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Extracting phylogenetic 
dimensions of coevolution reveals 
hidden functional signals
Alexandre Colavin1,9, Esha Atolia2,9, Anne‑Florence Bitbol3,4,5 & Kerwyn Casey Huang6,7,8*

Despite the structural and functional information contained in the statistical coupling between 
pairs of residues in a protein, coevolution associated with function is often obscured by artifactual 
signals such as genetic drift, which shapes a protein’s phylogenetic history and gives rise to 
concurrent variation between protein sequences that is not driven by selection for function. Here, we 
introduce a background model for phylogenetic contributions of statistical coupling that separates 
the coevolution signal due to inter-clade and intra-clade sequence comparisons and demonstrate 
that coevolution can be measured on multiple phylogenetic timescales within a single protein. Our 
method, nested coevolution (NC), can be applied as an extension to any coevolution metric. We use 
NC to demonstrate that poorly conserved residues can nonetheless have important roles in protein 
function. Moreover, NC improved the structural-contact predictions of several coevolution-based 
methods, particularly in subsampled alignments with fewer sequences. NC also lowered the noise 
in detecting functional sectors of collectively coevolving residues. Sectors of coevolving residues 
identified after application of NC were more spatially compact and phylogenetically distinct from 
the rest of the protein, and strongly enriched for mutations that disrupt protein activity. Thus, our 
conceptualization of the phylogenetic separation of coevolution provides the potential to further 
elucidate relationships among protein evolution, function, and genetic diseases.

It has long been appreciated that comparisons among homologous sequences of a protein of interest can pro-
vide key information about its function and structure. Just as evolutionarily conserved individual residues are 
generally crucial to a protein’s proper function, the statistical covariation (arising from correlated evolution, i.e. 
coevolution) between pairs of residues1,2 carries information that is useful for predicting structural contacts3–7 
and protein–protein interactions8–11 and their interfaces12, intuiting novel protein conformations5, understanding 
protein allostery13, interpreting variants14,15, identifying functional domains16–19, and reprogramming protein 
specificity20. However, despite the increasing prevalence of sequencing data, sampling of the phylogenetic tree is 
fundamentally limited and biased. Evolutionary events such as speciation can drive simultaneous changes that 
are statistically linked but may not reflect relevant functional coupling, for example when they arise from genetic 
drift. Hence, spurious covariation is more likely to arise in comparisons between distantly related sequences, 
hindering the ability of such studies to deliver functional insights.

Numerous methods exist for measuring protein coevolution. Statistical coupling analysis (SCA), which nor-
malizes the covariance matrix by a function of the entropy, provides sufficient information to specify a protein 
fold21 and to detect functional domains6,19. Mutual information (MI) with various corrections enables identifica-
tion of some directly interacting residue pairs in the three dimensional protein structure22, and direct coupling 
analysis (DCA) has improved over MI by attempting to deconvolve higher-order correlations4,23. All of these 
methods implement corrections for reducing the effects of phylogenetic noise. Although MI is extremely sensi-
tive to the phylogenetic distribution of sequences and the conservation (measured via entropy) of individual 
positions, normalization by the joint entropy reduces the influence of phylogeny and entropy and improves 
structural-contact prediction22. DCA usually involves downweighting the coevolutionary signal contributions 
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from over-represented sequences to reduce their bias4,23. Motivated by the observed strong relationship between 
a position’s average MI and the MI it exhibits with specific positions, the widely employed average product cor-
rection (APC) subtracts this average signal to address global phylogenetic patterns; this correction can be applied 
to any existing coevolution metric other than MI. While empirically enhancing the resolution of functional 
significance, none of these pragmatic strategies attempt to resolve how coevolution signal changes across the 
multiple potential phylogenetic timescales.

The fact that phylogenetic correlations can obscure functional coevolution signal has been frequently dis-
cussed and has motivated several recent studies. The Evolutionary Trace algorithm identifies residues whose 
variations during evolution correlate with major phylogenetic divergences24,25, and has recently been applied to 
covariation26 and functional prediction of oncogenes27. A traditional means to address this issue in DCA contact 
prediction is to reweight sequences closer than a certain Hamming distance threshold4,23. However, this correc-
tion and variants thereof were recently found to only yield small improvements, by contrast with the widely used 
APC (with which reweighting is generally combined) and with a similar entropy-based correction28. The noise 
from phylogeny has been found to be smaller than that from entropy (i.e. conservation), but still of the same order 
of magnitude, hence reducing its influence on functional coevolution measurements remains an important goal29. 
Mathematically, phylogenetic correlations strongly impact the modes of the covariance matrix with the largest 
eigenvalues, and suppressing these modes improves contact prediction relative to simple covariance30. How-
ever, corrections (other than APC) designed to remove phylogenetic noise have not been found to substantially 
improve contact prediction by DCA thus far31,32. Nonetheless, reweighting protein subfamilies can improve DCA 
results in cases where subfamilies feature structural differences, for example in homodimerization patterns33,34.

Even with affordable sequencing and widespread environmental sampling, coevolution methods are often 
limited by the number of naturally occurring protein sequences available. Successful predictions of structural 
contacts using coevolution-based methods often require several thousand sequences to align3,35, which is gen-
erally prohibitive for many mammalian proteins. For other proteins, the phylogenetic distribution of available 
sequences is skewed by sampling and is well recognized as a source of spurious signal in coevolution22,36. Thus, 
methods that enable the separation of functional coupling from phylogenetic and sampling noise would greatly 
expand the utility of coevolution, particularly for applications to diseases involving human proteins with limited 
numbers of available sequences.

Here, we introduce the concept of nested coevolution (NC), a correction that leverages a well-defined null 
hypothesis to quantify the coevolutionary signal above what is expected from phylogenetic distribution alone. 
We determined that NC results in improved structural-contact prediction for several coevolution metrics across 
many proteins, especially those with fewer sequences. In addition, we found that NC improves the detection of 
spatially compact groups of collectively coevolving residues (“sectors”) that are phylogenetically distinct from 
each other and the protein itself, beyond differences in entropy alone. Finally, sectors identified using NC were 
enriched for positions at which mutations are maximally deleterious, suggesting that our method enhances the 
functional significance of coevolution signal. Since our method is agnostic to the underlying method of measur-
ing coevolution, we anticipate wide utility for the ability to resolve the temporal dimension of protein coevolution.

