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SUMMARY

Lithium iron phosphate (LiFePO4) batteries have been dominant in energy stor-
age systems. However, it is difficult to estimate the state of charge (SOC) and
safety early warning of the batteries. To solve these problems, this paper devel-
oped a multiple timescale comprehensive early warning strategy based on the
consistency deviation of the electrical and thermal characteristics of LiFePO4 bat-
teries. The unscented Kalman filter method was employed to estimate the bat-
tery SOC. The established comprehensive early warning strategy was verified
through fault-triggered experiments at different time scales with different equiv-
alent resistances. The results show that the comprehensive early warning strat-
egy can realize early warning for different timescale failures of LiFePO4 batteries
under different energy storage conditions. For more dangerous severe failures
that can break the safety valve, safety early warning can be realized 15 min in
advance. This study provides a reference to ensure safe and reliable operations
of energy storage systems.

INTRODUCTION

Renewable energy technology has been widely employed in power generation systems due to its low-

carbon emission and environmental friendliness. However, due to the instability of renewable energy

generation, such as wind and solar energy, the application of energy storage systems is indispensable

in renewable energy generation systems. Lithium iron phosphate (LiFePO4) batteries are widely used

in energy storage power stations due to their long life and high energy and power densities (Lu et al.,

2013; Han et al., 2019). However, frequent fire accidents in energy storage power stations have induced

anxiety about the safety of large-scale lithium-ion (Li-ion) battery systems. In 2019, a fire explosion

occurred in the 2.47-MWh lithium battery system in Arizona, USA. The final investigation report proved

that the fire was caused by the internal defects in the batteries, especially the formation of abnormal

lithium dendrites (Hill, 2020). Thermal runaway is a major concern in the large-scale application of Li-

ion batteries (Ren et al., 2019). There is an urgent need for effective safety early warning management

for Li-ion batteries during operations.

Studies on safety early warning in Li-ion batteries have employed consistency differences of batteries in a

module for fault diagnosis. Ouyang et al. (Ouyang et al., 2015) used an equivalent circuit model to

analyze the electrical characteristics of an internal short circuit in a large Li-ion battery. They proposed

an internal short-circuit detection method based on the consistency of batteries. This internal short-cir-

cuit detection method employs the recursive least-square algorithm to calculate the characteristic pa-

rameters, such as the voltage difference and the fluctuation function of the internal resistance. Internal

short-circuit detection is realized through a change in the characteristic parameters. Feng et al. (Feng

et al., 2016) proposed an online detection method for internal short circuits, which achieves online detec-

tion of internal short circuits through model parameterization and parameter estimation. Using a three-

dimensional (3D) electrical–thermal internal short-circuit coupling model, they discussed the correlation

between the measured voltage, current, and temperature data and the internal short-circuit state. Gao

et al. (Gao et al., 2019) conducted a quantitative analysis of micro-internal short circuits in the initial

stage. Based on the battery state of charge (SOC) difference model, the extended Kalman filter was

used to estimate the difference between the battery pack and average SOC. On this basis, a microinter-

nal short-circuit analysis based on recursive least squares was proposed. Kong et al. (Kong et al., 2018)
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proposed an analysis method for microinternal short circuits based on the change in the remaining

charge capacity among batteries. Based on the voltage curve of the first fully charged battery in the

module, the remaining charging capacity of each battery was obtained by converting the voltage curve.

Internal short circuits were identified by an increase in the remaining charge capacity after each charge.

Zhang et al. (Zhang et al., 2019) proposed a method for identifying micro short circuits under dynamic

conditions. Similar electric quantity differences were obtained through the open-circuit voltage (OCV)

differences and data smoothing function of the low-pass filter. The short-circuit current and internal resis-

tance were estimated using the change in electric quantity difference and verified through experiments

on the actual battery pack. Meanwhile, some studies started with fault data and conducted safety early

warning and fault identification in Li-ion batteries through the rules of fault data (Gao et al., 2020; Kang

et al., 2020; Naha et al., 2020). Battery fault analyses using new sensors have also been reported. Cai

et al. (Cai et al., 2021) used nondispersive infrared (NDIR) CO2 sensor to detect vent-gas and battery fail-

ure. An overcharging experiment leading to cell venting was conducted using a prototype gas sensor

suite. However, most existing studies focused on vehicle operating conditions and high-energy-density

ternary Li-ion batteries (Tomaszewska et al., 2019). Studies on LiFePO4 batteries commonly used in en-

ergy storage systems are relatively few, and the operating conditions of energy storage systems have

rarely been studied.

LiFePO4 batteries have higher safety than ternary Li-ion batteries due to the nature of the cathode

material (Bugryniec et al., 2019). However, due to the presence of an electrolyte, LiFePO4 batteries still

have the risk of thermal runaway. Considering state estimation, due to the OCV plateau in the voltage

curve and the hysteresis phenomenon in LiFePO4 batteries (Roscher et al., 2011), it is very difficult to

accurately estimate the SOC of LiFePO4 batteries. Especially for safety early warning applications, due

to the short-circuit current, the commonly used ampere-hour integration method cannot accurately es-

timate the SOC of the batteries. They only rely on the terminal voltage change in the batteries to correct

the SOC estimation error. Thus, the safety early warning of LiFePO4 batteries in energy storage systems

is difficult.

