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Aflatoxin B1 (AFB1) contaminates rice during harvest or storage and causes a 

considerable risk to human and animal health. In this study, Trametes versicolor 

AFB1–degrading enzyme (TV–AFB1D) gene recombinantly expressed in 

engineered E. coli BL21 (DE3) and Saccharomyces cerevisiae. The TV–AFB1D 

enzymatic characteristics and AFB1 degradation efficiency in contaminated 

rice were investigated. Results showed that the size of recombinant TV-

AFB1D expressing in E. coli BL21 (DE3) and S. cerevisiae was appropriately 77 

KDa. The kinetic equation of TV-AFB1D was y = 0.01671x + 1.80756 (R2 = 0.994, 

Km = 9.24 mM, and Vmax = 553.23 mM/min). The Kcat and Kcat/Km values of TV-

AFB1D were 0.07392 (s−1) and 8 M−1 s−1, respectively. The AFB1 concentration of 

contaminated rice decreased from 100 μg/ml to 32.6 μg/ml after treatment at 

32°C for 5 h under the catabolism of TV-AFB1D. S. cerevisiae engineered strains 

carrying aldehyde oxidase 1 (AOX1) and Cauliflower mosaic virus 35 S (CaMV 

35 S) promoters caused the residual AFB1 contents, respectively, decreased 

to 3.4 and 2.9 μg/g from the initial AFB1 content of 7.4 μg/g after 24 h of 

fermentation using AFB1-contaminated rice as substrate. The AFB1 degradation 

rates of S. cerevisiae engineered strains carrying AOX1 and CaMV promoters 

were 54 and 61%, respectively. Engineered S. cerevisiae strains integrated with 

TV-AFB1D expression cassettes were developed to simultaneously degrade 

AFB1 and produce ethanol using AFB1-contaminated rice as substrate. Thus, 

TV-AFB1D has significant application potential in the AFB1 decomposition from 

contaminated agricultural products.
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Introduction

Aflatoxins (AFs) are a group of secondary metabolites 
produced by Aspergillus flavus and Aspergillus parasiticus that 
have highly teratogenic, carcinogenic, and mutagenic properties 
(Lee et al., 2022). AF contamination has posed a serious risk (Yang 
et al., 2020) and huge economic losses to food safety (Garcia-Cela 
et al., 2019), as well as human and animal health (Javed et al., 
2021). AFs are classified as AFB1, AFB2, AFG1, AFG2, AFM1, 
AFM2, AFP1, and AFQ1. AFB1 is the most toxic with acute toxicity, 
teratogenicity, mutagenicity, and carcinogenicity (Cao et al., 2022). 
AFs are the most frequent contaminants of peanuts, corn, wheat, 
rice, nuts, milk, and their by-products (Shi et al., 2018; Hajian 
et al., 2020). More than 10% of the global exposure to AFs was 
from maize, peanuts, rice, sorghum, and wheat (JECFA, 2017), 
which caused remarkable economic losses (Pitt and Miller, 2017). 
The climate change due to latitude differences and the carbon 
utilization pattern of A. flavus were the main reasons of aflatoxin 
contamination (Mohale et  al., 2013; Van der Fels-Klerx et  al., 
2016). In addition, the adverse storage conditions of high humidity 
and high temperature caused excessive aflatoxin levels 
(Villers, 2014).

The biological degradation of Afs is an emerging 
biotechnological strategy that is considered an inexpensive and 
safe practice. The decontaminant activity of microorganisms is 
associated with fermentation processing and the binding capacity 
of the cell wall to the contaminant (Wochner et al., 2018). The 
biological degradation strategy depends on the adsorption of 
Lactobacillus (Luo et al., 2020) and probiotics (Zoghi et al., 2014) 
as the microbiological adsorbents and the degradation of AFs 
using AF oxidases, including laccases (Song et  al., 2021), 
peroxidases (Loi et al., 2020), and lactonases (Pereyra et al., 2019). 
The enzymatic degradation effectively removes AF toxicity 
through the destruction of the furan ring and coumarin structure 
with the formation of nontoxic degradation products (Wang et al., 
2019b). The overexpression of AF-degrading enzymes is regarded 
as an effective way to obtain enzymes that could be used for AF 
detoxification (Yang et  al., 2021). However, the enzymatic 
separation, purification, and catalytic processes expend great cost 
during production (Schmidt et al., 2021). Current measures based 
on direct detoxification approaches, such as physical adsorption, 
chemical decomposition, and enzymatic degradation (Peng et al., 
2018), still have great difficulties in realizing AF detoxification in 
the fields of food and feed (Kumar et al., 2021). Therefore, the 
degradation of AFB1 and the expression of AFB1-degrading 
enzyme during the fermentation of microorganisms would 
be conducive to decreasing the operating costs.