Results
Background model of coevolution reveals temporal dimension of coevolution.  To interrogate 
the contribution of phylogenetic sampling to protein coevolution measurements, we sought to separate the coev-
olution signal due to inter-clade and intra-clade sequence comparisons (Fig. 1A,B). Given a multiple sequence 
alignment (MSA) for a protein of interest (Fig. 1Ai), we first measure the total covariation ( CT ) between every 
pair of positions (Fig. 1Aii) using an established metric of residue–residue coupling such as the normalized 
mutual information (NMI; Fig. 1A)22:

 where Hi is the Shannon entropy (a measure of conservation) of position i , and Hij is the joint Shannon entropy 
of positions i and j. The quantity Hi +Hj −Hij is the mutual information between positions i and j, which 
measures the coupling between residues (Fig. S1A). The NMI residue pair covariation in Eq. (1) is an attractive 
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Figure 1.   Nested coevolution (NC) introduces a phylogenetic dimension to existing coevolution metrics that 
removes noise and improves structural prediction. (A) Schematic illustrating the NC correction to traditional 
coevolution algorithms. The MSA (i) is used to generate a covariation matrix (ii) with a particular metric such 
as normalized mutual information (NMI) or direct information (DI). Previous studies have attempted to remove 
phylogenetic noise using the average product correction (APC) (iii), which results in a corrected coevolution 
matrix (iv) that has lower levels of off-diagonal signal. For the NC correction, the MSA is resampled multiple 
times (v) within clades defined by a phylogenetic cutoff d (vi), providing null hypotheses (vii) that are averaged 
(viii) to correct the covariation matrix (i). The resulting difference (ix) is the NC matrix for a particular cutoff 
d. (B) The Jukes–Cantor phylogenetic distance between homologs defines clades (visualized as a tree) within 
the NC cutoff d. (C) NC signal at different cutoffs d as illustrated in (B) for the MSA of the KH domain from 
(B). For small values of d, the NC matrix exhibits very little off-diagonal signal. (D) The structural contact map 
for KH, highlighting residue–residue contacts that are in close 3D proximity (< 5 Å, red), respectively. (E,F) NC 
with particular cutoffs d improves the prediction of structural contacts relative to DCA, applied to DI without 
(E) or after correction with APC (F) (black lines). All residues within five positions on the polypeptide sequence 
were excluded from the analysis. Black represents the predictions of the baseline NMI metric, and the shaded 
area represents the number of correct predictions expected by chance.
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choice of metric because normalizing by Hij makes the MI independent of conservation22. Nonetheless, we note 
that our algorithm can be applied to any covariation metric, and as we will show, our main results are robust to 
metric choice.

The most straightforward null hypothesis for protein coevolution is that coevolutionary coupling between 
pairs of positions in a protein is completely absent—that is, that the probability of a position having any amino 
acid identity is independent of any other position’s identity. Although this null hypothesis can be evaluated ana-
lytically for some methods, other methods have no known closed-form solution for the expected value of the 
coevolution matrix under these conditions. Hence, we computationally compute the average coevolution signal 
from many globally resampled MSAs in which each position in each sequence in the original MSA is replaced by 
the equivalent position from another randomly chosen sequence (resampled with replacement; Fig. 1Av,vi). We 
expect any measured coevolution from these resampled matrices to represent signal due simply to the distribution 
of amino acid identities at each position; any significant difference between the coevolution signal measured in 
the original MSA and this null hypothesis can potentially be attributed to coevolution.

This initial null hypothesis does not test for the phylogenetic structure of sequences; in the globally resampled 
MSAs, every sequence is effectively evolutionarily equidistant from one another. Previous attempts to remove 
the influence of phylogeny such as APC (Fig. 1Aiii), which corrects the covariation matrix by subtracting the 
product of its mean value across columns and rows for each pair of positions (Fig. 1Aiv), have substantially 
improved contact prediction22. However, the APC is a postulated correction that does not directly account for 
the phylogenetic structure of an MSA. We sought to construct a null hypothesis-driven background model of 
the expected coevolution in an MSA in which intra-clade coevolution is explicitly removed. We achieve this goal 
by incorporating the phylogenetic structure of the MSA into the null hypothesis, via generating MSAs by resa-
mpling each position from sequences that are closely related (Fig. 1Av,vi), thus removing correlations arising 
from recent evolutionary history within each clade. We define a clade as the subset of sequences S with a 
Jukes–Cantor distance below d, which we refer to as the phylogenetic cutoff. For each value of d, we calculate 
the inter-clade covariation 

(

C
i,j
S>d

)

 from a resampled MSA either analytically or via bootstrapping (Fig. 1Avii, 
Fig. S2A, Methods), where C denotes the chosen covariation measure (e.g. NMI). This inter-clade covariation 
thus measures the expected value of covariation due solely to the comparison of sequences between clades 
(Fig. 1B). We then average over many such null hypotheses (over many within-clade resampled MSAs at fixed 
d), yielding the mean inter-clade covariation matrix (CS>d) (Fig. 1Aviii), which represents the expected coevolu-
tion due to both the distribution of amino acid identities at each position and the phylogenetic structure of the 
protein MSA (Fig. 1B). Significant differences between this background model and the baseline signal measured 
from the original MSA represent signal that was contained in the intra-clade comparison of closely related 
sequences. Since the difference between the background null model CS>d and the baseline signal CT qualitatively 
captures the significance of the baseline measurement (Fig. S2B, Methods), we subtract CS>d from the total 
covariation CT to obtain the phylogenetic cutoff-dependent covariation signal CS≤d (Fig. 1Aix):

where positive values indicate that the total covariation is larger than expected by comparison of sequences 
between clades, thus revealing covariation arising from less divergent sequences in all clades. We refer to the 
signal Ci,j

S≤d above the null hypothesis Ci,j
S>d in Eq. 2 as a protein’s “nested coevolution” (NC), in that it separates 

coevolution into signal attributed to comparison of sequences within ( Ci,j
S≤d ) as compared with between ( Ci,j

S>d ) 
nested clades of a phylogenetic tree. The only free parameter in the NC is the phylogenetic cutoff ( d ). As we 
vary the cutoff, typically many patterns of NC emerge, revealing distinct windows of coevolution for a single 
protein MSA (Fig. 1C). The changes in NC observed between two cutoffs represent the signal attributable to 
the comparison of pairs of sequences whose distance is between the cutoffs used to calculate each window; it is 
not the case that the signal for di is necessarily a subset of the signal for di+1. Hence, distinct signals of protein 
coevolution are revealed as the phylogenetic cutoff is varied.

