
viruses

Review

Disentangling the Frames, the State of Research on
the Alphavirus 6K and TF Proteins

Jolene Ramsey ID and Suchetana Mukhopadhyay * ID

Department of Biology at Indiana University, Bloomington, IN 47405, USA; jolramse@indiana.edu
* Correspondence: sumukhop@indiana.edu

Academic Editors: Beate M. Kümmerer and Tero Ahola
Received: 17 June 2017; Accepted: 16 August 2017; Published: 18 August 2017

Abstract: For 30 years it was thought the alphavirus 6K gene encoded a single 6 kDa protein.
However, through a bioinformatics search 10 years ago, it was discovered that there is a frameshifting
event and two proteins, 6K and transframe (TF), are translated from the 6K gene. Thus, many
functions attributed to the 6K protein needed reevaluation to determine if they properly belong to
6K, TF, or both proteins. In this mini-review, we reevaluate the past research on 6K and put those
results in context where there are two proteins, 6K and TF, instead of one. Additionally, we discuss
the most cogent outstanding questions for 6K and TF research, including their collective importance
in alphavirus budding and their potential importance in disease based on the latest virulence data.
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1. Introduction

For 20 years, alphavirus researchers studied a 6 kilodalton protein aptly named 6K. This protein
was identified to play a role in virus exit and was also determined to function as an ion channel. The 6K
protein was not required for virus infection. In 2008, a bioinformatics team discovered that what had
been termed the 6K protein was actually two proteins. A heptanucleotide slippery sequence within the
6K gene directs ribosomal frameshifting and the consequent translation in the (−1) open reading frame
produces the transframe protein, or TF. The 6K and TF proteins have identical N-termini, but unique
C-termini. When TF was identified, the accumulated literature was reevaluated to disentangle the
results that applied specifically to 6K, to TF, or to both. Within the last nine years, several reports
have emerged addressing the specific activities of TF and 6K. Here we address the current state of
our knowledge about 6K and TF and explore the most cogent questions remaining to determine their
function in an alphavirus infection.

2. The Assembly-Centric Alphavirus Lifecycle

Classified within the Togaviridae family, the Alphaviruses are enveloped particles transmitted
by arthropods ([1] and references therein). Virions are ~70 nm in diameter. The viral lipid bilayer
contains 240 copies each of two envelope glycoproteins, E2 and E1, forming an exterior proteinaceous
shell. Beneath the bilayer is a second protein shell called the nucleocapsid core. Both the exterior
glycoproteins and the interior core have T = 4 icosahedral symmetry. The nucleocapsid core protein
surrounds a single copy of the single-stranded, capped, and polyadenylated ~12 kilobase RNA genome.
Depending on the alphavirus species, the viral proteins E3, 6K, or TF may also be present in the virion,
but these are not required for the particle to be infectious [1]. Host molecules are generally absent
in wild-type (WT) virus, though ribosomal components have been shown to be packaged within the
core [2].
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As arboviruses, alphaviruses are generally transmitted in the environment via an arthropod vector
(typically a mosquito) to vertebrate hosts which can include birds, humans, and other mammals [3].
In the laboratory, alphaviruses can replicate efficiently in small animal models and various host-derived
cell lines. Most animals experience a high-morbidity, low-mortality infection, but this varies by
alphavirus species. At the cellular level, arthropod host cells typically experience a persistent infection,
while vertebrate cells expire after an acute infection [4].

To infect host cells, the E2 glycoprotein on the virion binds to host cell surface receptors [1].
Following endocytosis, a low-pH mediated conformational change in E1 activates it to mediate fusion
between the host membrane and virus membrane. Translation begins immediately upon delivering
the positive-sense RNA genome into the cytoplasm of a host cell. The first open reading frame codes
for the nonstructural proteins. The four nonstructural proteins function in RNA replication and
modulation of the host response. For an in-depth description of RNA replication functions, we refer
readers to a recent review by Rupp and colleagues [5]. A review by Fros and Pijlman describes our
current understanding of the interplay between virus takeover and host cell responses [6]. The host cell
responses are countered in a vertebrate cell infection by a rapid shutoff of host cell protein production
that can be mediated by nonstructural protein 2 or the structural protein capsid [7–9].

The virus structural proteins are all translated as a polyprotein from the second open reading
frame on a subgenomic RNA transcript [1] (Figure 1A). To understand the consequences of translating
6K versus TF, it is necessary to understand how the structural proteins are translated, translocated
into the endoplasmic reticulum (ER), cleaved, and then oligomerized to form functional assembly
components. The capsid protein is translated, folded in the cytoplasm, and then cleaved in cis via its
chymotrypsin-like domain from the rest of the polyprotein [10–12]. The capsid protein encapsidates
newly synthesized viral RNA to form nucleocapsid cores in the cytoplasm. The E3 protein is translated
after the capsid protein, and contains the signal sequence that directs the remainder of the polyprotein
translation to the ER membranes (Figure 1B,C). The polyprotein traverses the ER membrane several
times. The E2 protein is translated with two transmembrane domains, containing the translocon signal
for 6K. The 6K protein is thought to have two transmembrane helices connected by a short cytoplasmic
loop (Figure 1B). The second helix in 6K is the translocation signal for E1, usually the last protein to be
translated. The E1 protein has a single transmembrane domain, leaving a short cytoplasmic C-terminal
tail. When frameshifting in the 6K gene occurs, the E3 and E2 proteins are produced as described
above. However, rather than two transmembrane helices in 6K, the TF protein’s unique C-terminus is
translated into the cytoplasm and no E1 is made (Figure 1C). Using radioisotope labeling, antibodies,
and mass spectrometry to detect TF, it is estimated that frameshifting occurs <30% of the time [13–16].
The consequence of translating E2 but not E1 due to the frameshifting event is not understood.

After the structural proteins are translated, they undergo conformational maturation and
localization to become assembly-competent. Cellular enzymes cleave the structural polyprotein
into its individual constituents (Figure 1B,C). Signalase cleaves E1 from 6K, and E2 from 6K and
TF [17,18]. As a result, the second transmembrane domain of E2 is released from the membrane into
the cytoplasm. The E3 protein remains covalently attached to E2 and aids with cellular chaperones in
the proper folding of E2 and E1 [19–24]. While in the ER, E3 + E2 (also called pE2 in the literature)
and E1 associate into heterodimers. Those heterodimers trimerize into complexes called spikes [25,26].
Glycosylation moieties are added to E3, E2, and E1 and subsequently modified as the spikes transit
through the secretory system to the plasma membrane. The cellular protease furin cleaves E3 from E2
in the trans-Golgi, making spikes fusion-competent [27,28].

The last step before particle release is budding. Some enveloped viruses, e.g., human
immunodeficiency virus I (HIV-I), require canonical host cell machinery (such as ESCRT—endosomal
sorting complexes required for transport) to bud from cells [29,30]. Other enveloped viruses such
as influenza encode their own budding protein [31,32]. Alphaviruses use an ESCRT-independent
mechanism for budding, but it is not known if other host proteins are required or if a viral protein
aids in budding [31,32]. Two models proposed for alphavirus budding are: (1) budding is driven by
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an association between viral glycoproteins followed by interactions with the capsid and RNA, and
(2) preformed nucleocapsid cores drive interactions between glycoproteins that result in budding.
Specifically, it has been shown that three amino acid residues in the cytoplasmic tail of E2 (residues
400–402 in Sindbis) interact with a surface pocket on the capsid [33–35]. In multiple cell types,
preformed cytoplasmic cores are observed interacting with spikes at interior sites, sometimes called
cytopathic vacuoles (CPV-II) [36,37]. While the role of CPV-IIs in viral release is still being investigated,
they are hypothesized to represent transport intermediates for viral components to the site of budding.
In arthropod cells, budding is observed at internal membranes, while this usually occurs at the plasma
membrane from vertebrate cells [37–39]. The mechanism of alphavirus budding is not known but
studies (see below) have attributed defects in assembly and budding to mutations in the 6K gene.
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membrane. Capsid (CP) is first released as a soluble protein in the cytoplasm. The N-terminus of E3 
contains a signal sequence that directs translocation across the membrane. Open arrows mark the 
furin cleavage site between E3 and E2, which occurs in the trans-Golgi network. The remaining 
envelope proteins are threaded through the membrane with insertion of transmembrane domains. 
Closed arrows mark signalase cleavage sites that are used in the ER. Post-cleavage conformations 
include palmitoylation sites (yellow). (B) The 6K polyprotein is the majority translation product. (C) 
The TF form of the polyprotein is the minority product resulting from frameshifting in the 6K gene, 
and does not include E1. 