To address the problem of safety early warning in LiFePO4 batteries in energy storage systems, we pro-

pose a multitime scale comprehensive early warning strategy based on the consistency deviation of elec-

tric and thermal characteristics. The observed values of consistency deviation of voltage, temperature,

and SOC are selected as the characteristic parameters for the safety early warning strategy. The un-

scented Kalman filter (UKF) method is used to estimate the SOC of LiFePO4 batteries, and the heat-gen-

eration internal resistance is estimated using the recursive least-square method. Early warning strategies

are formulated based on comprehensive decision-making and several characteristic information. The

effectiveness of the proposed comprehensive early warning strategy is verified through different equiv-

alent internal-resistance fault-trigger experiments, which simulate the failure of energy storage battery

modules at different time scales. The type of fault simulated is an internal short circuit fault of the battery.

In the late stage of an internal short circuit fault, in addition to extremely fast power dissipation, it is

accompanied by severe heat production, and when the battery temperature exceeds its thermal runaway

trigger temperature, the battery will enter a thermal runaway state. Severe thermal runaway can lead to

the battery internal material from the drain valve ejected or even fire. It is generally believed that the

thermal runaway process of the battery often has an internal short circuit as a hallmark feature. Therefore,

in order to improve the safety of the energy storage system, it is necessary to provide early warning of

the internal short circuit failure of the battery to prevent the development of the internal short circuit fail-

ure of the battery to a late stage, and the results of the safety warning can provide a quantitative basis for

the safety maintenance and emergency disposal of the energy storage system. In this paper, a compre-

hensive warning strategy based on consistency deviation is developed for energy storage application

scenarios, which can achieve early warning for different time scales of lithium iron phosphate battery fail-

ures under energy storage conditions, and can warn more than 15 min in advance for serious failures that

can lead to battery valve injection, which meets the time margin requirement for safety warning in energy

storage scenarios.

Figure 1 shows a flowchart of this study. The equivalent circuit model of LiFePO4 batteries is first estab-

lished. Based on the equivalent circuit model, the state estimation algorithm and early warning strategy

were developed. Then, the equivalent internal resistance values of 5, 1, and 0.05 U were used to trigger

the equivalent substitution experiment. The failure of the energy storage battery with multiple time scales
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was simulated. The fault data for different time scales were obtained. The early warning strategy was veri-

fied and analyzed through the fault data.

EQUIVALENT CIRCUIT MODELING OF BATTERY

Herein, the consistency deviation of battery state and the estimation of battery SOC based on UKF are

employed for fault diagnosis. The reason for choosing UKF is that compared to NCM batteries, LiFePO4

batteries have a flatter voltage curve, which will pose a great challenge to the SOC estimation of the

battery. The EKF with first-order theoretical accuracy does not meet the requirements of the early warning

algorithm for state estimation accuracy. In contrast, UKF is a method of determining samples through a

traceless transformation, capturing themean and covariance of Gaussian random variables with fewer sam-

ples, and its theoretical accuracy can reach third order and above, so we adopt UKF as the SOC estimation

algorithm in the early warning algorithm. This method does not rely on existing fault data but recognizing

the consistency of the battery status between battery packs. To estimate the SOC of a battery using the

early warning strategy, there is a need for the equivalent circuit model of the battery and to calibrate

the parameters of the model. The equipment used in this research is as follows: the charging and discharg-

ing equipment is Digatron BTS-600; the data acquisition device is Hioki LR8450; the temperature setting

value of the temperature chamber is 25�C during the experiments.

Figure 1. Flowchart of this study
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Basic parameters of batteries

Herein, we consider a 20-Ah LiFePO4 battery, which is widely used in energy storage systems. The specific

parameters of the battery are listed in Table 1.

OCV test

The OCV of a Li-ion battery refers to the terminal voltage of the battery after a long enough period of rest,

which is determined by the material properties of the positive and negative electrodes of the battery. Due

to the hysteresis characteristics of LiFePO4 batteries, the OCV curve of the battery during the charging pro-

cess does not coincide with that of the discharge process. Therefore, the OCV of the battery is measured

separately for the charging and discharging process (Roscher and Sauer, 2011). The specific test procedure

is as follows. A charge rate of 0.5 C (1 C rate corresponds to a charge current of 20 A, 0.5 C is 10 A) is used to

charge a battery with an SOC of 0%. The battery is charged with a capacity of 5% SOC each time until the

battery is fully charged. After charging, the battery rest for 3 h for OCV measurements. Then, the battery is

discharged. The OCV–SOC curves of a LiFePO4 battery measured through this experiment are shown in

Figure 2.

The OCV–SOC curve of the LiFePO4 battery has a strong nonlinear relationship. There are two very flat

voltage plateaus at SOC of 30%–60% and 70%–90%, where the OCV of the battery changes very little

with the SOC. A maximum OCV change of 1 mV could result in a 5% SOC change (Zheng et al., 2013).