To test the relevance of NC windows to protein structure prediction, we measured the enrichment of struc-
tural contacts from the pairs of residues with the highest 50 values in the NC matrix Ci,j

S≤d for each value of d. 
Here, we applied NC as a correction to DCA, a current standard for coevolution-based prediction of structural 
contacts4,23. We employed the direct information (DI) metric4,23 to quantify coevolution for the KH domain, 
which is present in a wide variety of nucleic acid-binding proteins37. In this and subsequent analyses, we con-
sidered structural contacts to be within 5 Å at closest approach, excluding pairs of residues within 5 amino acids 
on the sequence (Methods); qualitatively similar results were obtained when defining contacts based on an 8 Å 
cutoff (Fig. S1D). The NC phylogenetic cutoffs revealed a variety of improvements (Fig. 1D). Some windows 
generally outperformed DCA, without (Fig. 1E) or with (Fig. 1F) the APC.

To determine the added value of NC for other proteins and for another coevolution metric (the Frobenius 
norm38, which is frequently utilized in DCA as an alternative to DI39,40), we carried out a DCA structural-contact 
analysis for 10 protein family domains with DI or Frobenius norm (Methods). Across both metrics and all 
proteins, NC improved the predictions of structural contacts (Fig. 2A), even relative to the inclusion of APC22. 
Hence, NC is a correction that generally enhances the predictive power of widespread coevolution measurements.

NC can improve predictions of structural contacts using fewer sequences.  One common limita-
tion for computing coevolution is the number of homologous sequences available for constructing an MSA. To 
interrogate whether NC could still accurately predict structural contacts with fewer sequences, we subsampled 
the MSAs of 10 proteins with different breadth (randomly selecting 10% or 1% of the sequences) or depth 
(selecting the 10% or 1% of sequences most related to the protein used to construct the MSA to mimic the lim-

(2)C
i,j
S≤d ≡ C

i,j
T − C

i,j
S>d ,
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Figure 2.   NC can improve predictions of structural contacts across proteins and coevolution methods, and 
resolve information loss due to subsampling of sequences. (A) NC increased the number of true-positive 
structural contacts among the first 50 predictions for 10 highly conserved proteins predicted by DCA using 
DI or Frobenius norm, without or with APC. We chose the maximum number of recovered true-positive 
structural contacts from NC applied across four phylogenetic cutoffs; the set of cutoffs was consistent across all 
proteins (0.2, 0.5, 0.8 and 1.1). (B) MSAs were subsampled across the breadth (random sampling) and depth 
(sorted sampling) of the MSA. Typically, the distribution of Jukes–Cantor distances in the MSA (red) remained 
essentially unchanged for breadth sampling (green and blue), while it shifted to lower values (as expected) for 
depth sampling (gold and purple); shown is the KH domain. (C) NC generally increased the number of true-
positive structural contacts among the first 50 predictions relative to DCA employing DI (without APC) across 
proteins and both breadth and depth sampling (for DI with APC, see Fig. S3). Small decreases occurred for 
depth sampling of RNase H, thioredoxin, and Kunitz.
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ited phylogenetic distribution of small protein families, Table S1) (Fig. 2B). NC improved structural contact pre-
diction for a majority of the subsampled MSAs when correcting DI without (Fig. 2C, Fig. S3A) or with (Fig. S3B) 
application of APC. For the KH domain, more than twice as many true positives were predicted after applying 
NC compared with DI + APC alone (Fig. S3A). Perhaps unsurprisingly, breadth sampling generally performed 
better than depth sampling (Fig. 2C), indicating that accurate prediction is reliant on the sequences being suf-
ficiently distantly related. Nonetheless, for many proteins, the value of the NC correction was enhanced when the 
number of homologous sequences was low, both for depth and breadth samplings.

NC eigenvectors exhibit reduced background noise, improving detection of spatially compact 
sets of coevolving residues.  Previous studies have utilized coevolution measurements to identify groups 
of residues within a protein that are spatially compact on the tertiary structure and thus are postulated to have a 
joint function6,19,41–44. These “sectors” can be defined by a variety of methods, such as the extreme-value residues 
of the eigenvectors of the coevolution matrix with the largest eigenvalues19, and in the context of SCA have been 
proposed to reflect independent biological properties such as catalytic efficiency and thermal stability19. Moti-
vated by these successes, we sought to measure the effect of incorporating the phylogenetic dimension revealed 
by NC when defining sectors of residues. Specifically, we measured the NC- and APC-corrected coevolution 
across a range of phylogenetic cutoffs, concatenated the resulting matrices, and performed eigendecomposition 
to identify the most significant eigenvectors (Methods). The residues most strongly associated with the positive 
or negative components of each resulting eigenvector are considered a sector. Here, we used NMI as a baseline 
coevolution metric, although NC could also be applied to SCA results.

We first focused on MreB, an essential protein involved in cell-shape determination in many rod-shaped 
bacteria45. MreB belongs to a protein family that includes ParM, FtsA, and MamK in bacteria, crenactin in 
archea, and actin in eukaryotes46,47. These proteins are structural homologs characterized by a four-subdomain 
fold around an ATP-binding pocket47,48, with a wide range of sequence identities and disparate cellular functions. 
Thus, we anticipated that the set of MreB homologs would have sufficient diversity to support robust coevolution 
measurements, particularly functional sectors.

We compared NC-derived sectors with sectors derived from eigenvectors of the NMI coevolution matrix 
for MreB homologs; hereafter, we define these NMI-derived sectors as the “baseline.” We identified the most 
closely related baseline sectors for three NC eigenvectors with some of the highest eigenvalues, which we refer 
to as eigenvectors A, B, and C (Methods). Each pair of NC and baseline eigenvectors appeared similar, especially 
for the residues with the largest absolute coefficients (Fig. 3A–C). However, the baseline eigenvectors exhibited 
much higher variation of coefficients across the protein (Fig. 3A–C). For eigenvectors A and B, the NC-derived 
eigenvectors exhibited 32.8-fold and 38.3-fold lower standard deviation (after removing the 50 highest and lowest 
coefficients) than the corresponding baseline-derived eigenvectors, respectively (Fig. 3A,B). For eigenvector C, 
the baseline eigenvector contained residues with both highly positive and highly negative coefficients, while the 
high-magnitude coefficients of the NC eigenvector were solely positive (Fig. 3C); the positive portion of the NC 
eigenvector again had substantially lower (2.1-fold) noise than the baseline eigenvector (Fig. 3C).