In the present study, the AFB1-degrading enzyme from 
Trametes versicolor (TV-AFB1D) was expressed in the recombinant 
E. coli BL21(DE3). The enzymatic characteristics and catalytic 
effect were investigated. In addition, TV-AFB1D was used to 
construct engineered S. cerevisiae strains by Clustered Regularly 
Interspaced Short Palindromic Repeats–Cas 9 (CRISPR-Cas9) 
technology. Two TV-AFB1D cassettes were integrated into the 

hexokinase 2 (HXK2) locus of S. cerevisiae. The degradation of 
AFB1 in AFB1–contaminated rice was investigated during 
S. cerevisiae fermentation. An alternative strategy for simultaneous 
AFB1 degradation and ethanol production by TV–AFB1D–
engineered S. cerevisiae strains were explored using the AFB1-
contaminated rice as the substrate.

Materials and methods

Plasmids, primers, and reagents

pET-28a (+) expression kit, pEASY-T1 cloning plasmid, 
RT-PCR kit, E. coli BL21(DE3), ProteinIso Ni-IDA Resin, and 
E. coli DH 5α were from Transgen Biotech. The gel imaging system, 
SDS-PAGE, PCR amplification, and electrophoresis devices were 
manufactured by Bio-Rad Company (United States). Chirascan 
qCD was manufactured by Applied Photophysics Ltd. (United 
Kingdom). Plasmid Cas9-NAT carrying nourseothricin and 
ampicillin resistance genes was obtained from Addgene. The 
S. cerevisiae HXK2 guide RNA (gRNA) expression vector (HXK2-
gRNA) for the expression of the 20 bp gRNA was obtained through 
the amplification of the gRNA-Trp-Hyb plasmid (Addgene) using 
the designed primers in Table  1. A. flavus AFB1 was from 
FERMENTEK (Israel). Primer synthesis and gene sequencing were 
performed by Sangon Company (China). The analytically pure 
reagents were from Aladdin Reagent Company (China).

Engineered Escherichia coli BL21(DE3) 
construction

In this study, TV-AFB1D sequences from NCBI reference 
sequence NW_007360323.1 was synthesized by Sangon Company 
(China). TV-AFB1D was inserted into a pET-28a (+) expression 
vector backbone by double-enzyme XbaI and BamHI digestion 

TABLE 1 The primers designed for gene amplification in this study.

Genes for amplification Primers

AOX1 F-5′-gatctaacatccaaagacga-3′

R-5′-tctcacttaatcttctgtac-3′

CaMV F-5′-gagacttttcaaagggt-3′

R-5′-gatctggattttagtactgg-3′

TV-AFB1D F-5′-atggctcgcgcgaagtactc-3′

R-5′-gcgcttcccaattgaggtac-3′

HXK2-gRNA F-5′-ctcattttggaacaagtcatgttttagagctagaaatag

caag-3′

R-5′-atgacttgttccaaaatgaggatcatttatctttcactgc

gga-3′

Two pairs of primers of AOX1 and CaMV were used to amplify the expression cassettes. 
The primers of TV-AFB1D were used to amplify TV-AFB1D for the identification of 
transformants. The primers of HXK2-gRNA were used to amplify the expression vector 
for the transcription of guide RNA.
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and integration approach. T7 promoter primer and T7 terminator 
primer were used to amplify the insertion sequence by sequencing. 
The recombinant expression vector embracing the target gene 
possessed the correct insertion direction and location. The 
downstream sequence was close to the T7 terminator primer. The 
confirmed expression vector was transformed into E. coli 
BL21(DE3) for recombinant expression.

Recombinant expression of TV-AFB1D in 
E. coli BL21(DE3)

Isopropyl β-D-Thiogalactoside (IPTG) was used to induce the 
expression of the target gene in engineered E. coli BL21(DE3). The 
engineered E. coli BL21(DE3) was inoculated into a 100 ml 
Erlenmeyer flask loaded with 10 ml of LB liquid medium 
containing 90 μg/ml of kanamycin at 37°C with a shaking speed 
of 200 rpm. Different concentrations of IPTG were added to 
induce gene expression when cell concentration reached 0.5 
OD600. After centrifugation of fermented broth at 9,000 rpm for 
10 min, the supernatant and cells were obtained from the stratified 
solution to further detect the activity of the recombinant. The 
composition of fermentation broth mainly included LB liquid 
medium (10 mg/ml of tryptone, 5 mg/ml of yeast extract, 10 mg/
ml of NaCl), 0.19 mg/ml of IPTG (0.8 mmol/l), 90 μg/ml of 
kanamycin, 0.5 OD600 of TV-AFB1D engineering E. coli 
BL21(DE3) cells, recombinant TV-AFB1D, and water.