Figure 1. Structural polyprotein membrane topology and processing. (A) The positive-sense RNA
alphavirus genome has two open reading frames. At the 5’ end is the methyl-7-guanosine cap (m7G),
followed by the nonstructural protein (nsP) and structural protein open reading frames, and the
3’ poly A tail. Nonstructural proteins are translated directly from the genome. During replication,
the minus-sense antigenome is used as the template for producing the subgenomic RNA from an
internal subgenomic promoter (arrow). Structural proteins are translated from the subgenomic
transcript. (B,C) Pre-cleavage structural polyprotein conformation in the endoplasmic reticulum (ER)
membrane. Capsid (CP) is first released as a soluble protein in the cytoplasm. The N-terminus of
E3 contains a signal sequence that directs translocation across the membrane. Open arrows mark
the furin cleavage site between E3 and E2, which occurs in the trans-Golgi network. The remaining
envelope proteins are threaded through the membrane with insertion of transmembrane domains.
Closed arrows mark signalase cleavage sites that are used in the ER. Post-cleavage conformations
include palmitoylation sites (yellow). (B) The 6K polyprotein is the majority translation product.
(C) The TF form of the polyprotein is the minority product resulting from frameshifting in the 6K gene,
and does not include E1.
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3. Enter TF, the Other 6K

In 2008, Firth and colleagues bioinformatically predicted and experimentally demonstrated that
the 6K gene actually produces two distinct protein products, 6K and TF [14]. This occurred via a (−1)
ribosomal frameshift site that is highly conserved across the alphaviruses. Indeed, all the sequenced
alphavirus genomes to date contain a heptanucleotide slip site that is essential for the production
of TF [14,40–42], and TF production has been demonstrated experimentally in Semliki Forest (SFV),
Sindbis (SINV), Chikungunya (CHIKV), and Salmon pancreatic disease virus [14–16,43]. In Venezuelan
equine encephalitis virus (VEEV), natural variants missing portions of 6K, often losing the TF slip
site, were detected by deep sequencing [44]. Additionally, among the fish alphavirus family, natural
variants have been isolated with deletions in 6K [45]. The genomes with 6K deletions have been shown
to recombine in animal hosts to reincorporate the 6K gene when it is available from a heterologous
template [43,46]. Overall though, the genetic capacity to produce the TF protein from the 6K gene via
frameshifting is nearly universally present among the alphaviruses.

Frameshifting in viruses is well-studied in the classic case of the retroviruses where the Pol
open reading frame is in the (−1) reading frame relative to Gag upstream [47–49]. Many viruses use
frameshifting as a strategy to maximize their coding potential (recently reviewed in [50,51]). What we
understand for the alphaviruses is that as the ribosome translates the 6K message, it encounters a
heptanucleotide slip site about two-thirds of the way through the gene, followed by a poorly defined
spacer and then a stable secondary structure that varies between viruses [52,53]. One investigation used
a dual luciferase reporter to measure the frameshifting rates induced by alphavirus signals that were
predicted to fold into RNA secondary structures including stem loops, hairpins, and pseudoknots [52].
The dual luciferase reporter has allowed investigation into additional species beyond the prototype
alphaviruses, including Middelburg, sleeping disease, southern elephant seal, and Getah viruses.
The range reported for these disparate alphaviruses ranges from 1% to 48% [52]. Although the rates
varied, in the New World alphaviruses VEEV, eastern equine encephalitis virus, and western equine
encephalitis virus, the tandem stem loop stimulatory signals downstream were confirmed, and also
found to not be controlled by miRNA [53]. At a low frequency, these signals can stimulate the ribosome
to slip backwards by one nucleotide into the (−1) reading frame, and then translation continues in
the new frame to produce the TF protein, resulting in a unique C-terminus from that of 6K. E1 is not
translated when TF is produced.

The 6K and TF proteins each contain an identical N-terminal transmembrane domain and a
short cysteine-rich cytoplasmic loop prior to their unique C-terminal ends (Figure 2). As integral
membrane proteins, 6K and TF are both found in membranous fractions of cells, and extract with
anionic (SDS and sodium deoxycholate), nonionic (Nonidet™ P-40, IGEPAL® CA-630, and Triton
X-100), and zwitterionic (CHAPS-3-((3-cholamidopropyl) dimethylammonio)-1-propanesulfonate)
detergents from eukaryotic and bacterial cells [14,16,43,54–56]. Apart from conserved hydrophobic
membrane segments, the N-terminus also maintains several conserved residues (shown in Figure 2),
and two or more cysteine residues prior to the slip site. The C-terminal domain of 6K is thought to be
a second transmembrane domain, and the C-terminus of TF appears to be a hydrophilic cytoplasmic
extension. The length of TF after the slip site varies by alphavirus from a predicted seven amino
acids long in Aura virus to 46 amino acids long in the fish alphaviruses, and no striking conservation
is noted.
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Figure 2. Multiple sequence alignment of (A) 6K and (B) TF with representatives from all International
Committee on the Taxonomy of Viruses [57] recognized alphavirus species, and the newly discovered
Taï Forest virus [42]. Sequences were retrieved from GenBank [58] with the accession numbers that
follow. The 6K and TF translations were then aligned with the online PRALINE multiple sequence
alignment program using the default parameters for homology-extended alignment [59–62]. The order
in which the viruses are listed follows their relationships according to phylogeny, see [40]. The colored
boxes across the bottom represent the consistency score (on a scale of 0–9 *), where blue is least
conserved and red is most conserved. Scores of 8 or above are highlighted. Virus abbreviations
and accession numbers are as follows: Everglades virus (AF075251) (EVEV); Venezuelan equine
encephalitis virus (NC_001449) (VEEV); Tonate virus (AF075254) (TONV); Mucambo virus (AF075253)
(MUCV); Cabassou virus (AF075259) (CABV); Pixuna virus (AF075256) (PIXV); Rio Negro virus
(AF075258) (RNV); Mosso das Pedras virus (AF075257) (MDPV); eastern equine encephalitis virus
(NC_003899) (EEEV); Madariaga virus (NC_023812) (MADV); western equine encephalitis virus
(NC_003908) (WEEV); Highlands J virus (HM147988) (HJV); Fort Morgan virus (NC_013528) (FMV);
Buggy Creek virus (HM147986) (BCRV); Sindbis virus (NC_001547) (SINV); SINV strain Babanki
virus (HM14798); SINV strain Ockelbo virus (M69205); SINV strain Kyzylagach virus (AF339478);
Whataroa virus (HM147993) (WHAV); Aura virus (NC_003900) (AURAV); Trocara virus (HM14799)
(TROV); Barmah Forest virus (NC_001786) (BFV); Ndumu virus (HM147989) (NDUV); Middelburg
virus (EF536323) (MIDV); Getah virus (NC_006558) (GETV); Sagiyama virus (AB032553) (SAGV);
Ross River virus (DC5692) (RRV); Semliki Forest virus (NC_0032) (SFV); Bebaru virus (NC_016962)
(BEBV); Mayaro virus (NC_003417) (MAYV); Una virus (AF339481) (UNAV); Chikungunya virus
(YP_006491244) (CHIKV); O’nyong-nyong virus (M33999) (ONNV); Eilat virus (NC_018615) (EILV);
Taï Forest virus (NC_032681) (TALV); southern elephant seal virus (HM147990) (SESV); salmon pancreas
disease virus (AJ316244) (SPDV); sleeping disease virus (NC_003433) (SDV).
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Studies up to this point support that both the 6K and TF proteins are important in budding,
despite being nonessential in tissue culture. Recombinant viruses not producing 6K and TF (∆6K),
producing only 6K but not TF (6K-only, also called TF-null or ∆TF), and other TF mutants negatively
impact infectious and total virus output from infected host cells compared to WT [13,15,55,63–65].
The absence of 6K and TF in ∆6K reduces virus production by 10–100 fold, and those virions also
lack the structural integrity characteristic of WT particles [16,63]. TF is released in the virus particle
while 6K remains primarily at interior cell membranes [14–16,66]. Despite differences in experimental
setup and somewhat varying results for different alphaviruses, it is clear that whether concentrated in
the perinuclear ER/Golgi regions or the plasma membrane, 6K and TF localize differently from each
other [13–16,66]. Thus, the 6K and TF proteins affect released virus particles by functioning inside the
host cell where budding is initiated.

Several functions attributed to the 6K protein have been experimentally determined. We will
discuss these results in light of 6K and TF both being present during an infection. In addition, we will
discuss recent studies on the TF protein and summarize how these contribute to our understanding of
virus assembly.

