the NADPH oxidase, triggering
the formation of peroxide and the accumulation of ROS, which are responsible for the
DNA damage of cardiomyocytes [187]. Mitochondrial oxidative stress and Ca2+ alteration,
caused by SR dysfunction, significantly contribute to diabetic cardiomyopathy. The therapy
of diabetic cardiomyopathy includes the simultaneous use of different drugs, able to im-
prove multiple involved aspects, although antihyperglycemic drugs remain essential in the
management of the disease, effectively reducing complications [188]. An increase in fruit
and vegetable intake can affect carbohydrate and lipid metabolism, and regulate genes re-
lated to the pathophysiology of diabetic cardiomyopathy, reducing myocardial dysfunction
and cardiomyocyte death [189]. Furthermore, several epidemiological experiments showed
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that natural compounds reduce the risk of suffering cardiovascular diseases [190,191]. The
literature suggests that the bergamot fruit (Citrus bergamia Risso et Poiteau), 80% of which is
produced in Calabria, southern Italy, is composed of a high percentage of polyphenols [192]
and plays an important role in several areas of interest, including cardiovascular health,
diabetes, inflammation, the nervous system, bone metabolism, and skin [193]. Naringin,
the main component of BPF, is able to reverse SR stress, induced in diabetic cardiomyopa-
thy. Since BPF has anti-inflammatory, antioxidant [94], hypoglycemic, and hypolipemic
effects [46,53,58,59,150,152,153], in this review, we further examined the beneficial role of
BPF on the pathophysiological mechanisms of diabetic cardiomyopathy. If the protective
effects of BPF are further confirmed in clinical trials with a large number of enrolled pa-
tients, a greater contribution could be made in the management of diabetic cardiomyopathy
through nutraceutical supplementation and the use of optimal micronutrients.
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145. Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action,
Bioavailability and Anticarcinogenic Effects. Molecules 2016, 21, 901. [CrossRef]

http://doi.org/10.3389/fcvm.2020.585309
http://doi.org/10.1016/j.bbadis.2014.05.006
http://doi.org/10.1083/jcb.201003138
http://doi.org/10.1038/s41419-018-0593-y
http://www.ncbi.nlm.nih.gov/pubmed/29752433
http://doi.org/10.1159/000448357
http://doi.org/10.1152/ajpheart.00056.2015
http://www.ncbi.nlm.nih.gov/pubmed/26055788
http://doi.org/10.1038/s41467-017-00171-w
http://www.ncbi.nlm.nih.gov/pubmed/28743963
http://doi.org/10.1016/j.ijcard.2014.03.176
http://doi.org/10.1159/000314270
http://doi.org/10.1111/fcp.12452
http://www.ncbi.nlm.nih.gov/pubmed/30739350
http://doi.org/10.1016/j.bbagen.2012.02.010
http://doi.org/10.2174/092986707781389646
http://doi.org/10.2337/db14-0055
http://www.ncbi.nlm.nih.gov/pubmed/24740571
http://doi.org/10.1016/j.tem.2011.05.001
http://www.ncbi.nlm.nih.gov/pubmed/21680199
http://doi.org/10.1007/s12195-020-00636-x
http://doi.org/10.4061/2011/259462
http://doi.org/10.3390/nu10070828
http://www.ncbi.nlm.nih.gov/pubmed/29949894
http://doi.org/10.1016/j.nut.2018.07.002
http://doi.org/10.1016/j.freeradbiomed.2017.08.012
http://doi.org/10.1016/j.bbadis.2017.01.010
http://doi.org/10.1371/journal.pone.0225857
http://doi.org/10.3390/medicina54050086
http://doi.org/10.1186/s12872-019-1113-4
http://doi.org/10.1016/j.numecd.2017.10.010
http://doi.org/10.3390/nu10111618
http://www.ncbi.nlm.nih.gov/pubmed/30400131
http://doi.org/10.1021/acs.jafc.5b01173
http://www.ncbi.nlm.nih.gov/pubmed/26281949
http://doi.org/10.3390/molecules21070901