Enzymatic characteristics of recombinant 
TV-AFB1D

The conditions of 32°C and pH 7 were maintained to 
investigate the effect of pH value and temperature on TV-AFB1D 
activity, respectively. The optimum temperature and pH value, and 
kinetic parameters were determined according to the enzyme 
activities under the different conditions. Vmax (mM/min) and Km 
(mM) were calculated based on the Lineweaver–Burk method. 
The kinetic equation was drawn with 1/V0 and 1/[S] as the 
ordinate and abscissa, respectively. The Arrhenius plot approach 
was used to investigate the effect of temperature on TV-AFB1D 
stabilization by analyzing the relationship between the initial 
reaction speed and temperature (Fan et al., 2000).

Secondary structure determination

The effect of temperature on the secondary structure of 
TV-AFB1D was investigated using low temperature (4°C), 
optimum temperature (32°C), and high temperature (70°C). 
Circular dichroism spectroscopy (CD) was used to investigate the 
effect of temperature on the secondary structure. Chirascan qCD 
was applied to record the CD spectrum values with 0.5 mg/ml of 
TV-AFB1D in a path length cuvette. CDPro software analyzed the 

data from 190 nm to 260 nm with a time-per-point of 1 s and an 
interval of 1 nm (Yi et al., 2019).

TV-AFB1D expression cassette assembly 
for transformation in Saccharomyces 
cerevisiae

The TV-AFB1D expression cassettes assembled using the 
promoters of inducible aldehyde oxidase 1 (AOX1, NCBI Sequence 
ID: LT727205.1) and constitutive Cauliflower mosaic virus 
(CaMV) 35S (NCBI Sequence ID: X04879.1) were synthesized 
according to the detailed sequences. The inducible expression 
cassette was assembled with the AOX1 promoter, TV-AFB1D, and 
AOX1 terminator, whereas the constitutive expression cassette was 
assembled using the CaMV 35S promoter, TV-AFB1D, and CaMV 
poly-A signal sequences. The primers for AOX1 and CaMV 
amplification in Table 1 were used to identify the insertion gene. 
The primers for HXK2-gRNA amplification were used to obtain 
an expression vector for the transcription of a 20 bp gRNA.

Integration of TV-AFB1D by CRISPR-Cas9 
approach in S. cerevisiae

The TV-AFB1D expression cassettes were integrated into the 
S. cerevisiae genome by HXK2 knockout using the CRISPR-Cas9 
technology (Figure 1). The nuclease expressed by the Cas9 vector was 
cut off by double-stranded DNA guided by gRNA. Then, the 
TV-AFB1D expression cassettes were inserted into the cut site as the 
donor DNA to repair the break. The TV-AFB1D expression cassettes 
were integrated into the genomic DNA of S. cerevisiae by the 
CRISPR-Cas9 approach through the following steps (Yang et al., 
2018). Cas9 plasmid containing nourseothricin resistance gene was 
transformed into S. cerevisiae by the LiAc/ssDNA/PEG method 
(Zhang et al., 2014). The 50 μl transformation solution was sucked out 
and coated on the solid yeast extract peptone dextrose (YPD) 
medium with the components of 1% yeast extract, 2% yeast extract, 
and 2% glucose (w/v) containing 100 μg/ml nourseothricin. The 
S. cerevisiae transformants were used for gene integration. The HXK2-
gRNA plasmid and TV-AFB1D expression cassettes were transformed 
into S. cerevisiae integrated with the Cas9 plasmid. The transformation 
solution was incubated at 30°C on a solid YPD medium containing 
100 μg/ml nourseothricin and 300 μg/ml hygromycin B for 48 h, and 
the putative transformants were screened out for further identification.