This makes it difficult to estimate the SOC of LiFePO4 batteries. Moreover, the hysteresis phenomenon

causes the OCV–SOC curve to vary during the charging and discharging process, and the hysteresis

voltage can be more than 50 mV. Herein, the energy storage conditions used are relatively complicated

Table 1. Battery specification

Parameters (unit) Numerical value

Capacity (Ah) 20 (measured: 21.8)

Nominal voltage (V) 3.2

Positive and negative materials LiFePO4/graphite

DC internal resistance (mU) %6

Figure 2. OCV–SOC curves of a LiFePO4 battery
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because there is no complete charging process, which makes it difficult to correct the SOC of the battery. It

is difficult to consider the effect of hysteresis when the historical SOC is unknown. Therefore, theOCV of the

battery is selected as the average value of the OCV of the battery charging and discharging process. The

final estimation results also prove its effectiveness.

Hybrid pulse power characteristic test

Hybrid pulse power characteristic (HPPC) is a widely used performance test for Li-ion batteries. A short-

time charge/discharge pulse is used to test the performance of batteries. The common test standard is

to apply a 1.0-C pulse current consisting of 10-s discharge pulse, 40-s rest, and 10-s charging pulse to

the battery every 5% SOC to observe the voltage response. Herein, according to the requirements of en-

ergy storage conditions, the charging and discharging pulse is extended to 60 s, which is closer to the fre-

quency of the current profile in energy storage. Simultaneously, the pulse amplitudes of 0.3, 0.5, and 1.0 C

are measured. The final measurement result is shown in Figure 3. To improve the accuracy of the HPPC test

results, the sampling interval is changed from 1.0 to 0.1 s to achieve a better sampling effect when the test is

conducted in the pulse section.

Thevenin equivalent circuit model

Herein, One-order Thevenin equivalent circuit model is used to analyze the safety early warning strategy

and estimate the SOC (Hu et al., 2012). This model is widely used in the engineering field to estimate

SOC. Although the higher-order equivalent circuit model has higher model accuracy, the significance of

its model parameters is more reflected in the internal electrochemical properties of the battery. For the

application scenario of battery SOC estimation under energy storage conditions, the accuracy of the

first-order equivalent circuit model has satisfied the need of the early warning algorithm for SOC estimation

accuracy. As shown in Figure 4, the one-order Thevenin equivalent model consists of battery OCV (UOCV),

Ohm resistance R0, polarization resistance Rp, and polarization capacitanceCp. The current flowing into the

battery is selected as the positive reference direction, and the model can be expressed by Equation (1):

8><
>:

U
,

p = � Up

RpCp
+

I

Cp

U =UOCV + IR0 +Up

(Equation 1)

Figure 3. HPPC test result
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The parameters in the equivalent circuit model are generally obtained through the performance test of the

battery and are realized by parameter identification. Herein, because the early warning strategy is

designed for energy storage application, the working temperature of the battery is relatively stable.

Therefore, the performance test and parameter identification of the Thevenin equivalent circuit model

of the battery are based on 25�C.

Parameter identification based on genetic algorithm

According to the Thevenin equivalent circuit model, the terminal voltage and current of the battery can be

calculated as follows:

UPðkÞ = e
� Dt
RpCp,UPðk� 1Þ+ IðkÞ,Rp

0
B@1� e

� Dt
RpCp

1
CA; (Equation 2)

UmodelðkÞ = UOCVðkÞ+UpðkÞ+ IðkÞ,R0; (Equation 3)

where k is the discrete time points, and Dt is the sampling interval. The ohmic internal resistance R0 can be

directly calculated from the voltage response of the battery at the beginning of the charging and discharg-

ing pulse using Ohm’s law as follows:

Rcha=dch =
U0:1s � U0s

Ipulse
; (Equation 4)

where Rcha/dch represents the ohmic internal resistance of the battery during the charging and discharging

process, U0s and U0.1s are the battery terminal voltage before the pulse and 0.1 s after the start of the pulse,

respectively, and Ipulse is the amplitude of the pulse current.

The polarization resistance and capacitance, Rp and Cp, respectively, can be optimized using a genetic al-

gorithm. Considering the root-mean-square error of the battery terminal voltage model obtained from the

model and experiment as the optimization objective, Rp and Cp of the battery that minimize the optimiza-

tion objective can be calculated. Herein, the population size of the genetic algorithm is 100, and the

genetic algebra is 100 generations. The parameters of the equivalent circuit model optimized by the ge-

netic algorithm are shown in Figure 5. Time constant t is employed to be more intuitive (t = RpCp). The

ohmic resistance, Rp, and Cp of the battery increase significantly in the low-SOC range.

SAFETY EARLY WARNING STRATEGY OF LIFEPO4 BATTERIES BASED ON THE

CONSISTENT DEVIATION OF ELECTRICAL AND THERMAL CHARACTERISTICS

Herein, the safety-warning strategy is realized by calculating the consistency deviation of the electrical and

thermal characteristics of the battery. To distinguish different time scales and fault levels, the battery fault

states are divided into normal, slightly fault, medium fault, and serious fault states. Then, a safety early

Figure 4. The venin equivalent circuit model
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warning strategy based on the consistency deviation of voltage, temperature, and SOC is determined. The

state transfer parameters are calibrated by the pattern of changes in the electrical, thermal, and SOC of

the cell during the short-circuit substitution experiments within the module. When a serious fault occurs,

the safety-warning strategy sends an warning signal.