Motivated by eigenvector C, we defined distinct positive and negative sectors (Methods) for each NC and 
baseline eigenvector using a variable cutoff on the site contributions to adjust sector size (as sectors are defined 
as the sets of amino acids with highest site contributions in each eigenvector). For each sector size, we quantified 
the spatial compactness as the mean pairwise distance between alpha carbons of residues within a sector. For 
sectors A–C (derived from eigenvectors A–C), the first 5–9 residues exhibited approximately the same spatial 
compactness in the NC sectors as in the baseline sectors (Fig. 3D–F). However, as the cutoff was increased, the 
NC sector remained more spatially compact than the baseline sector (Fig. 3D–F). All three NC sectors were also 
more spatially compact than expected based on random sampling for cutoffs yielding up to at least 50 residues 
(Fig. 3D–F), while baseline sector A was distributed across the protein structure (Fig. 3D,J). NC sectors A and C 
were largely situated in subdomains IIA (Fig. 3G) and IA (Fig. 3I), respectively, while sector B was localized to 
the ATP-binding pocket (Fig. 3H). Notably, sector C was spatially compact (Fig. 3I) despite being spread across 
the protein sequence (Fig. 3C). Baseline sectors B and C with 15 residues were qualitatively similar to the cor-
responding NC sectors (Fig. 3K,L); the large background fluctuations of the baseline eigenvector likely led to 
the inclusion of additional, erroneous residues into the sector prediction. Thus, the phylogenetic correction of 
NC improves the spatial compactness of sectors.

Sectors display distinct phylogenetic signatures from the rest of the protein.  Since sectors have 
been postulated to reflect distinct evolutionary histories driven by selection for particular biological functions19, 
we sought to compare the phylogeny of the residues within a sector with other sectors and the rest of the protein. 
The MirrorTree algorithm (Methods) was originally developed to compare phylogenies of two proteins, moti-
vated by the assumption that similar histories signify a common function, e.g. through protein–protein interac-
tions and/or acting in the same pathway49,50. After computing a pairwise distance matrix of all sequences within 
an MSA for each of the two proteins based on homologs in the same set of organisms, the MirrorTree score is 
defined as the Pearson correlation coefficient between the entries in the two pairwise distance matrices49. We 
straightforwardly modified the MirrorTree method to compare the complete protein MSA to the MSA filtered 
to include only the residues within the sector of interest (Fig. 4A).

To broadly investigate sector identification, we identified 40 15-residue sectors for MreB based on the positive 
and negative coefficients of the 20 eigenvectors with the highest eigenvalues. As negative controls, we randomly 
sampled sets of residues of the same size as each sector from across the protein. Sector-protein MirrorTree scores 
for sectors A–C (Fig. 3) were substantially lower for sectors than for the random groups (Fig. 4B), which as 
expected all had MirrorTree scores close to 1 (Fig. 4B), meaning that the random sectors were phylogenetically 
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Figure 3.   NC eigenvectors for the actin homolog MreB have lower noise and are more spatially contiguous than 
baseline eigenvectors. (A–C) Three eigenvectors with large eigenvalues were identified and paired between baseline 
coevolution (NMI with APC) and the NC correction for an MSA containing 9998 sequences of MreB. Aside from the 
residues with large coefficients, the NC eigenvectors exhibited lower signal variation than the baseline eigenvectors. 
Insets: standard deviations of the eigenvector coefficients after excluding the highest and lowest 50 values. (D–F) NC 
sectors are more spatially contiguous than the corresponding baseline sectors. Sectors were defined based on a sliding 
cutoff of the most positive or most negative coefficients of each eigenvector in (A–C). Spatial compactness was defined 
as the mean pairwise distance between each residue within a sector. Gray regions represent 95% confidence intervals 
of a randomly selected group of residues of the same size. (G–L) For the 15-residue versions of the NC and baseline 
sectors [vertical lines in (D–F)], the NC sectors (G–I) are more compact on the three-dimensional structure than the 
corresponding baseline sectors (J–L). The shaded purple regions in (J–L) represent the NC sector.
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indistinguishable from the rest of the protein. Baseline sectors A–C had MirrorTree scores intermediate between 
those of the corresponding NC sector and random groups (Fig. 4B), likely reflecting dilution of signal due to 
noisy selection from baseline eigenvectors of residues that are more likely to functionally follow the phylogenetic 
history of the protein overall. To evaluate the significance of the MirrorTree score and of the spatial compact-
ness of each sector, we computed z-scores based on the mean and standard deviation of the two metrics applied 
to the random groups of the same size as each sector. Sectors A–C had MirrorTree scores < 0.5 (Fig. 4B), indi-
cating distinct phylogenetic histories from the protein, and MirrorTree and spatial compactness z-scores < -2 
(Fig. 4C). There were four other sectors (D–G) that had spatial compactness z-scores < -2. These sectors largely 
overlapped with A–C; we will return to this overlap in a later section. All other sectors had spatial compactness 
z-score > 2, and all but five (H–L) had MirrorTree z-score > -2. Thus, MirrorTree reveals that certain NC sectors 
have distinct evolutionary trajectories from the protein itself, motivating us to focus on certain sectors (such as 
A, B, and C for MreB).

Phylogenetic similarity and the role of entropy.  Conservation itself is a major determinant of protein 
function51–53, and spatially contiguous sets of residues can be identified solely on the basis of conservation54. To 
account for variation in entropy across a protein, previous studies have excluded positions with high conserva-
tion (Shannon entropy < 0.1) or composed of > 25% gaps in the MSA55. For MreB, NC sectors A–C had lower 
entropy than baseline sectors or random groups of the same size (Fig. 5A–C), albeit higher entropy than residues 
typically considered highly conserved (entropy < 0.1).

MirrorTree scores of NC sectors were also generally lower than those of baseline sectors (Fig. 5D–F). To 
investigate the dependence of sector-protein MirrorTree scores on entropy, we computed MirrorTree scores for 
thousands of random groups of the same size as the sector (15 residues), biasing sampling using a Monte Carlo 
algorithm to obtain a wide range of mean entropies; each random group was selected from residues that did not 
overlap with the sector. For mean entropy ≲ 1, MirrorTree scores were strongly dependent on entropy (Fig. 5G–I). 
Thus, the low MirrorTree scores of the NC sectors were due in part to their low entropy. Nonetheless, the Mir-
rorTree score of NC sector A was significantly lower than those of random groups with the same mean entropy 
(z-score -3.5); the entropy of sector B was so low, presumably due to the high conservation of the ATP-binding 
pocket (Fig. 3H, Fig. S4), that it was challenging to obtain random groups that were not largely overlapping.