Identification and recombinant 
expression of TV-AFB1D in S. cerevisiae

The putative S. cerevisiae transformants were incubated in a YPD 
medium at 30°C with a shaking speed of 200 rpm. The primers for 
TV-AFB1D were used to amplify the genomic DNA of the S. cerevisiae 
transformants. After confirmation, a profile analysis of the 
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recombinant TV-AFB1D was performed by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS–PAGE). The recombinant 
TV-AFB1D of the engineered S. cerevisiae in the supernatant was 
concentrated through an ultrafiltration membrane (Singh et  al., 
2020). The S. cerevisiae transformants after confirmation were 
inoculated into 500 ml triangular flasks with 200 ml of YPD medium 
with a shaking speed of 200 rpm at 30°C. The recombinant 
TV-AFB1D of the AOX1-engineered S. cerevisiae was induced after 
the addition of methanol to a final concentration of 0.8% (v/v). The 
supernatant was collected after centrifugation at 7,500 rpm for 20 min.

Cell proliferation of engineered 
S. cerevisiae

The cell proliferation of S. cerevisiae was investigated in a YPD 
medium at 30°C with a shaking speed of 200 rpm. S. cerevisiae 

concentration was determined using the absorbance value under 
the wavelength of 600 nm. When the OD600 value reached 1, 1 ml 
of broth was sucked out and poured into a 250 ml triangular bottle 
containing 100 ml of YPD medium. The effect of gene knockout 
on the growth of engineered S. cerevisiae was investigated 
according to the OD600 values (Oh and Jin, 2020).

Determination of glucose and ethanol 
concentrations

The supernatant of the fermentation broth was obtained after 
centrifugation at 10,000 rpm for 10 min. Trichloroacetic acid (10% 
v/v) was added to the supernatant in equal proportion for protein 
removal after treatment at 4°C for 12 h. The supernatant was 
further purified by filtration through a 0.45 μm filter membrane. 
Glucose and ethanol concentrations were determined by 

FIGURE 1

Construction strategy of TV-AFB1D engineered Saccharomyces cerevisiae. Two kinds of expression cassettes containing AXO1 and CaMV 
promoters were assembled by the promoter, TV-AFB1D, and terminator. The integration locus of expression cassettes as donor DNA was in the 
HXK2 of S. cerevisiae recognized by 20-bp guide RNA using the CRISPR-Cas9 technology.
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high-performance liquid chromatography (HPLC) using a Waters 
series HPLC system equipped with a refractive detector and 
SUGAR SH1011 column, a mobile phase of 0.01 mol/l H2SO4, a 
flow rate of 0.8 ml/min, and a column temperature of 50°C.

Saccharification, fermentation, and 
in situ degradation of AFB1

The saccharification of rice power was carried out by the 
double-enzyme method. The starch of rice was hydrolyzed by the 
mixture of 20 g rice power, 100 ml of water, and 0.02 g α-amylase 
(40 U/mg) at 70°C for 30 min. After the pH value was adjusted to 
4.5, 0.08 g glucoamylase (50 U/mg) was added for the release of 
glucose at 60°C for 4 h. The saccharified liquid was used to prepare 
the fermentation broth containing 1% yeast extract (w/v) and 2% 
peptone (w/v). The two kinds of engineered S. cerevisiae strains 
were inoculated into the fermentation broth with a shaking speed 
of 200 rpm at 30°C. In the fermentation processing of the inducible 
AOX1-engineered S. cerevisiae, 0.8% methanol (v/v) was added for 
the induction of TV-AFB1D.

AFB1 extraction and HPLC determination

AFB1 extraction was performed by batch micro-solid phase 
extraction (Chmangui et al., 2021). The rice powder (5 g) was 
soaked in a 50 ml tube containing an 84% acetonitrile solution 
(v/v). The supernatant was collected by centrifugation at 6,000 rpm 
for 10 min. Fat, protein, pigment, and carbohydrate in the 
extraction solution were removed by a solid-phase column for AF 
purification (Zhang et al., 2020). AFB1 detection was performed 
by the HPLC method using the following parameters: a mobile 
phase of 4:6 methanol–water, C18 reversed-phase column with a 
UV detector, a detection wavelength of 365 nm, and a flow rate of 
0.6 ml/min. AFB1 content was determined by the external standard 
method (Munoz-Solano and Gonzalez-Penas, 2020).

Data analysis

All the data were presented in the form of mean ± standard 
deviation with three replicates. Statistical analyses were performed 
by Origin 9 Software.