4. Looking Back at the Discovery of the 6K Protein

The structural polyprotein’s topology and orientation are critical for proper protein processing
and function (Figure 1). Researchers studying the glycoproteins E2 and E1 were searching for the signal
sequences responsible for their final membrane orientation detected at the surface of the virus. Studies
in SINV and SFV quickly identified E3 as the insertion signal for E2 [67–69]. However, the signal for E1
had not yet been ascertained. E1 was a known Type I membrane protein, having its N-terminus in the
ER lumen and a short cytoplasmic tail following its transmembrane anchor domain [4,70,71]. Because
the entire N-terminal ectodomain of E1 is found in the ER lumen, the protein immediately before it in
the polyprotein would need to provide a start-transfer signal to translocate E1 into the ER lumen.

In 1979, a report by Welch and Sefton described two small polypeptides produced during SINV
infection of vertebrate cells. In addition to the previously identified E3 protein, a new protein of
4200 daltons called 4.2K was thought to represent the cleaved signal sequence for a glycoprotein [54].
The 4.2K protein was not glycosylated, incorporated into virions, or released into the media. This same
group then demonstrated an analogous protein of 6000 Da was produced during SFV infection, and so
named it 6K for 6 kDa [72]. Like the SINV 4.2K protein, the SFV 6K protein was not glycosylated,
present in mature virions, or released into the media. The authors concluded that the SINV 4.2K
and SFV 6K proteins were analogous, and the field now refers to the 6K gene product as the 6K
protein. N-terminal peptide sequencing suggested that the gene encoding 6K was after E2 in the
viral genome [73], and full-genome sequencing placed it unambiguously before E1 in the structural
open reading frame [17,74]. When C-terminal segments of 6K were shown to allow heterologous E1
translation, it strengthened the idea that 6K functioned as the signal sequence for E1 [75,76].

The E2/6K and 6K/E1 junctions are cleaved by a host protease called signalase [11,77]. Signalase,
a peptidase found in the ER lumen, was earlier hypothesized as one of two host proteins to process
the alphavirus structural polyprotein [17,18]. Combined with a start transfer sequence found in the
C-terminus of E2, this meant that both the N- and C-termini of 6K were positioned in the ER lumen [77].
We now also know that when 6K is deleted, the second hydrophobic stretch in E2 can serve as the
start-transfer signal for E1, just as it does for 6K in a WT background [16,63,64].

How E1 translocates across the ER membrane into the lumen becomes irrelevant when TF is
translated, however, because no E1 is translated. The lack of E1 production upon TF translation is
interesting because there is no longer a 1:1 ratio between all the proteins encoded on the structural
polyprotein. Various reports have suggested that in different cell lines, E1 and E2 are only stable and
only make it to the cell surface if they associate in a 1:1 heterodimeric complex [78,79]. Low rates
of TF translation could reflect that only a very small amount of TF is needed for its function.
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Low frameshifting rates could also reflect a need for maintaining a high amount of E1 translation for
optimal spike assembly and low E2 misfolding levels.

5. Posttranslational Modification in TF, but not 6K

With both 6K termini in the ER lumen, it was immediately noticed that the short cytoplasmic
connector loop was rich in cysteine residues. In the years before that, virus protein acylation, the
covalent attachment of fatty acids to cysteine residues in proteins, had been demonstrated in alphavirus
and rhabdovirus proteins [80–82]. Having seen that both E2 and E1 were modified by palmitoylation
on cysteine residues [83–85], researchers next looked at the modifications on the 6K protein.

An antibody generated against an amino acid sequence shared by the N-termini of both 6K and
TF immunoprecipitated two proteins from cells infected with SINV, one at 6 kDa (most likely TF)
and one at 4.2 kDa (most likely 6K) [86]. Only the upper band was palmitoylated and budded into
virions. From their experiments, they interpreted the results to mean their two bands were the same
protein with different modification states. Phosphorylation and glycosylation were not present so the
two bands were thought to represent alternatively palmitoylated 6K proteins [72,86]. Their conclusions
were logical since 6K and TF have identical N-termini. Based on this paradigm, the 2008 publication
on TF came as a surprise. Follow-up studies on TF were consistent with the earlier results. The TF
protein (or larger 6K isoform), but not the 6K protein (the smaller 4.2K isoform), is palmitoylated on
N-terminal cysteines [16] and is predominantly present in released virions [14–16,86].

6. Mutations that Control the Production of 6K and TF during an Infection

The 6K became the first (and only) alphavirus gene to allow the recovery of an infectious virus
after its deletion, demonstrating that 6K is nonessential in tissue culture [63]. The ∆6K virions were
more sensitive to thermal inactivation, but entry processes were not significantly altered compared
to WT [64,87]. This did not, however, relegate 6K as uninteresting because the ∆6K virus manifested
budding defects. Transmission electron microscopy on ∆6K-infected hamster cells revealed cores lined
up beneath the plasma membrane, but very few budding particles, in contrast to the many budding
particles seen in cells infected with WT. Additionally, the ∆6K virus yield from mammalian cell cultures
is lower than WT at high growth temperatures [64]. These experiments support an accessory role for
6K and/or TF during spike maturation, where they are not required for budding but enhance assembly,
perhaps by stabilizing spikes.

In another study, researchers found a deletion in the 6K gene had consequences for glycoprotein
processing. Sanz et al. generated del-6K, a partial internal deletion from residues 24 to 45 in 6K,
which ablates the frameshift site required for TF production and acts functionally as a clean ∆6K
mutant [88]. The del-6K mutant was also found to have impaired glycoprotein processing, perhaps
resulting from misfolding and improper spike assembly. A revertant found to alleviate the defect
in del-6K was a single amino acid change, Q21L in 6K. These researchers attempted, unsuccessfully,
to complement the partial deletion with a WT 6K, although the authors cautioned that having the
protein out of context was an important caveat to their results.

In contrast, recent reports from salmonid alphaviruses (SAV) have shown that a ∆6K virus is
nonviable [43]. The SAV ∆6K defect appears to be due to inappropriate glycoprotein processing
and/or trafficking. Maturation of the E2 protein in SAV is temperature-sensitive in fish and other cell
line cultures, and this sensitivity of E2 may be reflected in the failure to recover infectious virus in
∆6K [89,90]. While in mammalian cells heterologous 6K or TF expression does not rescue a deficiency,
in SAV-infected cells the helper plasmid 6K expression does rescue virus infection [15,43,88].

To analyze 6K and TF contributions to budding separately, various groups have utilized a virus
with several silent mutations in the conserved slip site region that abrogate frameshifting and produce
only the 6K protein. The 6K-only virus manifests a consistent delay in growth kinetics, but ultimately
similar infectivity compared to WT is observed [15,16,53]. Since the 6K-only virus fares similarly to WT
in tissue culture, it seems unlikely that TF is as critical for glycoprotein maturation as 6K. Furthermore,
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although TF is present in the WT virion, the published data do not support a spacer role for TF in the
virion. TF protein remaining in the infected cell may function to exclude host proteins, corral spikes
into the optimal budding conformation, or even interact with 6K.

7. Evidence that 6K Functions as a Spacer during Spike Assembly

The 6K spacer hypothesis was proposed shortly after a full SFV genome clone was constructed
and made available [91]. Cysteine mutants in the N-terminus of 6K (residues also present in TF) display
budding defects, with both reduced virus release and altered morphology. The 6K/TF cysteine mutants
bud multi-cored particles with multi-hit kinetics of thermal inactivation [13,55,92]. This multi-cored
defect was also observed for a temperature-sensitive mutation in SINV E2 [93]. Connecting the
similarity in phenotypes with the unpublished observation that a lysine in the 6K protein can be
crosslinked to the E2 tail cited in their paper, these authors postulated that an E2:6K protein interaction
might be necessary for the E2 tail to interact with the capsid protein during budding. The cysteine 6K
mutants and a lysine mutant in 6K were analyzed side by side with E2 mutations, and thus dawned
the idea that 6K is a spacer. Under this model, 6K would aid in spike assembly and mediate the E2:CP
interactions necessary for proper budding [55].

8. Direct Evidence for a 6K:E2 Interaction in Glycoprotein Maturation

Although a virus can bud without the 6K and TF proteins, there are reports showing that
6K interacts with the viral glycoproteins, perhaps prior to budding. In SFV, it was shown that
6K could be co-precipitated from infected cells with antibodies that pull out heterodimer spike
complexes, and surface-exposed glycoprotein complexes also co-precipitated 6K [94]. Subsequent
studies have, however, supported a predominantly internal localization for 6K [14–16,66,86]. One study
using electron microscopy has reported that 6K may interact with intermediate filaments [95].
These experiments suggest a role for 6K during or after spike transport to the plasma membrane.