Since NC sector A displayed the greatest reduction in MirrorTree score relative to random groups of the 
same mean entropy, we focused on this sector to investigate the dependence of sector-protein MirrorTree score 
on sector size. As the cutoff was increased to include more residues, the MirrorTree score increased (Fig. 5D). 
To disentangle whether this increase was due directly to the increase in size or to the inclusion of residues that 
are more phylogenetically similar to the protein, we compared the 10-residue version of sector A (Fig. 5G) with 

Figure 4.   Sectors are phylogenetically distinct from the entire protein. (A) Schematic of how the MirrorTree 
algorithm49 was repurposed to measure the phylogenetic similarity between sectors and the entire protein. 
The MirrorTree score is defined as the Pearson correlation coefficient between the entries in the two pairwise 
distance matrices of all sequences within an MSA for the protein versus only the residues in the sector. (B) MreB 
NC sectors A–C (Fig. 3) had lower sector-protein MirrorTree scores than the corresponding baseline sectors, 
while random groups of 15 residues had MirrorTree scores close to 1 (as expected). (C) MreB NC sectors were 
computed from the 15 most positive or negative coefficients of the 20 eigenvectors with the highest eigenvalues. 
Among these 40 sectors, the z-scores of the MirrorTree score and the spatial compactness were < -2 for sectors 
A–C. Sectors D–L substantially overlapped sectors A–C, and are considered in Fig. 6.
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randomly selected groups of 10 residues from 15- and 20-residue versions of sector A, as well as the entire protein. 
The mean MirrorTree score increased as the size of the sampling group increased (Fig. 5J), even for groups with 
similar entropy as the 10-residue sector (Fig. 5K). Moreover, 15-residue versions of sectors B and C had similar 
entropy (Fig. 5B,C); hence, an approach driven by entropy alone would not have divided these spatially separated 
clusters. Thus, the strength of a residue’s association in a sector of highly coevolving residues is associated with 
more phylogenetic distinction from the rest of the protein than can be explained by entropy alone.

Phylogenetic similarity highlights overlapping sectors.  The core residues of some MreB NC eigen-
vectors sometimes had high coefficients in multiple eigenvectors (Fig. S5), suggesting that we should consider 
the union of the sectors as a functional unit. To rationally identify sectors that should be merged, we again 
exploited phylogenetic similarity by calculating MirrorTree correlation coefficients from comparisons between 
pairs of sectors (Fig. 6A). MreB NC sectors A–C (Fig. 3) exhibited low sector–sector MirrorTree scores with 
each other and with random groups (Fig. 6B), as expected since they have low sector-protein MirrorTree scores 
(Fig. 6B). By contrast, the random groups had MirrorTree scores close to 1 (Fig. 6B). NC sectors were also more 
phylogenetically distinct from each other than baseline sectors (Fig. 6C). These data suggest that the NC sec-
tors were selected by evolutionary pressures that led to distinct functions, which influenced their phylogeny in 
distinct manners.

Of all sectors that had a MirrorTree z-score or a pairwise distance z-score < -2 (sectors A–L, Fig. 4C), several 
pairs had a high sector–sector MirrorTree score. Hierarchical clustering of the sectors based on their sector–sec-
tor MirrorTree profiles led to the identification of five obvious “meta-sectors” from the sum of the clustered 
eigenvectors (Methods), which we denote α, β, γ, δ, and ε (α, β, and γ contain sectors A, B, and C, respectively) 
(Fig. 6D). The meta-sectors exhibited low sector–sector MirrorTree scores (Fig. 6E), and α, β, and γ had both 
low sector-protein MirrorTree scores (Fig. 6F,G) and low spatial compactness z-scores (Fig. 6G). The 15-residue 
version of meta-sector α was more compact than the 15-residue version of A (Fig. 6H), and it contained resi-
dues that interact with RodZ (Fig. 6I), an MreB binding partner that modulates MreB filament nucleation56 and 
curvature57. Notably, the regions of the 25-residue version of meta-sector α at the barbed and pointed ends of the 
MreB subunit interact with each other in a polymerized MreB filament (Fig. 6J), reinforcing the spatial compact-
ness of the meta-sector. Meta-sector β was identical to sector B, surrounding the ATP-binding pocket (Fig. 6K). 
As with α and A, the 15-residue version of meta-sector γ was more compact than the 15-residue version of sector 
C (Fig. 6L), indicating that clustering based on MirrorTree scores increases the spatial compactness of sectors.

NC identifies sectors that are not apparent from the full coevolution matrix.  To determine 
whether our findings about the properties of NC sectors applied to other proteins, we performed similar sec-
tor calculations for enolase (the metalloenzyme responsible for conversion of 2-phosphoglycerate to phospho-
enolpyruvate during glycolysis58; Fig. 7A–C), the carbohydrate-processing enzyme glucose-6-phosphate dehy-
drogenase (G6PD59; Fig. 7D–F), and mitogen-activated protein kinase 1 (MAPK1)60,61 (Fig. 7G–K). In each case, 
NC produced sectors with lower background noise and higher spatial compactness than baseline sectors.

Most of the MreB NC eigenvectors had strong signal for either positive or negative coefficients, but not both 
(Fig. 3A–C). By contrast, one of the large-eigenvalue NC eigenvectors for MAPK1 had groups of residues with 
both very positive and very negative coefficients (Fig. 7G); these residues were located in distinct regions of the 
protein (Fig. 7J,K). As validation for splitting the NC eigenvector into two sectors, the sector–sector MirrorTree 
score (0.44) indicated that they are phylogenetically distinct; moreover, the sector–sector MirrorTree score of the 
corresponding baseline sectors was higher (0.71). Thus, NC eigenvectors can be interpreted as two phylogeneti-
cally distinct sectors based on coefficient signs.

In addition to improving sector predictions by reducing background variation, we were interested in deter-
mining whether NC can identify sectors that the full coevolution matrix misses altogether. For the arginine 
tRNA ligase ArgS62 and G6PD, the sector with the most negative MirrorTree z-score had nearly the lowest spatial 
compactness z-score (Fig. 7L,M) and no clear counterpart in any of the baseline eigenvectors (Methods). For 
ArgS, the NC sector was spatially localized around the arginine binding site (Fig. 7N). For G6PD, the NC sector 
was adjacent to one of the two NADPs that bind to the protein (Fig. 7O). Thus, the NC correction reveals some 
sectors that have apparent functional significance but are missed by the baseline method.

NC sectors are enriched in damaging mutations.  To more rigorously test the functional significance 
of NC sectors, we sought experimental datasets with quantitative measurements of the consequences of muta-
tions across a protein of interest. Recent studies have pioneered the use of deep mutational scanning to system-
atically generate and quantify the phenotypic or fitness effects of many individual mutations spanning entire 
domains or proteins41,63–65, thereby providing new insights into structure–function relationships. Thus, we asked 
whether NC sectors were enriched in residues for which mutation altered protein function and/or fitness.