Results

Expression of recombinant TV-AFB1D in 
E. coli BL21(DE3)

TV-AFB1D was integrated into a pET-28a (+) expression 
plasmid. The expression vector was confirmed by sequencing. 
The correct pET-28a (+) vector embracing TV-AFB1D was 

transformed into E. coli BL21(DE3). The size of TV-AFB1D 
expressed in engineered E. coli BL21(DE3) was appropriately 
77 kDa in the presence of different concentrations of IPTG 
(Figure 2A). The expression of engineered E. coli BL21(DE3) 
was induced in the presence of IPTG. The concentration of 
0.8 mmol/l of IPTG could effectively induce the expression of 
TV-AFB1D in engineered E. coli BL21(DE3). Thus, the 
expression of the recombinant TV-AFB1D in the engineered 
E. coli BL21(DE3) at 37°C was investigated after the addition of 
0.8 mmol/l of IPTG. The highest activity of TV-AFB1D reached 
9.3 U/ml for 4 h of induction (Figure 2B). As the control, the 
wild-type E. coli BL21(DE3) could not produce any TV-AFB1D 
activity. IPTG concentration and induction time were used to 
investigate TV-AFB1D activity under the same induction 
conditions (Figure 3). The combined parameters of 0.8 mmol/l 
of IPTG and 4 h induction led to the highest TV-AFB1D activity 
among the set combinations of 0.6–1.4 mmol/l of IPTG and 
0–7 h induction time.

Effect of temperature and pH values on 
TV-AFB1D activity

The effects of temperature and pH values on the activity of 
recombinant TV-AFB1D were investigated to optimize the 
catalytic conditions (Figure 4). Both temperature and pH values 
resulted in the changes of TV-AFB1D activity. The activity of 

A

B

FIGURE 2

Expression of TV-AFB1D in E. coli BL21(DE3) by IPTG induction 
(A) Profile of TV-AFB1D expressed in engineered E. coli BL21(DE3) 
induced by IPTG via SDS-PAGE approach. Note: Lane 1 indicated 
protein marker; Lane 2–10 indicated the recombinant TV-AFB1D 
in engineered E. coli BL21(DE3) induced by 1.4, 1.2, 1, 0.8, 0.6, 0.4, 
0.3, 0.2, 0.1 mmol/l, respectively. (B) Expression of TV-AFB1D in 
the transformant and wild-type E. coli BL21(DE3).
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recombinant TV-AFB1D reached 12.38 U/ml at 32°C, which was 
the highest among those during the temperatures of 28–42°C. In 
addition, the activity of TV-AFB1D was 12.89 U/ml when pH 
value was adjusted to 7, which was the highest among those at pH 
values of 3–10. Too high and low temperature and pH values 
would decrease the activity of recombinant TV-AFB1D. Therefore, 
TV-AFB1D had characteristics of the optimal temperature of 32°C 
and pH value of 7.

Determination of kinetic parameters

The multiple kinetic parameters of TV-AFB1D were 
determined according to their specific calculation formulas in 

Figure 5. The Lineweaver–Burk equation was used to draw the 
kinetic equations of TV-AFB1D with a formula of 
y = 0.01671x + 1.80756 (R2 = 0.994; Figure 5A). In addition, other 
parameters of Km = 9.24 mM, Vmax = 553.23  mM/min, 
Kcat = 0.07392 (s−1), and Kcat/Km = 8  M−1  s−1 were calculated 
according to the relation between substrate concentrations and 
reaction rate (Figure 5B). Further, Arrhenius plot method was 
used to determine the relationship between the initial catalytic 
speed and reaction temperature of TV-AFB1D with a formula of 
ln v = 16.51–3338.73/T (R2 = 0.999;. Figure 5C).

Effect of temperature on the secondary 
structure

The CD spectrum method was used to analyze the 
secondary structure of TV-AFB1D at 4°C, 32°C, and 70°C 
(Figure  6A). At 32°C, the highest peak value [θ] was 
41.01 deg.·cm2·dmol−1·10−3, which was 1.34-fold at 4°C 
(30.52 deg.·cm2·dmol−1·10−3) and 2.82-fold at 70°C 
(14.56 deg.·cm2·dmol−1·10−3). The types of the secondary 
structure are calculated in Figure  6B. The percentages of 
random coil and helix at 32°C were highest among the 
temperatures. The percentage of antiparallel structure at 32°C 
was lower than those at 4°C and 70°C. Three different 
treatment temperatures led to similar percentages of parallel 
and beta-turn structures. Therefore, the percentages of the 
random coil, helix, and antiparallel structures could be the 
main factors affecting the activity and stability of TV-AFB1D.

Effect of treatment time on the 
concentration of AFB1

The effect of treatment time on the residual concentration of 
AFB1 was investigated in the presence of TV-AFB1D (Figure 7). 
The content of AFB1 gradually decreased from 100 μg/ml to 
32.6 μg/ml after catabolism for 5 h. Then, the decrease rate of AFB1 
content substantially slowed down with the next treatment of 
5–12 h. Therefore, 67.4% of AFB1 was eliminated by TV-AFB1D 
after 5 h of catabolism.