Safety early warning strategy based on voltage consistency deviation

Safety early warning strategy based on the deviation in voltage consistency is shown in Figure 6. The

voltage difference DU, change rate of voltage difference Urate, and the lowest battery terminal voltage

in the module Umin are used as warning characteristic parameters. WarnU is the voltage fault signal

corresponding to 1, 2, and 3 in slightly fault state, medium fault state, and serious fault state, respectively,

and w is a parameter in the UKF algorithm.

Voltage differenceDU refers to the voltage difference between the average and lowest voltages,Umean and

Umin, respectively. The thresholds of the voltage difference DU are set as 0.05, 0.08, and 0.1 V. When the

Figure 5. Parameters of equivalent circuit model

(A) Charging and discharging resistance.

(B)Polarization resistance and time constant.
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voltage difference reaches a threshold, the fault state changes. A fast-rising path is set for serious fault

states when DU is greater than 0.2 V. Then, serious failure occurs, and the state can directly change from

normal state to serious state. The change rate of voltage difference refers to the change rate of DU. This

method can avoid the influence of poor consistency in the battery pack to a certain degree and can prevent

instantaneous voltage change rate interference caused by the sudden change in current excitation applied

to the battery. Specifically, Urate can be obtained by differentiating the voltage difference of the battery as

follows:

Urate =
dDU

dt
=
dðUmean � UminÞ

dt
(Equation 5)

We set the thresholds of Urate to be 0.003, 0.01, and 0.05 V/s. When Urate is greater than the

thresholds, the state changes. When the current profile changes and the voltage sampling are not syn-

chronized, a relatively high Urate may occur, leading to a false warning signal. As shown in Figure 7, due

to the asynchronous voltage sampling, there is also a high rate of change in voltage difference besides

the time that failure occurs. However, synchronization is usually completed within a few seconds, after

which a negative Urate of similar amplitudes appears. Therefore, a waiting state with a duration of 6 s

is set to prevent the occurrence of false warning signals. When a reverse Urate with a similar amplitude

is detected in the waiting state, the state returns to the normal state and avoids issuing early warning

signals.

Considering the battery working area, the threshold of the early warning strategy with the lowest battery

terminal voltage is set as 1.5 V. When the lowest battery voltage in the module Umin is lower than 1.5 V,

the state of the early warning strategy changes directly to the serious fault state.

Safety early warning strategy based on temperature consistency deviation

The safety early warning strategy based on temperature consistency deviation is shown in Figure 8. This

strategy takes the highest battery temperature in the module Tmax, maximum rate of change in tempera-

ture dTmax, and difference in heat-generating internal resistance DR as early warning characteristic param-

eters. When Tmax reaches the threshold of 50�C, or dTmax exceeds the threshold of 0.02�C/s for 60 s, it is

considered that the battery has obvious heat generation at this time. The battery has a severe failure,

and the state jumps directly to the serious fault state.

When the temperature consistency difference is not obvious, the difference in the heat-generation internal

resistance DR is used as the characteristic parameter. The concept of heat-generation internal resistance is

proposed in Feng et al. (Feng et al., 2018). Abnormal heat generation in batteries is calculated using the

recursive least-squares method and expressed by introducing a variable heat-generation internal

Figure 6. Safety early warning strategy based on voltage consistency
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resistance. This method can eliminate the interference of heat generation in batteries when operating and

the temperature inconsistency caused by the battery spatial distribution in the module. This method has a

strong ability to identify faults. The specific calculation method is shown in (Feng et al., 2018). When DR is

greater than 0.005U, the battery exhibits self-heat generation. Since the value ofDR accumulates with time,

it is difficult to distinguish faults of different resistance and fault states. Therefore, heat-generation internal

resistance is used only for failure judgment. The judgment of a serious fault state is realized using the

abnormal dTmax.

Safety early warning strategy based on SOC consistency deviation

The safety early warning strategy based on SOC consistency deviation is shown in Figure 9. The difference

DSOC between the lowest battery SOC (SOCmin) and the mean battery SOC (SOCmean) is taken as the early

warning characteristic parameter. The thresholds for the transition from the normal state to slightly fault

state, medium fault state, and serious fault state are set as 0.03, 0.06, and 0.1, respectively. To avoid the

Figure 7. Battery rate of change in voltage difference from module experiments with an equivalent internal

resistance of 1 U

(A) Battery with lowest terminal voltage.

(B) Battery with highest terminal voltage.

Figure 8. Safety early warning strategy based on temperature consistency deviation
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impact of SOC estimation error, three thresholds of 0.02, 0.04, and 0.08 are set to allow reverse state

transition.

The OCV curve of LiFePO4 batteries has a strong nonlinear relationship due to the voltage plateau period,

which makes SOC estimation more difficult and results in a higher relative error. Meanwhile, due to the

short-circuit current, the measured current in the experiment is not the true value of the current flowing

through the battery, interfering with the SOC estimation. To achieve higher SOC estimation accuracy,

the UKF method is adopted. UKF is more suitable for nonlinear systems. It employs linear regression of

multiple points collected in the prior distribution to linearize the nonlinear system equation through the

unscented transformation [21]. The specific algorithm is shown in (Julier and Uhlmann, 1997). The initial

values of the algorithm parameters are selected according to Equation (6), where SOCint is the value of

the SOC of the battery at the beginning of the working conditions.

x0 =

�
SOCint

0

�
;P0 =

�
0:001 0
0 0:001

�
(Equation 6)

The SOC estimation algorithm is verified using the SOC estimation results when the battery is operating

with the profile of the energy storage system (Wang et al., 2020) under 25�C. The accurate ampere-hour

integration result is used as a reference for the real SOC. The estimation result is shown in Figure 10.