Nutrients 2021, 13, 2476 19 of 20

146. Dudnik, A.; Gaspar, P.; Neves, A.R.; Forster, J. Engineering of Microbial Cell Factories for the Production of Plant Polyphenols
with Health-Beneficial Properties. Curr. Pharm. Des. 2018, 24, 2208–2225. [CrossRef]

147. Gorzynik-Debicka, M.; Przychodzen, P.; Cappello, F.; Kuban-Jankowska, A.; Marino Gammazza, A.; Knap, N.; Wozniak, M.;
Gorska-Ponikowska, M. Potential Health Benefits of Olive Oil and Plant Polyphenols. Int. J. Mol. Sci. 2018, 19, 686. [CrossRef]
[PubMed]

148. Formisano, C.; Rigano, D.; Lopatriello, A.; Sirignano, C.; Ramaschi, G.; Arnoldi, L.; Knap, N.; Wozniak, M.; Gorska-Ponikowska,
M. Detailed Phytochemical Characterization of Bergamot Polyphenolic Fraction (BPF) by UPLC-DAD-MS and LC-NMR. J. Agric.
Food Chem. 2019, 67, 3159–3167. [CrossRef] [PubMed]

149. Katarzyna, R. Adult Stem Cell Therapy for Cardiac Repair in Patients After Acute Myocardial Infarction Leading to Ischemic
Heart Failure: An Overview of Evidence from the Recent Clinical Trials. Curr. Cardiol. Rev. 2017, 13, 223–231. [CrossRef]

150. Masson, J.; Liberto, E.; Beolor, J.C.; Brevard, H.; Bicchi, C.; Rubiolo, P. Oxygenated heterocyclic compounds to differentiate Citrus
spp. essential oils through metabolomic strategies. Food Chem. 2016, 206, 223–233. [CrossRef]

151. Parafati, M.; Lascala, A.; Morittu, V.M.; Trimboli, F.; Rizzuto, A.; Brunelli, E.; Coscarelli, F.; Costa, N.; Britti, D.; Ehrlich, J.; et al.
Bergamot polyphenol fraction prevents nonalcoholic fatty liver disease via stimulation of lipophagy in cafeteria diet-induced rat
model of metabolic syndrome. J. Nutr. Biochem. 2015, 26, 938–948. [CrossRef] [PubMed]

152. Musolino, V.; Gliozzi, M.; Bombardelli, E.; Nucera, S.; Carresi, C.; Maiuolo, J.; Mollace, R.; Paone, S.; Bosco, F.; Scarano, F.; et al.
The synergistic effect of Citrus bergamia and Cynara cardunculus extracts on vascular inflammation and oxidative stress in
nonalcoholic fatty liver disease. J. Tradit. Complement. Med. 2020, 10, 268–274. [CrossRef]

153. Mollace, V.; Rosano, G.; Anker, S.; Coats, A.; Seferovic, P.; Mollace, R.; Tavernese, A.; Gliozzi, M.; Musolino, V.; Carresi, C.; et al.
Pathophysiological Basis for Nutraceutical Supplementation in Heart Failure: A Comprehensive Review. Nutrients 2021, 13, 257.
[CrossRef] [PubMed]

154. Gliozzi, M.; Scarano, F.; Musolino, V.; Carresi, C.; Scicchitano, M.; Ruga, S.; Zito, M.C.; Nucera, S.; Bosco, F.; Maiuolo, J.;
et al. Role of TSPO/VDAC1 Upregulation and Matrix Metalloproteinase-2 Localization in the Dysfunctional Myocardium of
Hyperglycaemic Rats. Int. J. Mol. Sci. 2020, 21, 7432. [CrossRef]

155. Pinti, M.V.; Fink, G.K.; Hathaway, Q.A.; Durr, A.J.; Kunovac AHollander, J.M. Mitochondrial dysfunction in type 2 diabetes
mellitus: An organ-based analysis. Am. J. Physiol. Endocrinol. Metab. 2019, 316, E268–E285. [CrossRef]