Transformation of TV-AFB1D expression 
cassettes into S. cerevisiae

AOX1 inducible and CaMV constitutive expression cassettes 
have sizes of 3,663 and 3,048 bp, respectively (Figure 8A). After 
sequencing confirmation, the two expression cassettes were 
transformed into wild-type S. cerevisiae on the screening medium 
containing nourseothricin and hygromycin B. The primers 
designed for TV-AFB1D sequences were used to amplify the 
genomic DNA of the putative transformants for transformant 
identification. The sequences of the isolated DNA were further 

FIGURE 3

Inducible expression of TV-AFB1D by IPTG concentrations and 
induction time.

FIGURE 4

Effect of temperature and pH on TV-AFB1D activity.
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confirmed by the sequencing method. The engineered strains were 
constructed by integrating the two TV-AFB1D expression cassettes 
into the S. cerevisiae genome.

Profile analysis of recombinant TV-AFB1D 
by SDS–PAGE

SDS–PAGE was used to analyze the profiles of recombinant 
TV-AFB1D (Figure  8B). The recombinant TV-AFB1D was 
expressed by the two kinds of engineered S. cerevisiae with a size 
of approximately 77 kDa. In addition, the wild-type S. cerevisiae 
could not express recombinant TV-AFB1D. Thus, engineered 
S. cerevisiae could express the recombinant TV-AFB1D under the 
control of AOX1 and CaMV promoters.

Detection of AFB1 catabolism by 
recombinant TV-AFB1D

The HPLC method was used to detect AFB1 and its catabolites 
by recombinant TV-AFB1D (Figure  9). AFB1 possessed a 
chromatographic peak after the run time of 45 min. The catabolites 
of AFB1 by recombinant TV-AFB1D were also detected by HPLC 
with a run time of 22 min. The result indicated that a new product 
was formed under the catabolism of recombinant TV-AFB1D.

HXK2 knockout affecting the growth, 
ethanol production, and glucose 
consumption of S. cerevisiae

The absorbance of the fermentation broth at the wavelength 
of 600 nm was determined to investigate the effect of the gene 
integration of TV-AFB1D expression cassettes on the growth of 
S. cerevisiae mutants with HXK2 knockout (Figure 10). The results 
showed that S. cerevisiae mutants integrated with AOX1 and 
CaMV expression cassettes had similar growth curves as the wild-
type S. cerevisiae during fermentation for 48 h. Therefore, the 
HXK2 mutation of S. cerevisiae by gene knockout did not affect 
the cell proliferation of the engineered strains.

A B C

FIGURE 5

Enzymatic characteristics of recombinant TV-AFB1D. (A) The kinetic equation of TV-AFB1D drawn by Lineweaver–Burk equation based on the 
double reciprocal of substrate concentration and catalytic rate; (B) Correlation between substrate concentration and reaction rate of TV-AFB1D; 
(C) Arrhenius plot equation of TV-AFB1D based on the reciprocal of temperature.

A

B

FIGURE 6

Determination of TV-AFB1D secondary structure. (A) CD 
spectrum method determined TV-AFB1D secondary structure; 
(B) Types and percentages of the secondary structure of TV-
AFB1D at 4, 32 and 70°C.
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The residual glucose contents and ethanol concentrations of 
the engineered and wild-type S. cerevisiae strains were determined 
during fermentation for 72 h (Figure  11). During the initial 
fermentation (0–24 h), all the strains had a rapid increase in 
ethanol concentration from 0 g/l to 7.5 g/l. All the strains reached 
the highest ethanol concentrations after fermentation for 48 h. The 

ethanol concentrations from engineered S. cerevisiae strains 
carrying AOX1 (8.35 g/l) and CaMV (8.43 g/l) promoters were 
97.4 and 98.4% of that in the wild-type strain (8.57 g/l), 
respectively. The integration of TV-AFB1D expression cassettes 
did not affect ethanol production during fermentation.

Residual glucose contents were investigated during the 
fermentation of the wild-type and engineered S. cerevisiae strains 
for 72 h (Figure 11). The results indicated that the two kinds of 
engineered S. cerevisiae strains had similar trends in glucose 
content as that of the wild-type S. cerevisiae. The residual glucose 
contents markedly decreased during fermentation time at 0–24 h. 
In addition, the residual glucose contents slightly decreased 
during the subsequent fermentation at 24–48 h. Almost all the 
glucose was consumed by the tested strains during fermentation 
at 48–72 h. The integration of TV-AFB1D expression cassettes by 
HXK2 knockout did not affect the glucose consumption of the 
engineered S. cerevisiae strains.