For normal operations, the SOC estimation has high accuracy, and the error can be within 3% with high

Figure 9. Safety early warning strategy based on SOC consistency deviation
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measurement accuracy. The SOC estimation algorithm can be used to further identify the deviation of the

consistency difference of the battery SOC.

Comprehensive early warning strategy

Battery failure has different time scales and electrical and thermal characteristics. Therefore, three early

warning strategies have different application ranges and response speeds. Herein, the three early warning

strategies based on different characteristic parameters are combined to further analyze the battery failure.

Taking the voltage, temperature, and SOC consistency deviation fault signal as 1, 2, and 3 for the slightly,

medium, and serious fault states, respectively, the fault signal for a comprehensive early warning strategy

can be obtained by combining the individual fault signals:

F = FVol +FTemp +FSOC; (Equation 7)

where F is the fault signal of the comprehensive early warning strategy, and FVol, FTemp, and FSOC are the

fault signals of the voltage, temperature, and SOC consistency deviation strategies, respectively. When F

reaches 3, it is considered that a serious failure has occurred and a warning signal is issued.

BATTERY FAULT EQUIVALENT TRIGGER EXPERIMENT OF MULTIPLE TIMESCALES

The equivalent-internal-resistance fault-trigger experiment is used to simulate battery module failures with

multiple time scales. This experiment simulates the failure of batteries by connecting different equivalent

internal resistances to the battery and transferring the heat generated into the battery. The corresponding

fault characteristics under different timescales can be obtained by changing the equivalent internal resis-

tance value. Herein, the experiment of a single battery is first conducted to determine the appropriate

equivalent internal resistance value. Then, the equivalent internal resistance value for the trigger experi-

ment of the battery module is set, and the characteristic parameters during the battery failure are obtained.

The characteristic parameters are used to verify the early warning strategies.

Equivalent internal resistance fault-trigger experiment of single battery

The method of the equivalent-internal-resistance fault-trigger experiment for a single battery is shown in

Figure 11. The terminal voltage and temperature of the battery are collected by a data collector. The ther-

mocouple used to collect the temperature signal is arranged at the equivalent internal resistance, the sur-

face of the battery, and the end cover of the battery.

Figure 10. SOC estimation results under energy storage profile
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To simulate a relatively dangerous situation, the equivalent internal resistance was gradually reduced from

0.5 U. It was finally chosen to be 0.5, 0.25, and 0.05 U. Batteries after 0.5- and 0.25-U experiments slightly

swelled, but there was no obvious change in morphology. In the corresponding experiment for 0.05 U, the

battery safety valve was broken and a large amount of electrolyte was sprayed out. The battery suffered a

serious safety failure, as shown in Figure 12.

In the three experiments with different resistance values, the experimental results of the electrical and ther-

mal characteristics of the failed battery are shown in Figure 13. There were obvious voltage drop and

abnormal temperature increase during the fault-trigger experiment. The voltage drop for the equivalent

internal resistance of 0.5, 0.25, and 0.05 U are 37.5, 75, and 337.5 mV, respectively, and the maximum tem-

perature of the battery surface reached 73�C, 96�C, and 153�C, respectively. According to the experiment

Figure 11. Schematic diagram of a single-battery equivalent-internal-resistance fault-trigger experiment

Figure 12. Equivalent experiment process and change in the battery morphology during 0.05-U equivalent

internal resistance fault-trigger experiment

(A) Connection method before the experiment.

(B) Spray valve phenomenon appeared in the experiment.

(C) Battery safety valve damaged.

(D) Obvious deformation on the side of the battery.
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for the single battery, the case of 20-Ah LiFePO4 battery failure could be classified according to the equiv-

alent internal resistance. When the resistance was larger than 0.25 U, the battery temperature rise effect

was not obvious, and the battery morphology did not significantly change. There were few safety risks,

such as thermal runaway. When failures with an equivalent internal resistance of 0.5 U and below occur,

the battery voltage consistency deviation is obvious and the early warning strategy relies on voltage con-

sistency. Therefore, the module equivalent-internal-resistance fault-trigger experiments select larger

equivalent internal resistance of 1 and 5 U for research. Since the equivalent internal resistance of 0.05 U

responds to a relatively dangerous situation, there are high requirements for the speed of the safety-warn-

ing algorithm. Therefore, in the module equivalent-internal-resistance fault-trigger experiment, the case

with the equivalent internal resistance of 0.05 U was studied.

Module battery equivalent-internal-resistance fault-trigger experiment

The procedure for the module battery equivalent internal resistance fault-trigger experiment is shown in

Figures 14 and 15. The battery module consists of five 20-Ah LiFePO4 batteries connected in series. Battery

2 is selected as the failure battery. To meet the requirements of actual usage, a charging machine was used

to run the battery under an energy storage system profile. In this experiment, the current signal was

collected using the charging machine. The terminal voltage of each battery and temperature signals of

the battery were collected by the data collector. Equivalent internal resistances of 0.05, 1, and 5U were

used based on the experimental results of the single battery in Section 4.1 to simulate the fault conditions

at different timescales.