156. Lopez-Crisosto, C.; Pennanen, C.; Vásquez-Trincado, C.; Morales, P.E.; Bravo-Sagua, R.; Quest, A.F.G.; Chiong, M.; Lavandero, S.
Sarcoplasmic reticulum-mitochondria communication in cardiovascular pathophysiology. Nat. Rev. Cardiol. 2017, 14, 342–360.
[CrossRef] [PubMed]

157. Zhang, N.; Yang, Z.; Xiang, S.Z.; Jin, Y.G.; Wei, W.Y.; Bian, Z.Y.; Deng, W.; Tang, Q.Z. Nobiletin attenuates cardiac dysfunction,
oxidative stress, and inflammatory in streptozotocin: Induced diabetic cardiomyopathy. Mol. Cell Biochem. 2016, 417, 87–96.
[CrossRef] [PubMed]

158. Mahmoud, A.M.; Bautista, R.J.H.; Sandhu, M.A.; Hussein, O.E. Beneficial Effects of Citrus Flavonoids on Cardiovascular and
Metabolic Health. Oxidative Med. Cell. Longev. 2019, 2019, 5484138. [CrossRef]

159. Mallick, N.; Khan, R.A. Antihyperlipidemic effects of Citrus sinensis, Citrus paradisi, and their combinations. J. Pharm Bioall Sci.
2016, 8, 112–118.

160. Di Donna, L.; De Luca, G.; Mazzotti, F.; Napoli, A.; Salerno, R.; Taverna, D.; Sindona, G. Statin-like principles of bergamot fruit
(Citrus bergamia): Isolation of 3-hydroxymethylglutaryl flavonoid glycosides. J. Nat. Prod. 2009, 72, 1352–1354. [CrossRef]

161. Parim, B.; Sathibabu Uddandrao, V.V.; Saravanan, G. Diabetic cardiomyopathy: Molecular mechanisms, detrimental effects of
conventional treatment, and beneficial effects of natural therapy. Heart Fail. Rev. 2019, 24, 279–299. [CrossRef]

162. Chtourou, Y.; Aouey, B.; Aroui, S.; Kebieche, M.; Fetoui, H. Anti-apoptotic and anti-inflammatory effects of naringin on
cisplatin-induced renal injury in the rat. Chem.-Biol. Int. 2016, 243, 1–9. [CrossRef]

163. Chen, R.; Qi, Q.-L.; Wang, M.-T.; Li, Q.-Y. Therapeutic potential of naringin: An overview. Pharm. Biol. 2016, 54, 3203–3210.
[CrossRef]

164. Zhao, B.T.; Kim, E.J.; Son, K.H.; Son, J.K.; Min, B.S.; Woo, M.H. Quality evaluation and pattern recognition analyses of marker
compounds from five medicinal drugs of Rutaceae family by HPLC/PDA. Arch. Pharm. Res. 2015, 38, 1512–1520. [CrossRef]

165. Seo, C.S.; Shin, H.K. Quality assessment of traditional herbal formula, Hyeonggaeyeongyotang through simultaneous determina-
tion of twenty marker components by HPLC-PDA and LC-MS/MS. Saudi Pharm. J. 2020, 28, 427–439. [CrossRef]

166. Wu, J.; Huang, G.; Li, Y.; Li, X. Flavonoids from Aurantii Fructus Immaturus and Aurantii Fructus: Promising phytomedicines for
the treatment of liver diseases. Chin. Med. 2020, 15, 89. [CrossRef] [PubMed]

167. Varshney, V.; Garabadu, D. Naringin Exhibits Mas Receptor-Mediated Neuroprotection Against Amyloid Beta-Induced Cognitive
Deficits and Mitochondrial Toxicity in Rat Brain. Neurotox Res. 2021, 39, 1023–1043. [CrossRef]

168. Zhang, Y.F.; Meng, N.N.; Li, H.Z.; Wen, Y.J.; Liu, J.T.; Zhang, C.L.; Yuan, X.H.; Jin, X.D. Effect of naringin on oxidative stress and
endoplasmic reticulum stress in diabetic cardiomyopathy. Zhongguo Zhong Yao Za Zhi 2018, 43, 596–602. [PubMed]