The Ras superfamily of membrane-associated small G-proteins is highly conserved and controls a broad 
range of cellular processes66, has inactive and active states that are regulated by a GTPase-activated protein67, 
and has been implicated in cancer68. A recent deep mutational scanning study engineered plasmids to express 
mutant versions of human H-Ras as well as the Ras-binding domain of human C-Raf (Raf-RBD) in Escherichia 
coli69, such that the binding of Ras∙GTP to Raf-RBD led to transcription of a chloramphenicol-resistance cassette. 
Thus, the binding efficacy of the Ras variant was directly correlated with cellular growth rate in the presence of 
chloramphenicol. The effect of Ras mutations on fitness was quantified by the logarithm of the enrichment of 
variants in the chloramphenicol-selected versus the starting population, relative to wild-type. The distribution 
of fitness effects was centered around zero, although there were some positions with mutations that displayed 
significant functional effects69.
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To determine whether fitness-altering mutations in H-Ras are enriched at positions identified by coevolu-
tion, we identified two high-eigenvalue sectors with obvious corresponding baseline sectors. As in our previous 
analyses (Figs. 3A–C and 7A,D,G), aside from the highly coevolving residues, the NC sectors had much lower 
noise than the baseline sectors (Fig. 8A,B). The residues in the two NC sectors were non-overlapping, and in both 
cases appeared to be concentrated in regions with low minimum relative enrichment (Fig. 8C,D). Across cutoffs 
that defined sectors of various sizes, we computed the minimum and maximum relative enrichment (represent-
ing deactivation and activation, respectively) over all amino acid mutations for each position in the NC/baseline 
sectors as well as for the residues with the lowest entropy and compared to the distribution over all residues. As 
expected, the residues with lowest entropy consistently predicted significantly more negative minimum relative 
enrichment than random sets of residues (Fig. 8E,F). The mean minimum relative enrichment in NC and baseline 
versions of sector A was also significantly more negative than random residues, with the NC sector outperforming 
the baseline sector and achieving similar enrichment values to the lowest-entropy residues (Fig. 8E). NC sector B 
also exhibited mean minimum relative enrichment significantly lower than random, by contrast to the baseline 
sector (Fig. 8F). Thus, sectors A and B are more enriched for residues whose mutation has the most potential 
for reducing fitness using NC versus baseline. The maximum relative enrichment was highly similar for sectors 
and the protein overall (Fig. S6A,B), suggesting that NC and baseline sectors are enriched for residues with the 
potential for deactivating rather than activating mutations in the case of H-Ras. Thus, NC sectors can separate 
residues based on the maximum impact of mutations at these positions.

Discussion
Many existing coevolution methods build on correlation or mutual information, sometimes employing ad hoc 
corrections to partially remove the effects of entropy and phylogeny. Our NC method harnesses phylogenetic 
distance between sequences as a novel dimension in the measurement of protein coevolution, in order to increase 
understanding of the functional relationships between amino acids in a protein. While the factors that determine 
whether pairs of positions coevolve on short or long timescales are unknown, future studies using NC to inter-
rogate the specific biochemical functions of protein sectors may reveal general patterns across diverse proteins. 
One interpretation of the variable contribution of coevolution across phylogenetic distance within a single 
protein (Fig. 1C) is that the frequency of mutation for coevolving residues within an NC sector is linked to the 
timescale of change for the corresponding selective pressure on that sector. For example, a sector that determines 
protein thermostability would be predicted to coevolve on a timescale commensurate with the frequency of 
changes in environmental temperature, whether these changes occur over long (e.g. glaciation and interglacial 
cycles of 100,000 years) or shorter (e.g. Atlantic multidecadal oscillations) timescales. NC can simultaneously 
incorporate effects of multiple phylogenetic timescales via the choice of cutoffs as well as investigate global 
phylogenetic patterns.

Importantly, NC and our repurposed MirrorTree methods are complementary to most covariation metrics, 
even phylogenomic methods such as Evolutionary Trace26, and hence can enhance existing bioinformatics tools 
by defining a phylogenetic dimension of coevolution and improving resolution of functional signal. NC will also 
likely benefit from continued improvement in methods of alignment. In the future, it would be interesting to 
apply NC to other DCA implementations such as pseudo-likelihood optimization-based (plmDCA, GREMLIN, 
CCMpred) or generative algorithms (bmDCA, ACE) to examine how NC improves contact prediction with those 
methods70, 71. We anticipate that our approach will enable application of coevolution-based methods across a 
much broader class of proteins, including those for which the set of sequences is limited in number (Fig. 2) 
and/or for which the available homologous sequences are biased to a particular segment of the phylogenetic 
tree (Fig. 1B). In particular, application to the growing database of human exome sequences72 may improve 
identification of rare disease-causing mutations. The phylogenetic cutoff can be tuned based on the entropy and 
phylogenetic structure of the protein of interest to focus on different properties of the coevolution matrix, and 
a coevolution matrix with a specific cutoff could be used to query how sector identification changes as a func-
tion of phylogenetic depth. NC may also enhance protein engineering tools by highlighting targets for directed 

Figure 5.   Sector-protein MirrorTree scores of residue groups are correlated with entropy, but NC sectors 
have lower MirrorTree scores than expected from entropy alone. (A–C) The Shannon entropy of MreB NC 
sectors A–C (Fig. 3) across size cutoffs is lower than that of the corresponding baseline sectors, indicating that 
NC selects more conserved residues (albeit entropy is still higher than the cutoff of < 0.1 for typically being 
considered highly conserved). Gray regions represent 95% confidence intervals of a randomly selected group 
of residues of the same size. (D–F) MirrorTree scores are lower for the NC sectors than for the corresponding 
baseline sectors. Gray regions represent the MirrorTree scores of a randomly selected group of residues of the 
same size. (G–I) The MirrorTree scores of sectors A–C (filled gold and purple circles) and of random groups of 
15 residues (gray). Although MirrorTree score is linked to entropy, NC sectors A and C have MirrorTree scores 
significantly lower than expected based on entropy alone. In (G), the open purple circles denote the versions 
of sector A with 10 and 20 residues. Black curves indicate ± 1 standard deviation from the mean MirrorTree 
score for a given entropy. (J) The 10-residue version of NC sector A has lower MirrorTree score than sets of 10 
residues selected from the 15- and 20-residue versions of the same sector, which are lower than those of random 
groups of 10 residues. The central mark indicates the median, and the bottom and top edges of the box indicate 
the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points not considered 
outliers. (K) The 10-residue version of NC sector A has a lower MirrorTree score than 10-residue subsets of the 
15- and 20-residue versions of the same sector with similar entropy. Same data as in (J). Thus, the 10-residue 
sector represents a “core” of the most highly coevolving residues.
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evolution. As we have demonstrated, NC expands our ability to detect functional relationships between residues 
within proteins, which could shed light in the future on the links between protein evolution and adaptation. 
In concert with deep mutational scanning and other comprehensive functional screens73, NC and MirrorTree 
may be able to provide deeper insight into the specific selective pressures under which proteins have evolved.