Figure 13. Results of equivalent internal resistance fault triggering experiments for a single battery under multi-

timescale faults

(A) Equivalent internal resistance of 0.5 U.

(B) Equivalent internal resistance of 0.25 U.

(C)Equivalent internal resistance value of 0.05 U.
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The results of the experiment with 0.05-U equivalent resistance are shown in Figure 16. The module exper-

iment showed the same law as the single-battery experiment. After failure occurred, the temperature of the

battery increased rapidly, and the battery swelled. The safety valve of the faulty battery broke 980 s after the

fault began. Due to the addition of heat insulation materials, other batteries in the module were not

impacted by heat conduction but only squeezed by the expansion of the faulty battery.

The results of the electrical and thermal characteristics of the battery are shown in Figure 17, where I rep-

resents the operating current of the battery module,U1–U5 are the terminal voltages of the five battery cells

in the module, and T1–T7 are temperature signals of seven temperature sensors arranged. T3 and T4 are the

temperatures on the equivalent internal resistance, which are difficult to detect in actual situations and are

mostly ignored. Figure 17A shows that since the equivalent internal resistance was relatively small, the cur-

rent flowing through the equivalent internal resistance was high and the voltage of the failed battery was

different from that of other batteries in the module. Early warning strategies based on voltage consistency

deviation showed a good effect. The temperature of the failed battery was also significantly different from

that of other batteries in the module (Figure 17B). However, heat transfer and different heat dissipation

conditions of the batteries in the module resulted in inconsistency of temperature between the batteries

in the module, and this affects the early warning algorithm.

The result of the fault-trigger experiment with an equivalent internal resistance of 1 U is shown in Figure 18.

The terminal voltage of the failed battery was significantly lower than that of other batteries. However, the

temperatures of the batteries near the faulty battery were also affected by heat conduction, reducing the

Figure 14. Schematic diagram of equivalent-internal-resistance fault-trigger experiment of a battery module

Figure 15. Photograph of the equivalent-internal-resistance fault triggering experiment of the modular battery
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voltage and temperature consistency of the battery pack. This causes certain interference to the safety early

warning strategy based on the voltage consistency deviation. In this case, the strategies based on voltage

and temperature consistency deviations are applicable. The speed of early warning is better than the strat-

egy based on the SOC consistency deviation.

The results of the 5-U equivalent-internal-resistance fault triggering experiment are shown in Figure 19. Af-

ter 656 s of triggering the fault, the voltage difference of the battery was not obvious until the SOC consis-

tency deviation of the batteries was high due to self-discharge. The voltage difference slightly increased

due to the difference in the OCV of the battery. There was only a small voltage difference between the

faulty and other batteries in the whole process because the OCV of the LiFePO4 battery exhibits a very

flat voltage plateau. The voltage difference was small until the SOC of the faulty battery was close to

0%. Then, the voltage difference of the battery became obvious. The temperature measurement results

show that in addition to the high inconsistency in the temperature near the equivalent internal resistance,

the temperature difference among other batteries was small. It is difficult to distinguish temperature dif-

ferences from the uneven distribution of temperature due to the spatial distribution of batteries. Early

warning strategy relies more on the strategy of SOC consistency deviation.

VALIDATION AND ANALYSIS OF THE EARLY WARNING STRATEGY

The comprehensive early warning strategy was verified using the results of the module equivalent-internal-

resistance fault-trigger experiment. Herein, comprehensive early warning algorithms based on the consis-

tency deviation of voltage, temperature, and SOC were developed. Three fault conditions of different time

scales were verified.

Early warning effect with the equivalent resistance of 5 U

The consistency deviation of the battery, fault position signal, and early warning signal results are shown in

Figure 20. The equivalent internal resistance is 5 U.

The fault was triggered at t = 659 s. Due to the relatively high equivalent internal resistance, the corre-

sponding scenario is battery failure with a long timescale. The strategy based on estimating the voltage

consistency deviation needs to consider the consistency of the battery and the influence of the sampling

noise. Therefore, the threshold of the early warning strategy should not be too low. It is difficult to achieve

Figure 16. Fault triggering experiment for 0.05-U equivalent internal resistance fault of the single battery in the

module

(A) Module before the experiment.

(B) Safety valve broken during the experiment.

(C) Battery module after the experiment.

(D) Safety valve of the failure battery was damaged.

(E) Failed battery.
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rapid warning, in this case, using the voltage consistency strategy. The strategy based on voltage consis-

tency deviation can detect obvious voltage abnormalities about 20,000 s after a fault occurs. Meanwhile,

the voltage platform of LiFePO4 batteries makes the terminal voltage of the battery change a little during

the short-circuit process. The battery would have a significant voltage difference only when it is close to the

end of the discharge. An alarm signal can be issued. Temperature consistency and SOC deviations are

parameters accumulated over time. They can be used for fault diagnosis with higher resistance. However,

the battery temperature does not obviously increase with high equivalent resistance. Although the early

warning strategy based on heat-generation internal resistance can detect the difference in battery self-

heating, it cannot identify the fault level. In this case, the early warning strategy based on the consistency

deviation of SOC is more applicable. It can quickly identify the occurrence of a fault and further predict the

severity of the fault. Finally, the strategy based on SOC consistency deviation can realize early warning for

the serious fault conditions.