How could the 6K protein influence budding at the plasma membrane so dramatically from inside
the cell? To investigate a potential direct interaction between the glycoproteins and 6K, Yao et al. used
recombinant chimeric viruses that swapped in the Ross River virus (RRV) 6K gene, or the 6K:E1 gene
pair, with the SINV genes in a SINV backbone [96]. The chimeric construct that swapped in 6K alone,
and keeping both E2 and E1 as a SINV sequence, would have a native RRV 6K, but for TF, a RRV
sequence in the N-terminus and SINV sequence in the C-terminus. This mutant virus had decreased
budding and low E1 levels detected at the plasma membrane. The RRV 6K:E1 pair chimera in SINV,
which would produce native RRV 6K and TF, was severely reduced in infectivity. Because E2 did not
properly traffic to the plasma membrane, they proposed a sequence-specific interaction of 6K with the
glycoproteins to get them folded properly and to the plasma membrane [96]. However, it is known
that SINV and RRV glycoproteins are not conserved enough that they can be exchanged and function
normally without sequence adaptation [97,98]. More evidence for 6K interacting with the glycoprotein
transmembrane domains, in particular E2, came when a 39-amino-acid insertion into the RRV 6K gene
of the RRV 6K in SINV chimera was isolated. The insertion, in combination with other mutations,
recovered titer, while the addition of individual E2 point mutants within the transmembrane domain
reduced the chimera’s titer [99].

Additional studies on the E2 protein provided more evidence for direct interactions. London et al.
screened for viable places to insert heterologous genes within the SINV E2 protein using a
13-amino-acid epitope [100]. During that process, they identified an insertion at residue 29 in the
first transmembrane domain of 6K (6K29) [101]. The 6K29 mutant virions were indistinguishable
from WT except that in the particle, they could not detect 6K (which we now know is the TF
protein). Further, 6K29 was defective in host cell shutoff and glycoprotein processing was incomplete.
Although entry steps were unaffected, they detected a trans-dominant negative effect on titer output in
co-infections with WT [101]. In a follow-up study, they isolated a 6K29 revertant that showed increased
neurovirulence [65]. The revertant contained two changes in the ectodomain of E2 (Q55H and H333Q).
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Further directed mutagenesis in the region corresponding to the transmembrane domain, specifically
6K A28R, generated mutants defective in glycoprotein processing. A change of Ala 28 to Met corrected
glycoprotein processing, but not particle budding defects. The multi-cored defect was alleviated by
the addition of the Q55H and H333Q E2 mutations [92]. Now that the TF protein has been identified, it
is important to note that the insertions and other mutants isolated in these studies are in the shared
N-terminus and it is not possible to rule out effects from TF mutation here.

How would a potential interaction between 6K and E2 affect particle budding? Since spike
maturation is less efficient in 6K mutants, particle release is compromised. Consistent with this
observation, results from several studies have reported higher cell-associated virus titers for the
SINV 6K29 strain and the ∆6K virus in mammalian cells infected with SFV and RRV compared to
WT [64,66,101]. The amount of cell-associated infectious virus reported in those studies can account
for and sometimes exceed the reduction in media titer measured for 6K mutant infections compared to
WT. The cell-associated titer is hypothesized to represent intracellular budding or surface-associated
virus. Internal budding is regularly observed for WT virus in mosquito cell infections [37,39]. These
data suggest that a 6K deficiency may simply route virus budding to an alternate exit pathway that
is less efficient at release from mammalian cells. These functional budding defects in the ∆6K virus
and the known effects on glycoprotein processing support the idea that an interaction between the
glycoproteins and 6K is important for budding.

9. 6K is a Viroporin

Before TF was discovered, 6K was also known to have a role beyond direct interactions with
spike proteins to promote effective spike maturation as a modulator of membrane permeability.
The 6K protein is classified as a virus-derived ion channel, or viroporin [102]. Viroporins are
usually small proteins with hydrophobic stretches that oligomerize to form channels primarily
comprised of alpha-helices [103]. Viroporins self-assemble and often demonstrate ion selectivity.
Early on, hydrophobicity plots of the 6K protein were noted to resemble those of other small virus
proteins that modified membrane permeability [104]. Indeed, when the SINV 6K and TF genes are
overexpressed alone in bacterial cells, they cause lysis [15,105]. Various studies have demonstrated
that 6K overexpression in bacterial cells also increases permeability to larger compounds such as
the hydrophilic aminoglycoside hygromycin B (MW 527) [106–109]. Both synthetic peptides and
recombinantly expressed full-length 6K protein from RRV and Barmah Forest virus promote ion flow
when added to planar membranes in vitro [56]. Enhanced ion flow across cell membranes was also
observed when 6K mRNAs capable of producing truncated TF products were injected into amphibian
oocytes [110]. In planar lipid bilayers, the 6K peptides demonstrate a selectivity towards cations,
preferring monovalent to divalent cations. In oocytes, translated products increased cytosolic calcium
levels and activated endogenous potassium chloride efflux. These expression system experiments
support intrinsic ion channel activity of the 6K protein. In contrast, for TF, the only data currently
published demonstrates cell lysis upon overexpression in bacterial cells [15]. However, most of these
experiments using the cloned 6K gene would have likely translated TF truncation products. Therefore,
additional studies looking independently at TF activity as an ion channel or pore would be informative.

In addition to demonstrating that a viral protein possesses stimulatory or intrinsic ion channel
activity, the rigorous establishment of any viral protein as a functional viroporin uses evidence from
appropriate stages during the virus life cycle [111]. A series of mutations and rescue attempts provide
mounting evidence to support 6K’s role in membrane permeabilization in standard cell culture models.
The 6K gene expressed from a viral genome, both with and without a translocation start signal to
provide proper protein orientation, is the only major contributor to the membrane permeability changes
observed in eukaryotic cells with normal intracellular trafficking [107]. Mutations both within the 6K
transmembrane domain and at conserved bulky hydrophobic residues before the first transmembrane
domain demonstrated that these regions are important for the membrane-permeabilizing phenotypes
of 6K [56,106]. Specific residues in the N-terminus and within the transmembrane domain affecting
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SINV 6K ion channel activity are also critical for the formation of intracellular virus structures and
normal spike transport [112]. Although 6K is sufficient to induce membrane permeability, the E1
transmembrane domain and residues immediately preceding it have also been shown to induce
membrane permeability [113]. These data are the foundation for understanding the mechanism by
which 6K host ion permeability influences the outcome of a viral infection, and we can relate what is
now known about 6K to other viroporins to formulate guiding hypotheses.

Studies on other known viroporins highlight the mechanisms by which membrane permeability
to ions influences the outcome of virus infection. The state of this field for viroporins that modulate
intracellular ion homeostasis to affect pathogenesis and specifically promote virus release including
influenza A virus M2 protein, hepatitis C virus p7 protein, coronavirus E protein, and HIV-1 Vpu
protein has been reviewed in detail [103,114–116]. Here we mention briefly two proteins, M2 and p7,
whose viroporin activity and mechanism of action in the virus lifecycle are well documented. The
influenza A M2 protein is found in the virion and functions during both entry and virus release from
the host cell. Infectious virus release is affected by M2 at the levels of pH control in the secretory system
and direct alteration of membrane curvature [117–119]. Structures for the homotetrameric M2 proton
channel are available [120–122]. The hepatitis C virus p7 protein forms a hexameric complex [123,124].
The p7 ion channel exhibits low selectivity and is linked to enhanced viral release, potentially at the
stage of glycoprotein maturation inside the cell [124–127]. The influenza A M2 protein ion channel
activity is inhibited by the commercially licensed adamantane compounds [128,129]. Various groups
are pursuing p7 as a target for anti-hepatitis C virus therapy (see for example, www.biotron.com.au
trials with the BIT225 compound, universal trial number U1111-1150-4404) [124,130]. Interestingly,
M2 [131,132] and coronavirus E protein [133] are also palmitoylated, and palmitoylation is known to
regulate cellular ion channel activities [134]. There is evidence that 6K may be similar to these other
viroporins. Defects observed in the SINV del-6K mutant, which does not produce normal 6K, can be
partially rescued by expression of the full-length HIV-1 Vpu protein [88,135]. Substituting in only the
Vpu transmembrane helix, or full-length p7, complements infectious particle production in infections
without 6K present, and this activity is inhibitor-dependent [112]. Studies on TF ion channel activity
during infection are not available. These data support a mechanisms of action for 6K that is similar to
these other viroporins, where ion modulation ties directly to virus exit.