169. Shangguan, W.J.; Zhang, Y.H.; Li, Z.C.; Tang, L.M.; Shao, J.; Li, H. Naringin inhibits vascular endothelial cell apoptosis via
endoplasmic reticulum stress- and mitochondrial-mediated pathways and promotes intraosseous angiogenesis in ovariectomized
rats. Int. J. Mol. Med. 2017, 40, 1741–1749. [CrossRef] [PubMed]

170. Werner, S.L.; Barken, D.; Hoffmann, A. Stimulus specificity of gene expression programs determined by temporal control of IKK
activity. Science 2005, 309, 1857–1861. [CrossRef] [PubMed]

http://doi.org/10.2174/1381612824666180515152049
http://doi.org/10.3390/ijms19030686
http://www.ncbi.nlm.nih.gov/pubmed/29495598
http://doi.org/10.1021/acs.jafc.8b06591
http://www.ncbi.nlm.nih.gov/pubmed/30807134
http://doi.org/10.2174/1573403X13666170502103833
http://doi.org/10.1016/j.foodchem.2016.03.057
http://doi.org/10.1016/j.jnutbio.2015.03.008
http://www.ncbi.nlm.nih.gov/pubmed/26025327
http://doi.org/10.1016/j.jtcme.2020.02.004
http://doi.org/10.3390/nu13010257
http://www.ncbi.nlm.nih.gov/pubmed/33477388
http://doi.org/10.3390/ijms21207432
http://doi.org/10.1152/ajpendo.00314.2018
http://doi.org/10.1038/nrcardio.2017.23
http://www.ncbi.nlm.nih.gov/pubmed/28275246
http://doi.org/10.1007/s11010-016-2716-z
http://www.ncbi.nlm.nih.gov/pubmed/27160937
http://doi.org/10.1155/2019/5484138
http://doi.org/10.1021/np900096w
http://doi.org/10.1007/s10741-018-9749-1
http://doi.org/10.1016/j.cbi.2015.11.019
http://doi.org/10.1080/13880209.2016.1216131
http://doi.org/10.1007/s12272-015-0583-x
http://doi.org/10.1016/j.jsps.2020.02.003
http://doi.org/10.1186/s13020-020-00371-5
http://www.ncbi.nlm.nih.gov/pubmed/32863858
http://doi.org/10.1007/s12640-021-00336-y
http://www.ncbi.nlm.nih.gov/pubmed/29600628
http://doi.org/10.3892/ijmm.2017.3160
http://www.ncbi.nlm.nih.gov/pubmed/29039439
http://doi.org/10.1126/science.1113319
http://www.ncbi.nlm.nih.gov/pubmed/16166517


Nutrients 2021, 13, 2476 20 of 20

171. Qiong, Y.; Zijun, W.; Bin, W.; Chang, L.; Ruina, H.; Li, Y. Naringin protects cardiomyocytes against hyperglycemia-induced
injuries in vitro and in vivo. J. Endocrinol. 2016, 230, 197–214.

172. Fu, D.; Mui, D.; Zhu, H.; Zhang, Y. Exenatide inhibits NF-κB and attenuates ER stress in diabetic cardiomyocyte models. Aging
(Albany NY) 2020, 12, 8640–8651. [CrossRef] [PubMed]

173. Cassidy, A.; Minihane, A.M. The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids.
Am. J. Clin. Nutr. 2017, 105, 10–22. [CrossRef]

174. Truzzi, F.; Tibaldi, C.; Zhang, Y.; Dinelli, G.D.; Amen, E. An Overview on Dietary Polyphenols and Their Biopharmaceutical
Classification System (BCS). Int. J. Mol. Sci. 2021, 22, 5514. [CrossRef] [PubMed]

175. Spigoni, V.; Mena, P.; Fantuzzi, F.; Tassotti, M.; Brighenti, F.; Bonadonna, R.C.; Del Rio, D.; Dei Cas, A. Bioavailability of Bergamot
(Citrus bergamia) Flavanones and Biological Activity of Their Circulating Metabolites in Human Pro-Angiogenic Cells. Nutrients
2017, 9, 1328. [CrossRef] [PubMed]