Early warning effect with the equivalent resistance of 1 U

For a fault occurring with an equivalent internal resistance of 1 U, the consistency calculation result of the

battery, the fault bit signal, and the early warning signal is shown in Figure 21. The fault in the battery is

Figure 17. Triggering experimental results for 0.05-U equivalent internal resistance

(A) Electrical characteristics.

(B) Thermal characteristics.
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triggered after 665 s, and it corresponds to a fault situation of the middle timescale. When the fault is trig-

gered, the early warning strategy based on the Urate of the battery detects the obvious abnormalities in the

voltage difference consistency and outputs a fault signal FVol = 2. Herein, after 1911 s, the temperature

warning signal showed an abnormality. However, the battery voltage and temperature consistency devia-

tions did not reach the level of serious failure at this time. With the accumulation of time and an increase in

battery self-discharge, the early warning strategy based on estimating the SOC consistency deviation de-

tected an abnormality at 4,342 s.

Equivalent internal resistance of 0.05U

The result of the early warning strategy when the battery failed with an equivalent internal resistance of

0.05 U is shown in Figure 22. The fault occurred at 284 s. Since the equivalent internal resistance was small,

the corresponding fault was a short timescale. At this time, the voltage consistency deviation of the battery

and the deviation Urate instantly increased, and the voltage early warning strategy immediately determined

that the battery has a serious failure. Meanwhile, the parameters of the SOC estimation algorithm were up-

dated according to the results of the early warning strategy of the voltage consistency deviation. The fault

signal of the early warning strategy based on SOC also reached the serious fault level within 500 s. An

extremely high rate of self-heat generation of the battery was also detected by the temperature

Figure 18. Triggering experiment results for 1-U equivalent internal resistance

(A) Electrical characteristics.

(B) Thermal characteristics.
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consistency warning algorithm, and the temperature consistency strategy also reached a serious failure

state. In this case, the battery safety valve eventually breaks, and a local thermal runaway occurs. It is a

dangerous situation with higher requirements for early warning speed. The battery safety valve broke

980 s after the failure, and the early warning strategy could detect a serious fault 900 s before more

dangerous security issues arose.

Analysis and comparison of early warning strategies

To show the effects of different early warning strategies more clearly, the early warning effects of three

timescales of the fault situation were analyzed, as shown in Figure 23. The warning time of the three early

warning strategies and the comprehensive early warning strategy identifying different levels of faults were

plotted. The time it takes for each strategy to achieve an alarm individually, i.e., F, FVol, FTemp, or FSOC

reaching the serious fault state, is compared.

For long-timescale situations with an equivalent resistance of 5 U, the resistance is relatively high and the

effect of early warning strategy based on voltage consistency deviation is not obvious. Early warning strat-

egy based on voltage consistency deviation takes more than 48,000 s to detect a fault. Although the

Figure 19. Triggering experimental results for 5-U equivalent internal resistance

(A) Electrical characteristics.

(B) Thermal characteristics.
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strategy based on the estimation of temperature consistency deviation can quickly detect failures, it is diffi-

cult to distinguish between different fault levels because of the difference in the heat-generation internal

resistance. Temperature is a relatively indirect parameter, which is affected by environmental conditions

and the spatial distribution of batteries in a module. The early warning strategy based on the estimation

of SOC consistency deviation has a good effect. Although the estimated SOC of the failed battery slightly

lags behind the actual battery SOC, the early warning time based on the SOC consistency deviation is still

better than that of the other two strategies. The strategy based on comprehensive early warning surpasses

the SOC and temperature consistency deviation strategy. Compared with the strategy based on the devi-

ation of SOC, the comprehensive early warning strategy can diagnose a fault 2000 s earlier. The compre-

hensive early warning strategy can realize early warning with a speed of hour level.

For a medium-timescale situation with an equivalent internal resistance of 1 U, the voltage consistency de-

viation strategy has a good effect. The early warning strategy based on Urate gives a fault signal 9 s after the

fault occurs with a fault level of 2. The early warning strategy based on temperature consistency deviation

Figure 20. Early warning results of a 5-U equivalent-internal-resistance failure of the battery module

(A) Voltage consistency deviation.

(B) Temperature consistency deviation.

(C) SOC consistency deviation estimation result.

(D) Fault signal.

(E) Early warning signal.
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gives an early warning signal 1,246 s after the failure occurs, and the comprehensive early warning strategy

achieved early warning. The early warning strategy based on the consistency deviation of SOC has a slower

speed than the voltage and temperature consistency deviation strategies, although the parameters of the

SOC estimation algorithm are adjusted according to the early warning strategy based on voltage consis-

tency deviation. In general, the proposed comprehensive early warning strategy can achieve minute-level

early warning for medium timescale failures.

For a short timescale situation of equivalent internal resistance of 0.05 U, the early warning strategy based

on voltage consistency deviation can send a warning signal within 1 s through a fast-rising path. The early

warning strategy based on temperature consistency can also detect the abnormal rate of temperature rise

270 s after the fault occurs. According to the results of the strategy based on the consistency of Urate, the

parameters of the SOC estimation algorithm are adjusted. At this time, the early warning strategy based on

SOC can reach the fault signal level of 3 at 191 s after the fault occurs and sends a warning signal. For serious

faults on a short timescale, the comprehensive early warning strategy can achieve a second-level early

warning, sending a warning signal 900 s before the serious failure of the battery results in a local thermal

runaway and the safety valve breaks.