10. TF as a Virulence Determinant in Animal Infections

The TF protein in particular has been reported as a virulence factor by virtue of the fact that
when it is missing, virulence is severely attenuated. This phenotype has been observed in several
alphavirus infections. In SINV, 6K-only and TF mutants were used to infect a mouse model for
neuropathogenesis [15]. All mice infected with TF mutants displayed reduced morbidity and increased
survival compared to WT-infected mice. A similar outcome was seen with a CHIKV ∆6K virus,
where symptoms were severely reduced in young infected mice, though the immune response was still
adequate to protect the animal from future CHIKV challenge [136]. An RRV ∆6K strain is also suitable
for vaccination and protection against challenge by other alphaviruses species in a mouse model [66].
These results may bring new relevance to the VEEV 6K deletions found to arise naturally during in vivo
and tissue culture infections [44]. The deletions and point mutations reported all fell near or around
the slip site required for TF production and tended to occur later in infection, which may function
to modulate some important aspect of pathogenesis [44]. Those authors proposed that the slip site
region could be a hotspot for recombination or template switching. This is consistent with the results
of Kendra et al., showing mutations in 6K that prevent TF frameshifting significantly reduce morbidity
and mortality in the same New World alphavirus in mice infected via aerosol [53]. From these results,
Kendra et al. hypothesized that TF may be needed for passage across the blood–brain barrier or
neuroinvasiveness [53].

A related phenomenon is observed in the alphaviruses that infect fish. The fish alphaviruses
are currently causing a severe burden on farmed salmonids in northern Europe and elsewhere [137].

www.biotron.com.au
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The SAV ∆6K actually is not viable in cell culture and recombination can occur in both cell culture
and in injected fish that yield infectious virus with at least partial 6K sequences capable of causing
pathology in subsequent hosts [43,46]. Indeed, when first isolating SAV, Weston and colleagues initially
reported a small 6K gene, but later found that 6K simply had deletion variants [138,139].

While no direct mechanism is known, mutations in the 6K gene have also been reported in
alphavirus strains causing outbreaks worldwide. Most lineage-defining mutations are found in the E1
and E2 glycoproteins; however, a few reports also identify mutations in the 6K gene. No work has yet
addressed TF production in circulating strains. In fish alphaviruses, there is little sequence variation in
full SAV 6K genes, but the isoleucine at position 7 is mutated to threonine [140]. In human epidemic
strains there have also been a few 6K variations reported. For example, the CHIKV strain in Mexico of
the Caribbean lineage (Asian genotype) was found to sustain the 6K L20M mutation [141]. A set of
isolates from Colombia contained the same mutation, as well as additional mutations in the C-terminus
of 6K that would also affect the TF sequence [142]. Interestingly, most subunit and virus-like particle
vaccination approaches retain the 6K gene sequence [143,144]. Although the reasons often given for
this are that E2 requires E1 for proper folding and presentation on the cell surface, that is not always
the case. Overall, variations in the 6K and TF gene sequences isolated from the environment may
provide useful leads to researchers pursuing studies in TF virulence.

11. Future Directions in 6K and TF Research

Very little new information on the mechanism by which 6K functions to affect budding or other
viral processes has become available since the discovery of the TF protein, even though we now know
that many of the budding phenotypes originally identified for 6K are more likely attributable to TF.
Neither 6K nor TF are required for virus propagation in cell culture but the TF protein from several
viruses has been shown to be a virulence factor. For this reason, it is of significant interest to uncover
the independent functions of 6K versus TF during an alphavirus infection. Below we discuss research
areas that are critical to understanding the functional roles of the 6K and TF proteins.

11.1. How Does 6K Promote Budding from Inside the Cell?

With 6K residing primarily at interior cellular membranes (Figure 3), the questions about 6K
that need to be addressed center on its interactions with other proteins, viral and host, that serve to
promote budding. Follow-up work on the interaction between 6K and E2 is needed, since disruption
of spike maturation can directly lead to reduced productive viral release. Currently available data can
be interpreted to fit the 6K spacer model, where 6K is not required for trafficking the glycoproteins to
the plasma membrane, but defects in spike folding or oligomerization efficiency in the absence of 6K
are inhibitory to effective budding. Secondly, it is of interest to determine whether 6K interacts directly
with host proteins. Such an interaction could serve to alleviate host cell stress responses that might
prevent budding, or conversely promote an environment optimal for budding. Since 6K mutants have
increased cell-associated titer, studies to identify 6K interaction partners might also provide insight
into the differences in the location of budding observed between infected arthropod and mammalian
host cells. Studies on 6K can now be facilitated by using mutants in the frameshift slip site which do
not produce TF.
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11.2. What Regulates TF Translation and Palmitoylation?

While TF has been demonstrated to play a role in virus budding (Figure 3), its function in released
virions remains unclear, and additional questions about the TF production and modification status
remain unanswered. With regards to TF frameshifting levels, there is no quantitative data tracking TF
levels within an infected cell population over time. Does the amount of TF increase linearly over time,
or does a switch turn on TF in response to a specific cue? Plasmid-based frameshifting assays have
allowed the dissection of the contributions that the RNA itself has to stimulate frameshifting, but we
do not know if there are any proteinaceous factors that influence frameshifting. Understanding this
mechanism in different alphaviruses has good promise for safe vaccine strain design and potentially
the treatment of alphavirus diseases [53]. In addition to regulating the frameshifting rates by secondary
structure elements, natural variants with losses of TF frameshifting elements may be another way to
control infection in vivo [44,46]. Is this hotspot of recombination a way to control pathogenicity? As it is,
we have limited data about TF levels and function in different host cell types, and in different alphavirus
species, and no mechanistic information outside the standard lab cell lines and animal models.

The only known posttranslational modification on TF is its palmitoylation. It is intriguing that
in WT, the TF protein is always modified, at least in SINV where the studies have been done. We do
not, however, have any sense for whether the modification on TF is dynamic. Related to that, it is
also unknown which cellular palmitoyl transferases actually modify TF. The palmitoylation studies
on TF thus far have focused narrowly on vertebrate cell hosts, but it is of interest to characterize
palmitoylation in mosquito cells as well. TF trafficking is linked to palmitoylation status, but there is
also evidence that the transmembrane domain shared by 6K and TF may interact specifically with E2’s
transmembrane domain. What is the nature of such an interaction, and what impact does it have on
not only protein trafficking to the plasma membrane, but also budding?

Studies focusing on TF alone are challenging without a TF-only virus. Constructing such a
mutant is complicated by the need to ensure all the viral proteins in the polyprotein have the
correct final membrane orientation. For example, attempting to generate a clone with the order
CP-E3-E2-TF-E1 is not possible because the E1 ectodomain would be in the cytoplasm rather than the
lumen. Also, expressing TF after E1 would result in a TF protein with its N-terminus in the cytoplasm
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rather than in the lumen. A clever strategy using inert linkers or artificial signal sequences is therefore
needed to build this useful virus tool.

11.3. What is the Structure and Oligomeric State of the 6K and TF Proteins?

Our knowledge of the structure of 6K and TF is based on secondary structure predictions and
cleavage of the structural polyprotein. In order to determine how 6K and TF each affect particle release,
it is important to determine the structure of the individual proteins, their functional oligomeric state,
and where and how TF is organized in the released virion. Knowing the structure of the individual
proteins in the host and in the released virion would provide a structure-function link to identify the
what and how of 6K and TF function. No experimentally determined structures for these proteins
exist, and neither has been resolved in whole virus [145–150]. Our view on their membrane topology
is based mainly on the known topology of the pre-cleavage structural polyprotein, where the termini
must be in the ER for signalase to cleave, and the hydrophobic properties of the primary sequence. The
6K and TF proteins are translated with identical N-termini and unique C-termini. TF is palmitoylated
at multiple cysteine residues in the N-terminus. Though the N-terminal cysteines are in both proteins,
6K is not palmitoylated. The precise membrane topology of the C-terminus of 6K is unknown. It likely
is translated as a two-pass protein with both termini in the ER lumen and available for cleavage by
signalase, but post-cleavage it has been proposed to adopt a Type I membrane protein (single pass)
or hairpin conformation [11,73,77,92,106]. Kyte-Doolittle and other hydrophobicity profiles support
two transmembrane domains in 6K [43,56,88,106]. However, the predicted transmembrane domains
may represent a single integral membrane helix. If 6K folds into a single membrane-spanning helix,
its cysteine residues could reside in the membrane rather than in the cytoplasm, and this might
explain why it is not palmitoylated on residues that are modified in TF. In comparison, even less is
known regarding TF’s conformation, and its final membrane conformation has broad implications
for its function. Different conformations for the two proteins could explain why TF and not 6K
is palmitoylated on shared cysteine residues and how TF localizes to the plasma membrane in a
palmitoylation-dependent manner in SINV [16].