The predominant application of coevolution so far has been structure prediction, from using top DCA-
predicted contacts as constraints4 to employing DCA model parameters as input training features for deep 
neural networks that seek to predict spatial distances between amino acids74. Here, we have shown that NC can 
improve contact prediction by DCA in an interpretable manner by removing correlations from pure phylogeny, 
complementing deep learning algorithms sometimes described as black boxes. Moreover, the detection and 
interpretation of sectors as functional units within proteins has been a growing research focus, particularly with 
respect to the evolutionary origins of sectors. A recent theoretical study demonstrated that selection acting on a 
functional property can give rise to a sector40. MirrorTree scores reveal that residues within sectors have a differ-
ent evolutionary history from the rest of the protein, due to both entropy-dependent and entropy-independent 
differences (Fig. 5). MirrorTree scores can further be used to evaluate NC predictions in the absence of a known 
structure. Motivated by the original design purpose of MirrorTree, we note that scores between sectors of two 
proteins could be used to identify protein–protein interactions—potentially between hosts and microbes—
enhanced by the improved performance of NC when the sampling of sequences is shallow (Fig. 2C).

Our observation that residues most strongly associated with sectors exhibit higher spatial compactness and 
lower MirrorTree scores when NC is applied (Fig. 5J) supports the inferred link between coevolution and spatial 
compactness, and suggests that NC can help to guide experiments toward the residues of highest importance for 
a sector’s function (Fig. 8). Beyond the improvements from lowering background signal, NC also predicts sectors 
that are otherwise difficult to detect (Fig. 7L–O). In addition, some studies have demonstrated other applications 
of coevolution such as protein engineering20 and variant interpretation14. Our results suggest that the utility 
of coevolution as a signal for protein science can be substantially improved by NC, opening new windows for 
broadly understanding protein structure–function relationships.

Methods and materials
MSA construction.  MSAs were constructed with BLAST75 to identify up to 10,000 closest sequences to a 
reference sequence, using the RefSeq database76. Sequences were aligned with Clustal Omega77. Sequences with 
a Jukes–Cantor distance > 1 from the reference sequence were pruned. Redundant sequences and positions with 
> 25% gaps were removed. Any remaining gaps were filled with the amino acid from the closest sequence in 
terms of Jukes–Cantor distance.

Calculation of the expected value of inter‑clade covariation.  For our analyses, we define a pair of 
sequences to be within the same clade if the phylogenetic distance is below a Jukes–Cantor distance d . The phy-
logenetic distance is measured with respect to the aligned protein sequence (Table S1). We sought to measure the 
expected value of residue–residue covariation due solely to the comparison of sequences between clades, which 
we refer to as the inter-clade covariation CS>d . Below, we describe and compare measurement of the expected 
value of inter-clade covariation in Eq. (1) of the main text both by approximation via bootstrapping and analyti-
cally.

Bootstrapping.  In this approximate method, we bootstrap the original MSA: for every position, we replace the 
amino acid with the identity of the same position from a random sequence in the same clade. For example, in 
Fig. 1Avi we show two positions in an MSA, colored by their clade membership for a given phylogenetic distance 
d . Note that the first position is never a glutamine in the orange clade and is never a threonine in the white clade. 
Similarly, the second position is never a serine in the orange clade and is never an arginine in the white clade. 
The bootstrapped MSAs resample within clades, so as to not change the phylogenetic structure of the MSA 
at distances > d; thus, the first position in the bootstrapped MSAs still does not contain a glutamine, etc. The 
covariation measured from each of the bootstrapped MSAs is averaged to obtain the matrix expected under the 

Figure 6.   MreB NC sectors are generally phylogenetically distinct, and those with phylogenetic overlap 
collectively overlap with functionally important regions. (A) Schematic of how the MirrorTree algorithm was 
repurposed to measure the phylogenetic similarity between sectors. (B) MreB NC sectors A, B, and C exhibited 
low sector–sector MirrorTree scores with each other, but high values with random groups of 15 residues 
(which also exhibited high MirrorTree scores with each other). (C) NC sectors A–C have lower sector–sector 
MirrorTree scores with each other than baseline sectors A–C with each other, indicating that they are more 
phylogenetically distinct. (D) Hierarchical clustering of MreB NC sectors A–L (Fig. 4C) based on sector–
sector MirrorTree profiles suggests five distinct meta-sectors. (E–G) The MreB meta-sectors defined by the 
sum of the clustered eigenvectors exhibited low sector–sector MirrorTree scores with each other (E) as well 
as low sector-protein MirrorTree scores (F). Meta-sectors α, β, and γ (similar to sectors A–C) exhibited high 
spatial compactness (z-score < − 2). (H,I) Meta-sector α was more spatially contiguous than sector A (shaded 
purple region) (H), and contained residues around the interface with MreB’s binding partner RodZ (I). (J) The 
25-residue version of meta-sector α connects the pointed and barbed ends of each subunit in a protofilament. 
(K) Meta-sector β (identical to sector B) surrounds the ATP binding pocket. (L) Meta-sector γ is more spatially 
contiguous than sector C (shaded purple region).
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hypothesis that there is no coupling between positions within the same clade. The bootstrapping method can be 
applied for any coevolution heuristic.

Analytical method.  To derive an analytical solution in place of bootstrapping the NMI metric, we rephrased 
our aim as calculating the expected value of covariation between two positions under the assumption that the 
two positions are independent within a clade.

Consider the Shannon entropy for position i:

 where pi=k is the probability of finding amino acid k at position i . The marginal probabilities of positions i and j 
taking on a particular value in a bootstrapped MSA do not change on average. However, the joint entropy, which 
relies on the joint probability, will change, as described below:

We seek an expression for the joint entropy that captures the assumption that positions i  and j are inde-
pendent within clades. Since the joint probability of independent variables is the product of the individual 
probabilities, we are left with calculating the sum of probabilities from each clade c , weighted by the number of 
sequences nc in each clade:

where pci=k is the marginal probability of finding amino acid k within clade c at position i.
A comparison of the bootstrapped and analytical methods for calculating NC for the yeast actin protein is 

shown in Fig. S2.