176. Ávila-Gálvez, M.A.; Giménez-Bastida, J.A.; González-Sarrías, A.; Espín, J.C. New Insights into the Metabolism of the Flavanones
Eriocitrin and Hesperidin: A Comparative Human Pharmacokinetic Study. Antioxidants 2021, 10, 435. [CrossRef] [PubMed]

177. Chanet, A.; Milenkovic, D.; Claude, S.; Maier, J.A.M.; Kamran, M.; Rakotomanomana, K.N.; Shinkaruk, S.; Be´rard, A.M.;
Bennetau-Pelissero, C.; Mazur, A.; et al. Flavanone metabolites decrease monocyte adhesion to TNF-a-activated endothelial cells
by modulating expression of atherosclerosis-related genes. Br. J. Nutr. 2013, 110, 587–598. [CrossRef]

178. Giménez-Bastida, J.A.; González-Sarrías, A.; Vallejo, F.; Espín, J.C.; Tomás-Barberán, F. Hesperetin and its sulfate and glucuronide
metabolites inhibit TNF-α induced human aortic endothelial cell migration and decrease plasminogen activator inhibitor-1
(PAI-1) levels. Food Funct 2016, 7, 118–126. [CrossRef]

179. Gao, J.; Shi, X.; He, H.; Zhang, J.; Lin, D.; Fu, G.; Lai, D. Assessment of Sarcoplasmic Reticulum Calcium Reserve and Intracellular
Diastolic Calcium Removal in Isolated Ventricular Cardiomyocytes. J. Vis. Exp. 2017, 127, 55797. [CrossRef]

180. Mandavia, C.H.; Aroor, A.R.; Demarco, V.G.; Sowers, J.R. Molecular and metabolic mechanisms of cardiac dysfunction in diabetes.
Life Sci. 2013, 92, 601–608. [CrossRef] [PubMed]

181. Jia, G.; Hill, M.A.; Sowers, J.R. Diabetic Cardiomyopathy: An Update of Mechanisms Contributing to This Clinical Entity. Circ.
Res. 2018, 122, 624–638. [CrossRef]

182. Tong, M.; Saito, T.; Zhai, P.; Oka, S.I.; Mizushima, W.; Nakamura. Mitophagy Is Essential for Maintaining Cardiac Function
During High Fat Diet-Induced Diabetic Cardiomyopathy. Circ. Res. 2019, 124, 1360–1371. [CrossRef] [PubMed]

183. Wu, L.; Wang, K.; Wang, W.; Wen, Z.; Wang, P.; Liu, L.; Wang, D.W. Glucagon-like peptide-1 ameliorates cardiac lipotoxicity in
diabetic cardiomyopathy via the PPARalpha pathway. Aging Cell. 2018, 17, e12763. [CrossRef] [PubMed]

184. Bodiga, V.L.; Eda, S.R.; Bodiga, S. Advanced glycation end products: Role in pathology of diabetic cardiomyopathy. Heart Fail.
Rev. 2014, 19, 49–63. [CrossRef]

185. Borghetti, G.; von Lewinski, D.; Eaton, D.M.; Sourij, H.; Houser, S.R.; Wallner, M. Diabetic Cardiomyopathy: Current and Future
Therapies. Beyond Glycemic Control. Front. Physiol. 2018, 9, 1514. [CrossRef]

186. Arauna, D.; Furrianca, M.; Espinosa-Parrilla, Y.; Fuentes, E.; Alarcón, M.; Palomo, I. Natural Bioactive Compounds as Protectors
of Mitochondrial Dysfunction in Cardiovascular Diseases and Aging. Molecules 2019, 24, 4259. [CrossRef]

187. Sharifi-Rad, J.; Rodrigues, C.F.; Sharopov, F.; Docea, A.O.; Can Karacam, A.; Sharifi-Rad, M.; Karıncaoglu, D.K.; Gülseren, G.;
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