The precise membrane insertion of small membrane proteins is often difficult to assess
with confidence and there may be more than one correct answer, as seen for the coronavirus
E protein. Evidence has been presented, suggesting that the coronavirus E protein adopts multiple
membrane-spanning conformations, and a hairpin state [151–153]. These various orientations and
different oligomeric states manifest clearly separable phenotypes [151,153]. Further study into the
structure of the 6K and TF proteins may reveal a similar case.

Questions of immediate interest regarding TF relate to its presence in the virion. Is its presence
incidental to some unknown function it carries out near sites of budding within the originator host cell?
Do the low levels of TF in the virion serve an important purpose? How are the low copy numbers of
TF organized in the virion? It is not known if the population of virus particles is homogenous in its TF
content, though it is generally assumed so. Mutants missing TF, or lacking palmitoylation, are known
to differ from WT in gross morphology and thermolability [13,16,64]. This is useful to know because it
may shed light on how TF is selectively incorporated into the virus particle. Since 6K has also been
reported to incorporate into SINV particles [15], the isoform that is incorporated may differ between
alphaviruses based on localization.

11.4. Can We Target the Budding Proteins 6K and TF for Antivirals?

Very few antivirals on the market today are directed at virus escape. One well-known example is
Tamiflu which blocks the neuraminidase activity required for influenza virus exit [154,155]. Viroporins
often affect exit and have also been proposed as viable antiviral targets. In hepatitis C virus, inhibitors
targeting the viroporin protein p7 are currently being tested in human trials [124,130]. With the
widespread references to 6K’s role as a viroporin, both the 6K and TF proteins represent interesting
potential targets for antivirals inhibiting the alphavirus exit process. We know that the involvement of
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6K and TF in the spread of virus particles between permissive cells within an organism impacts disease
severity. Preventing alphaviruses from exiting host cells and traversing to the next cell may therefore
mitigate or prevent disease progression. More careful work is needed to demonstrate the importance
of 6K specifically (without the potential for generating TF truncations), and TF also, in ion transport.
In particular, studies addressing the effects of modulating ion channel activity in infected cells on virus
production are high priority. Despite feasibility as an effective antiviral strategy, antivirals against
virus release are not in widespread use because the details involved in virus escape from infected host
cells are not well understood. Understanding the mechanisms of action of 6K and TF in escape could
guide future efforts to fatally stall budding.

12. Conclusions

The story of 6K and TF is a classic scientific paradigm shift. For 20 years, studies on 6K were
interpreted in the context of all the information available at the time, where 6K was a small membrane
protein involved in budding. When TF was discovered, the old literature had to be re-interpreted in the
light of a new paradigm. The 6K gene is translated into two proteins that have separate roles in budding.
Now, we know that 6K likely promotes virus release by its role inside the cell, including interactions
with the glycoprotein spikes. The TF protein is present in virions and its function there remains
unknown, but it is important for spread in an animal host. The road ahead is now populated with a
new and exciting series of research questions whose answers will lead us to a better understanding of
6K and TF as individual proteins, and ultimately a better picture of enveloped virus budding.

Acknowledgments: We thank Anthony Snyder, Tamanash Bhattacharya, Sara Jones, and Pranav Danthi for
critical reading of this manuscript. We also thank Joyce Jose and Richard Kuhn for sharing unpublished work.

Conflicts of Interest: The authors declare no conflict of the interest.

References

1. Kuhn, R.J. Togaviridae. In Fields Virology; Knipe, D.M., Howley, P., Eds.; Lippincott Williams & Wilkins:
Philadelphia, PA, USA, 2013; Chapter 22, p. 2664.

2. Sokoloski, K.J.; Snyder, A.J.; Liu, N.H.; Hayes, C.A.; Mukhopadhyay, S.; Hardy, R.W. Encapsidation of
Host-Derived Factors Correlates with Enhanced Infectivity of Sindbis Virus. J. Virol. 2013, 87, 12216–12226.
[CrossRef] [PubMed]

3. Griffin, D.E. Alphaviruses. In Fields Virology; Howley, P., Knipe, D.M., Eds.; Lippincott Williams & Wilkins:
Philadelphia, PA, USA, 2013; Chapter 23, Volume 1, p. 2664.

4. Strauss, J.H.; Strauss, E.G. The alphaviruses: Gene expression, replication, and evolution. Microbiol. Rev.
1994, 58, 491–562. [PubMed]

5. Rupp, J.C.; Sokoloski, K.J.; Gebhart, N.N.; Hardy, R.W. Alphavirus RNA synthesis and non-structural protein
functions. J. Gen. Virol. 2015, 96, 2483–2500. [CrossRef] [PubMed]

6. Fros, J.; Pijlman, G. Alphavirus Infection: Host Cell Shut-Off and Inhibition of Antiviral Responses. Viruses
2016, 8, 166. [CrossRef] [PubMed]

7. Garmashova, N.; Gorchakov, R.; Volkova, E.; Paessler, S.; Frolova, E.; Frolov, I. The Old World and New
World Alphaviruses Use Different Virus-Specific Proteins for Induction of Transcriptional Shutoff. J. Virol.
2007, 81, 2472–2484. [CrossRef] [PubMed]

8. Atasheva, S.; Garmashova, N.; Frolov, I.; Frolova, E. Venezuelan Equine Encephalitis Virus Capsid Protein
Inhibits Nuclear Import in Mammalian but not in Mosquito Cells. J. Virol. 2008, 82, 4028–4041. [CrossRef]
[PubMed]

9. Akhrymuk, I.; Kulemzin, S.V.; Frolova, E.I. Evasion of the innate immune response: The Old World alphavirus
nsP2 protein induces rapid degradation of Rpb1, a catalytic subunit of RNA polymerase II. J. Virol. 2012, 86,
7180–7191. [CrossRef] [PubMed]

10. Aliperti, G.; Schlesinger, M.J. Evidence for an autoprotease activity of Sindbis virus capsid protein. Virology
1978, 90, 366–369. [CrossRef]

http://dx.doi.org/10.1128/JVI.02437-13
http://www.ncbi.nlm.nih.gov/pubmed/24006438
http://www.ncbi.nlm.nih.gov/pubmed/7968923
http://dx.doi.org/10.1099/jgv.0.000249
http://www.ncbi.nlm.nih.gov/pubmed/26219641
http://dx.doi.org/10.3390/v8060166
http://www.ncbi.nlm.nih.gov/pubmed/27294951
http://dx.doi.org/10.1128/JVI.02073-06
http://www.ncbi.nlm.nih.gov/pubmed/17108023
http://dx.doi.org/10.1128/JVI.02330-07
http://www.ncbi.nlm.nih.gov/pubmed/18256144
http://dx.doi.org/10.1128/JVI.00541-12
http://www.ncbi.nlm.nih.gov/pubmed/22514352
http://dx.doi.org/10.1016/0042-6822(78)90321-5


Viruses 2017, 9, 228 15 of 21

11. Melancon, P.; Garoff, H. Processing of the Semliki Forest virus structural polyprotein: Role of the capsid
protease. J. Virol. 1987, 61, 1301–1309. [PubMed]

12. Hahn, C.S.; Strauss, J.H. Site-directed mutagenesis of the proposed catalytic amino acids of the Sindbis virus
capsid protein autoprotease. J. Virol. 1990, 64, 3069–3073. [PubMed]

13. Gaedigk-Nitschko, K.; Ding, M.X.; Levy, M.A.; Schlesinger, M.J. Site-directed mutations in the Sindbis virus
6K protein reveal sites for fatty acylation and the underacylated protein affects virus release and virion
structure. Virology 1990, 175, 282–291. [CrossRef]

14. Firth, A.E.; Chung, B.Y.; Fleeton, M.N.; Atkins, J.F. Discovery of frameshifting in Alphavirus 6K resolves
a 20-year enigma. Virol. J. 2008, 5, 108. [CrossRef] [PubMed]

15. Snyder, J.E.; Kulcsar, K.A.; Schultz, K.L.W.; Riley, C.P.; Neary, J.T.; Marr, S.; Jose, J.; Griffin, D.E.; Kuhn, R.J.
Functional characterization of the alphavirus TF protein. J. Virol. 2013, 87, 8511–8523. [CrossRef] [PubMed]

16. Ramsey, J.; Renzi, E.C.; Arnold, R.J.; Trinidad, J.C.; Mukhopadhyay, S. Palmitoylation of Sindbis Virus TF
Protein Regulates Its Plasma Membrane Localization and Subsequent Incorporation into Virions. J. Virol.
2017, 91, e02000-16. [CrossRef] [PubMed]

17. Rice, C.M.; Strauss, J.H. Nucleotide sequence of the 26S mRNA of Sindbis virus and deduced sequence of
the encoded virus structural proteins. Proc. Natl. Acad. Sci. USA 1981, 78, 2062–2066. [CrossRef] [PubMed]