Figure 21. Early warning results of a 1-U equivalent internal resistance failure of the battery module

(A) Voltage consistency deviation.

(B) Temperature consistency deviation.

(C) SOC consistency deviation estimation result.

(D) Fault signal.

(E) Early warning signal.
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In general, for faults with small equivalent internal resistance and short timescales, the voltage difference is

high and the impact of sampling error is small. The early warning strategy based on voltage consistency

deviation, thus, has a good effect. The early warning algorithm based on SOC consistency deviation can

further determine the fault level after the voltage warning, and that based on temperature consistency de-

viation can assist other warning strategies to achieve a higher warning speed. When the equivalent internal

resistance is extremely small, the strategy based on temperature consistency deviation can detect obvious

self-generated heat in the faulty battery and realize early warning independently. For the case of high

equivalent internal resistance and long timescales, the strategies based on voltage and temperature con-

sistency deviations are ineffective due to the influence of the voltage platform on LiFePO4 batteries. Then,

the strategy based on SOC consistency has a better effect. A comprehensive early warning strategy, which

varies from the temperature and SOC consistencies can effectively improve the early warning speed.

Conclusion

At present, there has been some progress in the study of thermal runaway mechanism and internal short

circuit identification methods, but the research objects are mostly automotive scenarios and ternary Li-ion

Figure 22. Early warning results of 0.05-U equivalent-internal-resistance failure of the battery module

(A) Voltage consistency deviation.

(B) Temperature consistency deviation.

(C) SOC consistency deviation estimation result.

(D) Fault signal.

(E) Early warning signal.
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batteries. Research on lithium iron phosphate batteries and energy storage scenarios is not yet in-depth, in

order to solve the above problems. We developed a comprehensive early warning strategy for multiple

timescales of consistent deviation estimation of electric and thermal characteristics to solve the problem

of safety early warning in LiFePO4 batteries used in energy storage systems. The electric and thermal char-

acteristics of a LiFePO4 battery module under different time scales were obtained through module equiv-

alent-internal-resistance fault-trigger experiments. The experimental results prove the effectiveness of the

comprehensive early warning strategy. Based on the results, the following conclusions are drawn:

(1) The proposed comprehensive early warning strategy combines a short timescale strategy based on

voltage consistency deviation and a long-timescale early warning strategy based on SOC consis-

tency deviation. It expands the scope of applications of early warning algorithms. According to

the results of the module equivalent-internal-resistance fault-trigger experiments, the strategy

can realize the early warning at different timescales. For the short timescale situation of 0.05U equiv-

alent internal resistance, it can give an early warning signal 15 min in advance.

(2) The UKF algorithm was used to estimate the SOC of the faulty battery because the flat charge/

discharge voltage curve of LiFePO4 battery, If the short-circuit current cannot be detected when

the fault occurs, the SOC estimation algorithm can still obtain the SOC of the faulty battery. At

this time, the estimation error is relatively high, but the early warning of battery failure can be real-

ized through the difference in SOC consistency of different batteries in the module.

Figure 23. Effect of early warning strategies with different equivalent resistances

(A) Battery fault with an equivalent resistance of 5 U.

(B) Battery fault with an equivalent resistance of 1 U.

(C) Battery fault with an equivalent resistance of 0.05 U.
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Limitations of the study

The early warning strategy studied in this paper is based on the estimation and measurement of thermo-

electric parameters of energy storage battery, which is highly dependent on the state estimation accuracy

of energy storage battery.
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Lead contact

Further requests for information should be directed and will be handled by the corresponding author and

lead contact, Jiuyu Du (dujiuyu@tsinghua.edu.cn).

Materials availability

The study did not generate new materials.

Data and code availability
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METHODS DETAILS

Experimental battery parameters

The nominal capacity of the LiFePO4 battery used in this research was 20 Ah with the nominal voltage of 3.2

V. The average measured capacity and mass are 21.8 Ah and 515 g, respectively.

Experiment scene setting

In order to ensure the insulation between the batteries during the experiments, the batteries were covered

with heat shrinkable film in advance. To emulate realistic scenarios and prevent heat loss, mica sheets are

placed on both sides of the module and tightened with screws, the 0.05 U resistance used in the triggering

experiment was made of hollow silicon steel sheets arranged in a snake-like arrangement to match the size

of the battery. Resistance wire is selected in another triggering experiments, precision resistance tester is

chosen as the experiment for measuring resistance, after selecting the desired length of resistance wire, it

is also bent into a snake shape, with high temperature resistant tape fixed, to prevent the resistance wire

contact caused by short circuit, this short circuit will lead to the realistic resistance is smaller than the

measurement resistance.

Equipment used in the experiment

The charge/dischargemachine used in this paper is Digatron BTS-600; The data acquisition device is HIOKI

LR8450. During the experiments, the temperature was set at 25�C.

REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

Battery Lishen LP2770134-20Ah

Software and algorithms

Origin2020 Originlab http://www.OriginLab.com

BTS 600 Digatron https://www.digatron.com/en-us/Software
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