Estimating the statistical significance of nested coevolution.  The expectation value of our NC background model 
is described above analytically only for NMI; other coevolution metrics do not have a known closed-form ana-
lytical solution, so we rely on bootstrapping to estimate the expected value. Bootstrapping offers the additional 
advantage of providing an estimate of the statistical significance of the observed raw coevolution signal by meas-
uring the fraction of bootstrapped MSAs that achieves equal or greater coevolution values. The accuracy of the 
significance estimate is limited by the number of bootstrap measurements, since the maximum resolution is the 
reciprocal of the number of bootstraps performed. Using hundreds of bootstraps, we compared significance 
estimates with the absolute difference between the total and inter-clade covariation. These values were highly 
correlated (Spearman’s ρ = 0.95, Fig. S2B), indicating that the difference between the baseline signal and either 
the bootstrapping or analytical method of computing NC provides a surrogate for the significance of the obser-
vation.

Structural contact prediction.  Real structural contacts were determined by calculating the distance 
between the alpha carbons of every pair of residues in the protein based on a crystal structure (Table S1). All 
other atoms, including hydrogen atoms, were disregarded. To predict structural contacts, we used mean-field 
DCA with pseudocount value 0.5, and sequences closer than 0.3 Hamming distance were reweighted4,23.

Generation of NC sectors.  The output of NC is nd p-by-p matrices (Fig. 1C), where nd is the number of 
phylogenetic windows and p is the number of amino acids in the protein. These nd matrices were concatenated 
to obtain a supermatrix of dimension pnd-by-p (Fig. S7). Eigenvalue decomposition or singular value decompo-
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Figure 7.   NC eigenvectors generally improve sector prediction across proteins, and enable identification of 
sectors that are not detectable using the baseline method. (A,D,G) NC eigenvectors for enolase (A), G6PD 
(D), and MAPK1 (G) exhibit lower background noise than the corresponding baseline (NMI with APC) 
eigenvectors. (B,E,H,I) The appropriate NC sectors (positive or negative values of the eigenvector) associated 
with the eigenvectors in (A,D,G) are more spatially contiguous across size cutoffs than the baseline sectors. 
Note that the MAPK1 eigenvector was split into a positive sector (H) and a negative sector (I). Gray regions 
represent 95% confidence intervals of a randomly selected group of residues of the same size. (C,F) The 
15-residue versions of the sectors in (B,E) on the crystal structures of enolase (C) and G6PD (F) illustrate the 
more compact nature of the NC sectors as compared with the baseline sectors. (J,K) The 50- and 20-residue 
versions of the NC sectors in (H,I) are more spatially compact on the structure than the corresponding baseline 
sectors, and occupy distinct parts of the protein. (L–O) For ArgS (L) and G6PD (M), certain high-eigenvalue 
NC sectors had no obvious baseline counterpart. These NC sectors had low MirrorTree and spatial compactness 
z-scores (L,M), and 15-residue versions occupied spatially compact regions around ligands [arginine in (N), 
NADP in (O)] on the structure (N,O). Thus, NC enables the detection of sectors that are otherwise obscured by 
phylogenetic bias.
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sition of the covariation in this super matrix was performed (thus avoiding the need to choose one value of the 
cutoff distance d), with pnd observations and p features. The eigenvectors were ordered highest to lowest accord-
ing to their associated eigenvalues. Each eigenvector is of length p, where the ith coefficient corresponds to the 
importance of the ith position in explaining the variation in the direction of the respective eigenvector.

To extract the specific positions that are most responsible for explaining the variation in a particular eigenvec-
tor, we identified the positions with the most positive or most negative coefficients and defined these groups of 
residues as two sectors. Sectors that had < 4 amino acids were ignored for downstream analysis.

NC and baseline sectors were paired if the dot product of the corresponding eigenvector was > 0.6.

Calculating the spatial compactness of a sector.  To quantify spatial compactness, we calculated the 
mean distance between the alpha carbon atoms of each pair of the most highly associated residues in the sector 
in the crystal structure. The calculation was repeated with increasing numbers of the most highly associated 
residues to avoid having to arbitrarily choose a single sector size.

Adaptation of the MirrorTree algorithm.  Mirrortree was originally developed to predict protein–pro-
tein interactions based on the similarity of phylogenetic trees49. In brief, MSAs are calculated using protein 
sequences from the same list of organisms for two proteins. For each MSA, the matrix of pairwise Jukes–Cantor 
distances is calculated. The MirrorTree score is the Pearson correlation coefficient of these two distance matrices. 
A high correlation indicates that the two proteins have similar phylogenies and thus are likely to have experi-
enced similar functional selection. We adapted this method to compare the phylogenetic similarity of protein 
sectors with the entire protein (Fig. 4A) or other sectors (Fig. 6A). To compute sector-protein and sector–sector 
MirrorTree scores, filtered MSAs were created focusing on the positions of a given sector.

Biased sampling of random sectors was accomplished via weighting of residues according to their entropy.

Figure 8.   NC sectors predict deactivating mutations in H-Ras. (A,B) NC predicts two eigenvectors with 
much lower background noise than the baseline counterparts. The purple and gold diamonds represent the 
locations of residues in sectors of size 20. (C,D) Fitness data from a screen of binding efficacy of H-Ras to Raf-
RBD69. Shown is the minimum enrichment over all mutations at each position (thus representing maximum 
deactivation). The purple and gold diamonds represent the locations of residues in sectors of size 20. (E,F)
Across most sector size cutoffs, the mean minimum relative enrichment was significantly lower than random 
(gray) for NC sectors A and B and comparable to that of the residues with the lowest entropy (teal). NC sectors 
also outperformed their baseline counterparts.
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Calculation of meta‑sectors.  Sets of sectors to be merged into meta-sectors were determined from hier-
archical clustering based on sector–sector MirrorTree scores. Merging was accomplished by adding the corre-
sponding eigenvectors after multiplying each sector by + 1 or − 1 corresponding to whether a positive or negative 
sector, respectively, was being merged. The summed vector was then analyzed as if it were an eigenvector in 
order to define meta-sectors at various size cutoffs.

 Data availability
All multiple sequence alignments and associated data are available upon request from the corresponding author.

 Code availability
All code is available at https://​github.​com/​acola​vin/​nested-​coevo​lution.
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