18. Dalbey, R.E.; Lively, M.O.; Bron, S.; van Dijl, J.M. The chemistry and enzymology of the type I signal
peptidases. Protein Sci. 1997, 6, 1129–1138. [CrossRef] [PubMed]

19. Mulvey, M.; Brown, D.T. Assembly of the Sindbis virus spike protein complex. Virology 1996, 219, 125–132.
[CrossRef] [PubMed]

20. Carleton, M.; Brown, D.T. Disulfide bridge-mediated folding of Sindbis virus glycoproteins. J. Virol. 1996, 70,
5541–5547. [PubMed]

21. Molinari, M.; Helenius, A. Glycoproteins form mixed disulphides with oxidoreductases during folding in
living cells. Nature 1999, 402, 90–93. [CrossRef] [PubMed]

22. Molinari, M. Chaperone Selection During Glycoprotein Translocation into the Endoplasmic Reticulum.
Science 2000, 288, 331–333. [CrossRef] [PubMed]

23. Parrott, M.M.; Sitarski, S.A.; Arnold, R.J.; Picton, L.K.; Hill, R.B.; Mukhopadhyay, S. Role of Conserved
Cysteines in the Alphavirus E3 Protein. J. Virol. 2009, 83, 2584–2591. [CrossRef] [PubMed]

24. Mulvey, M.; Brown, D.T. Involvement of the molecular chaperone BiP in maturation of Sindbis virus envelope
glycoproteins. J. Virol. 1995, 69, 1621–1627. [PubMed]

25. Martín, C.S.-S.; Liu, C.Y.; Kielian, M. Dealing with low pH: Entry and exit of alphaviruses and flaviviruses.
Trends Microbiol. 2009, 17, 514–521. [CrossRef] [PubMed]

26. Jose, J.; Snyder, J.E.; Kuhn, R.J. A structural and functional perspective of alphavirus replication and assembly.
Future Microbiol. 2009, 4, 837–856. [CrossRef] [PubMed]

27. Lobigs, M.; Zhao, H.X.; Garoff, H. Function of Semliki Forest virus E3 peptide in virus assembly: Replacement
of E3 with an artificial signal peptide abolishes spike heterodimerization and surface expression of E1. J. Virol.
1990, 64, 4346–4355. [PubMed]

28. Zhang, X.; Fugère, M.; Day, R.; Kielian, M. Furin processing and proteolytic activation of Semliki Forest virus.
J. Virol. 2003, 77, 2981–2989. [CrossRef] [PubMed]

29. Welsch, S.; Müller, B.; Kräusslich, H.-G. More than one door—Budding of enveloped viruses through cellular
membranes. FEBS Lett. 2007, 581, 2089–2097. [CrossRef] [PubMed]

30. Votteler, J.; Sundquist, W.I. Virus Budding and the ESCRT Pathway. Cell Host Microbe 2013, 14, 232–241.
[CrossRef] [PubMed]

31. Taylor, G.M.; Hanson, P.I.; Kielian, M. Ubiquitin Depletion and Dominant-Negative VPS4 Inhibit
Rhabdovirus Budding without Affecting Alphavirus Budding. J. Virol. 2007, 81, 13631–13639. [CrossRef]
[PubMed]

32. Yondola, M.; Carter, C. Un-“ESCRT-”ed Budding. Viruses 2011, 3, 26–31. [CrossRef] [PubMed]
33. Wilkinson, T.A.; Tellinghuisen, T.L.; Kuhn, R.J.; Post, C.B. Association of Sindbis Virus Capsid Protein with

Phospholipid Membranes and the E2 Glycoprotein: Implications for Alphavirus Assembly. Biochemistry
2005, 44, 2800–2810. [CrossRef] [PubMed]

34. Skoging, U.; Vihinen, M.; Nilsson, L.; Liljeström, P. Aromatic interactions define the binding of the alphavirus
spike to its nucleocapsid. Structure 1996, 4, 519–529. [CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/3553612
http://www.ncbi.nlm.nih.gov/pubmed/2335827
http://dx.doi.org/10.1016/0042-6822(90)90210-I
http://dx.doi.org/10.1186/1743-422X-5-108
http://www.ncbi.nlm.nih.gov/pubmed/18822126
http://dx.doi.org/10.1128/JVI.00449-13
http://www.ncbi.nlm.nih.gov/pubmed/23720714
http://dx.doi.org/10.1128/JVI.02000-16
http://www.ncbi.nlm.nih.gov/pubmed/27852864
http://dx.doi.org/10.1073/pnas.78.4.2062
http://www.ncbi.nlm.nih.gov/pubmed/6941270
http://dx.doi.org/10.1002/pro.5560060601
http://www.ncbi.nlm.nih.gov/pubmed/9194173
http://dx.doi.org/10.1006/viro.1996.0229
http://www.ncbi.nlm.nih.gov/pubmed/8623521
http://www.ncbi.nlm.nih.gov/pubmed/8764067
http://dx.doi.org/10.1038/47062
http://www.ncbi.nlm.nih.gov/pubmed/10573423
http://dx.doi.org/10.1126/science.288.5464.331
http://www.ncbi.nlm.nih.gov/pubmed/10764645
http://dx.doi.org/10.1128/JVI.02158-08
http://www.ncbi.nlm.nih.gov/pubmed/19109378
http://www.ncbi.nlm.nih.gov/pubmed/7853497
http://dx.doi.org/10.1016/j.tim.2009.08.002
http://www.ncbi.nlm.nih.gov/pubmed/19796949
http://dx.doi.org/10.2217/fmb.09.59
http://www.ncbi.nlm.nih.gov/pubmed/19722838
http://www.ncbi.nlm.nih.gov/pubmed/2200886
http://dx.doi.org/10.1128/JVI.77.5.2981-2989.2003
http://www.ncbi.nlm.nih.gov/pubmed/12584323
http://dx.doi.org/10.1016/j.febslet.2007.03.060
http://www.ncbi.nlm.nih.gov/pubmed/17434167
http://dx.doi.org/10.1016/j.chom.2013.08.012
http://www.ncbi.nlm.nih.gov/pubmed/24034610
http://dx.doi.org/10.1128/JVI.01688-07
http://www.ncbi.nlm.nih.gov/pubmed/17913808
http://dx.doi.org/10.3390/v3010026
http://www.ncbi.nlm.nih.gov/pubmed/21666754
http://dx.doi.org/10.1021/bi0479961
http://www.ncbi.nlm.nih.gov/pubmed/15723524
http://dx.doi.org/10.1016/S0969-2126(96)00058-5


Viruses 2017, 9, 228 16 of 21

35. Lee, S.; Owen, K.E.; Choi, H.K.; Lee, H.; Lu, G.; Wengler, G.; Brown, D.T.; Rossmann, M.G.; Kuhn, R.J.
Identification of a protein binding site on the surface of the alphavirus nucleocapsid and its implication in
virus assembly. Structure 1996, 4, 531–541. [CrossRef]

36. Soonsawad, P.; Xing, L.; Milla, E.; Espinoza, J.M.; Kawano, M.; Marko, M.; Hsieh, C.; Furukawa, H.;
Kawasaki, M.; Weerachatyanukul, W.; et al. Structural Evidence of Glycoprotein Assembly in Cellular
Membrane Compartments prior to Alphavirus Budding. J. Virol. 2010, 84, 11145–11151. [CrossRef] [PubMed]

37. Jose, J.; Taylor, A.B.; Kuhn, R.J. Spatial and Temporal Analysis of Alphavirus Replication and Assembly in
Mammalian and Mosquito Cells. mBio 2017, 8, e02294-16. [CrossRef] [PubMed]

38. Acheson, N.H.; Tamm, I. Replication of Semliki Forest virus: An electron microscopic study. Virology 1967,
32, 128–143. [CrossRef]

39. Miller, M.L.; Brown, D.T. Morphogenesis of Sindbis virus in three subclones of Aedes albopictus (mosquito)
cells. J. Virol. 1992, 66, 4180–4190. [PubMed]

40. Forrester, N.L.; Palacios, G.; Tesh, R.B.; Savji, N.; Guzman, H.; Sherman, M.; Weaver, S.C.; Lipkin, W.I.
Genome-Scale Phylogeny of the Alphavirus Genus Suggests a Marine Origin. J. Virol. 2012, 86, 2729–2738.
[CrossRef] [PubMed]

41. Nasar, F.; Palacios, G.; Gorchakov, R.V.; Guzman, H.; Da Rosa, A.P.T.; Savji, N.; Popov, V.L.; Sherman, M.B.;
Lipkin, W.I.; Tesh, R.B. Eilat virus, a unique alphavirus with host range restricted to insects by RNA
replication. Proc. Natl. Acad. Sci. USA 2012, 109, 14622–14627. [CrossRef] [PubMed]