In situ catabolism of AFB1 and 
fermentation of AFB1-contaminated rice

The starch of AFB1-contaminated rice was converted into 
glucose under the catabolism of α-amylase and glucoamylase. The 
saccharification solution was used to prepare the liquid broth for 
ethanol production by S. cerevisiae fermentation. The residual 
AFB1 concentrations of S. cerevisiae in the fermentation broth 
were investigated during the fermentation for 48 h (Figure 12). 
The results indicated that the two kinds of engineered strains 
possessed higher AFB1 degradation efficiencies than the wild-type 
S. cerevisiae. The concentrations of residual AFB1 markedly 
decreased during the initial fermentation time of 0–24 h and 
slightly decrease at 24–48 h of fermentation. The concentrations 
of residual AFB1 from the wild-type strain (6.1 μg/g), AOX1-
engineered strain (3.4 μg/g), and CaMV-engineered strain 
(2.9 μg/g) after 24 h of fermentation were lower than the initial 
AFB1 concentration of 7.4 μg/g. The AOX1- and CaMV-engineered 
S. cerevisiae strain resulted in the degradation of 54 and 61% of 
AFB1, respectively, which were higher than the wild-type 
S. cerevisiae (18% AFB1). Thus, both engineered strains could 
degrade AFB1 during the fermentation of the saccharification 
solution from AFB1-contaminated rice for ethanol production.

Discussion

AFB1 widely exists in nature and even breaks out in certain 
environments as a chemically stable mycotoxin. It threatens food 
and animal feed security and causes an economic challenge and 
health hazard to consumers. Enzymatic hydrolysis is an effective 
detoxification approach of AFB1 owing to its nutrition 
maintenance without toxicity residue. The specific enzymes can 
directly degrade aflatoxins without the shortcoming of the 
application of a whole microorganism. The F420H2-dependent 

FIGURE 7

Effect of time on the residual concentration of AFB1 by 
recombinant TV-AFB1D.

A

B

FIGURE 8

Recombinant expression of TV-AFB1D in Saccharomyces 
cerevisiae. (A) Amplification of two kinds of TV-AFB1D expression 
cassettes. Lanes 1 and 2 represented the control and AOX1 
expression cassette with a size of 3,663 bp, respectively; lanes 3 
and 4 represented the control and CaMV expression cassette 
with a size of 3,048 bp, respectively; (B) Recombinant TV-AFB1D 
by the SDS-PAGE approach. Lanes 1 and 2 represented AXO1- 
and CaMV-engineered strains of S. cerevisiae, respectively.
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reductases reduced the α,β-unsaturated ester and destabilized the 
lactone ring (Taylor et  al., 2010). Various enzymes such as 
peroxidases (Yehia, 2014), laccases (Alberts et al., 2009), oxidases 
(Wu et al., 2015), and reductases (Taylor et al., 2010) have been 
identified as responsible for AFB1 degradation (Table  2). The 
optimum temperature of 32°C and pH value of 7 could maintain 
better enzymic activity and stability of TV-AFB1D compared with 

other enzymes. The previously reported enzymes from different 
host bacteria demonstrate the optimum temperature of 20–70°C 
and pH values of 4.5–10 (Table 2). The optimum temperature and 
pH of AFB1 degradation enzyme are identical to the fermentation 
conditions of S. cerevisiae (32°C and pH 7). This coincidence can 
facilitate yeast fermentation and AFB1 degradation by 
TV-AFB1D. In addition, TV-AFB1D can convert 67.4% of AFB1 
into other compounds in 5 h, whereas most of the other enzymes 
reached a high conversion rate after processing for 48–72 h. 
Therefore, the recombinant TV-AFB1D has good application value 
for its high catalytic efficiency.

The cell wall of yeast as mycotoxin adsorbents could reduce 
the exposure of animals to mycotoxins to some extent 
(Yiannikouris et al., 2021). However, the adsorption capacity is 
affected by the composition, thickness, mannan-oligosaccharide, 
and β-glucan content of the cell walls of yeast (Pereyra et  al., 
2018). In the present study, we demonstrated the expression of 
TV-AFB1D and in situ AFB1 degradation during the ethanol 
fermentation of engineered S. cerevisiae strains. The TV-AFB1D-
engineered S. cerevisiae strains are capable of AFB1 degradation 
during the fermentation of AFB1-contaminated rice for ethanol 
production without the addition of any other detoxification 
agents. Based on the design concept and study result, we proposed 
a new strategy for the AFB1 degradation of AFB1-contaminated 
rice by TV-AFB1D-engineered S. cerevisiae strains during the 
fermentation for ethanol production (Figure 13). In this strategy, 

FIGURE 9

Determination of AFB1 degraded by TV-AFB1D using HPLC approach. a, b, and c, respectively, represented HPLC standard AFB1, products after 
catabolism for 2 h and 4 h.

FIGURE 10

Cell growth of AXO1 and CaMV engineered strains of S. 
cerevisiae.
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the engineered S. cerevisiae strains integrated with TV-AFB1D 
expression cassettes were constructed by CRISPR-Cas9 knockout. 
The gene integration in the HXK2 locus did not markedly affect 
the growth and ethanol production of the engineered strains. The 
application of this strategy in AFB1-contaminated grain could 
effectively decrease the AFB1 concentration during fermentation 
without the addition of extra enzymes, microorganisms, and 
adsorbents. Therefore, the TV-AFB1D-engineered S. cerevisiae 
strains could degrade about 60% of AFB1 from AFB1-contaminated 
rice by in situ AFB1 degradation. TV-AFB1D has application 
potential in the AFB1 degradation from contaminated 
agricultural products.

Conclusion

The recombinant TV-AFB1D with a size of appropriately 
77 KDa expressed in engineered E. coli BL21(DE3) and 
S. cerevisiae. The kinetic equation of TV-AFB1D was 
y = 0.01671x + 1.80756. The concentration of AFB1 from 
contaminated rice decreased from the initial 100 μg/ml to the 
final 32.6 μg/ml after catabolism for 5 h in the presence of 
TV-AFB1D. After fermentation for 24 h, the AFB1 contents of 
the wild-type, AOX1-engineered, and CaMV-engineered 
S. cerevisiae strains were 6.1, 3.4, and 2.9 μg/g from the initial 
concentration of 7.4 μg/g, respectively. In addition, an 
alternative strategy was proposed to degrade the AFB1 from 
AFB1-contaminated grain using TV-AFB1D-engineered 
S. cerevisiae strains during the fermentation processing. This 
measure has various advantages of reducing the steps of 
detoxification treatment, reducing production costs, and 
ensuring the safety of downstream products. Therefore, 
TV-AFB1D-engineered S. cerevisiae has an important 
development value to produce ethanol by simultaneous 
detoxification and fermentation with mycotoxin-contaminated 
crops as substrates.

FIGURE 11

Effect of fermentation time on glucose consumption and ethanol 
production.

FIGURE 12

Concentrations of AFB1 during the fermentation from AFB1-
contaminated rice.

TABLE 2 Enzymatic detoxification of AFB1 and biotransformation.

Microbial sources and enzymes Optimum temperature, 
pH, molecular weights

Initial AFB1 
concentrations

Conversion 
efficiency (time)

M. smegmatis AFB reductase (Li et al., 2019) 22°C, pH 7.4, 32.4 kDa 3.12 μg/ml 63% (8 h)

M. fulvus AFB degradation enzyme (Zhao et al., 2011) 35°C, pH 6, 32 kDa 0.1 μg/ml 71.89% (48 h)

Armillariella tabescens AFB oxidase (Wu et al., 2015) 35°C, pH 6.8, 51.8 kDa 3.12 μg/ml /

Phanerochaete sordida peroxidase (Wang et al., 2011) 30°C, pH 4.5 50 μg/ml 86% (24 h)

Pleurotus ostreatus peroxidase (Yehia, 2014) 25°C, pH 4-5, 42 kDa 312 μg/ml 90% (48 h)

Bacillus subtilis laccase [35; 40] (Alberts et al., 2009; Wang et al., 2019a) 50°C, pH 6–10, 65 kDa 1.4 μg/ml 98%

Pleurotus pulmonarius laccase (Loi et al., 2016) 25°C, 35 kDa / 90% (72 h)

Armoracia rusticana peroxidase [42; 43] (Mishra and Das, 2003; Sibaja et al., 2019) 20°C, pH 6 10 μg/ml 60% (1 h)

B. shackletonii AFB-degrading enzyme (Xu et al., 2017) 70°C, pH 8, 22 kDa 0.1 μg/ml 47.51% (72 h)

P. aeruginosa AFB-degrading enzyme (Song et al., 2019) 65°C, pH 6, 48 kDa 2.5 μg/ml 65.6% (72 h)

T. versicolor AFB1-degrading enzyme, this study 32°C, pH 7, 77 kDa 100 μg/ml 67.4% (5 h)
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