42. Hermanns, K.; Zirkel, F.; Kopp, A.; Marklewitz, M.; Rwego, I.B.; Estrada, A.; Gillespie, T.R.; Drosten, C.;
Junglen, S. Discovery of a novel alphavirus related to Eilat virus. J. Gen. Virol. 2017, 98, 43–49. [CrossRef]
[PubMed]

43. Guo, T.-C.; Johansson, D.X.; Haugland, Ø.; Liljeström, P.; Evensen, Ø. A 6K-Deletion Variant of Salmonid
Alphavirus Is Non-Viable but Can Be Rescued through RNA Recombination. PLoS ONE 2014, 9, e100184.
[CrossRef] [PubMed]

44. Forrester, N.L.; Guerbois, M.; Adams, A.P.; Liang, X.; Weaver, S.C. Analysis of Intrahost Variation in
Venezuelan Equine Encephalitis Virus Reveals Repeated Deletions in the 6-Kilodalton Protein Gene. J. Virol.
2011, 85, 8709–8717. [CrossRef] [PubMed]

45. Petterson, E.; Stormoen, M.; Evensen, O.; Mikalsen, A.B.; Haugland, O. Natural infection of Atlantic salmon
(Salmo salar L.) with salmonid alphavirus 3 (SAV3) generates numerous viral deletion mutants. J. Gen. Virol.
2013, 94, 1945–1954. [CrossRef] [PubMed]

46. Petterson, E.; Guo, T.-C.; Evensen, Ø.; Mikalsen, A.B. Experimental piscine alphavirus RNA recombination
in vivo yields both viable virus and defective viral RNA. Sci. Rep. 2016, 1–10. [CrossRef] [PubMed]

47. Jacks, T.; Power, M.D.; Masiarz, F.R.; Luciw, P.A.; Barr, P.J.; Varmus, H.E. Characterization of ribosomal
frameshifting in HIV-1 Gag-Pol expression. Nature 1988, 331, 280–283. [CrossRef] [PubMed]

48. Jacks, T.; Madhani, H.D.; Masiarz, F.R.; Varmus, H.E. Signals for ribosomal frameshifting in the Rous sarcoma
virus Gag-Pol region. Cell 1988, 55, 447–458. [CrossRef]

49. Jacks, T.; Varmus, H.E. Expression of the Rous sarcoma virus Pol gene by ribosomal frameshifting. Science
1985, 230, 1237–1242. [CrossRef] [PubMed]

50. Dinman, J.D. Mechanisms and implications of programmed translational frameshifting. WIREs RNA 2012, 3,
661–673. [CrossRef] [PubMed]

51. Atkins, J.F.; Loughran, G.; Bhatt, P.R.; Firth, A.E.; Baranov, P.V. Ribosomal frameshifting and transcriptional
slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res. 2016, 44,
7007–7078. [CrossRef] [PubMed]

52. Chung, B.Y.W.; Firth, A.E.; Atkins, J.F. Frameshifting in Alphaviruses: A Diversity of 3’ Stimulatory Structures.
J. Mol. Biol. 2010, 397, 448–456. [CrossRef] [PubMed]

53. Kendra, J.A.; de la Fuente, C.; Brahms, A.; Woodson, C.; Bell, T.M.; Chen, B.; Khan, Y.A.; Jacobs, J.L.;
Kehn-Hall, K.; Dinman, J.D. Ablation of Programmed -1 Ribosomal Frameshifting in Venezuelan Equine
Encephalitis Virus Results in Attenuated Neuropathogenicity. J. Virol. 2017, 91, e01766-16. [CrossRef]
[PubMed]

54. Welch, W.J.; Sefton, B.M. Two small virus-specific polypeptides are produced during infection with Sindbis
virus. J. Virol. 1979, 29, 1186–1195. [PubMed]

http://dx.doi.org/10.1016/S0969-2126(96)00059-7
http://dx.doi.org/10.1128/JVI.00036-10
http://www.ncbi.nlm.nih.gov/pubmed/20739526
http://dx.doi.org/10.1128/mBio.02294-16
http://www.ncbi.nlm.nih.gov/pubmed/28196962
http://dx.doi.org/10.1016/0042-6822(67)90261-9
http://www.ncbi.nlm.nih.gov/pubmed/1602541
http://dx.doi.org/10.1128/JVI.05591-11
http://www.ncbi.nlm.nih.gov/pubmed/22190718
http://dx.doi.org/10.1073/pnas.1204787109
http://www.ncbi.nlm.nih.gov/pubmed/22908261
http://dx.doi.org/10.1099/jgv.0.000694
http://www.ncbi.nlm.nih.gov/pubmed/28206905
http://dx.doi.org/10.1371/journal.pone.0100184
http://www.ncbi.nlm.nih.gov/pubmed/25009976
http://dx.doi.org/10.1128/JVI.00165-11
http://www.ncbi.nlm.nih.gov/pubmed/21715498
http://dx.doi.org/10.1099/vir.0.052563-0
http://www.ncbi.nlm.nih.gov/pubmed/23704276
http://dx.doi.org/10.1038/srep36317
http://www.ncbi.nlm.nih.gov/pubmed/27805034
http://dx.doi.org/10.1038/331280a0
http://www.ncbi.nlm.nih.gov/pubmed/2447506
http://dx.doi.org/10.1016/0092-8674(88)90031-1
http://dx.doi.org/10.1126/science.2416054
http://www.ncbi.nlm.nih.gov/pubmed/2416054
http://dx.doi.org/10.1002/wrna.1126
http://www.ncbi.nlm.nih.gov/pubmed/22715123
http://dx.doi.org/10.1093/nar/gkw530
http://www.ncbi.nlm.nih.gov/pubmed/27436286
http://dx.doi.org/10.1016/j.jmb.2010.01.044
http://www.ncbi.nlm.nih.gov/pubmed/20114053
http://dx.doi.org/10.1128/JVI.01766-16
http://www.ncbi.nlm.nih.gov/pubmed/27852852
http://www.ncbi.nlm.nih.gov/pubmed/448798


Viruses 2017, 9, 228 17 of 21

55. Gaedigk-Nitschko, K.; Schlesinger, M.J. Site-directed mutations in Sindbis virus E2 glycoprotein’s
cytoplasmic domain and the 6K protein lead to similar defects in virus assembly and budding. Virology 1991,
183, 206–214. [CrossRef]

56. Melton, J.V.; Ewart, G.D.; Weir, R.C.; Board, P.G.; Lee, E.; Gage, P.W. Alphavirus 6K Proteins Form Ion
Channels. J. Biol. Chem. 2002, 277, 46923–46931. [CrossRef] [PubMed]

57. International Committee on the Taxonomy of Viruses. Available online: https://talk.ictvonline.org/
(accessed on 26 May 2017).

58. Clark, K.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Sayers, E.W. GenBank. Nucleic Acids Res. 2016, 44,
D67–D72. [CrossRef] [PubMed]

59. Heringa, J. Two strategies for sequence comparison: Profile-preprocessed and secondary structure-induced
multiple alignment. Comput. Chem. 1999, 23, 341–364. [CrossRef]

60. Simossis, V.A.; Heringa, J. The PRALINE online server: Optimising progressive multiple alignment on the
web. Comput. Biol. Chem. 2003, 27, 511–519. [CrossRef] [PubMed]

61. Simossis, V.A.; Kleinjung, J.; Heringa, J. Homology-extended sequence alignment. Nucleic Acids Res. 2005, 33,
816–824. [CrossRef] [PubMed]

62. Simossis, V.A.; Heringa, J. PRALINE: A multiple sequence alignment toolbox that integrates
homology-extended and secondary structure information. Nucleic Acids Res. 2005, 33, W289–W294.
[CrossRef] [PubMed]

63. Liljeström, P.; Lusa, S.; Huylebroeck, D.; Garoff, H. In vitro mutagenesis of a full-length cDNA clone of
Semliki Forest virus: The small 6000-molecular-weight membrane protein modulates virus release. J. Virol.
1991, 65, 4107–4113. [PubMed]

64. Loewy, A.; Smyth, J.; von Bonsdorff, C.H.; Liljeström, P.; Schlesinger, M.J. The 6-kilodalton membrane protein
of Semliki Forest virus is involved in the budding process. J. Virol. 1995, 69, 469–475. [PubMed]

65. Ivanova, L.; Lustig, S.; Schlesinger, M.J. A pseudo-revertant of a Sindbis virus 6K protein mutant, which
corrects for aberrant particle formation, contains two new mutations that map to the ectodomain of the E2
glycoprotein. Virology 1995, 206, 1027–1034. [CrossRef] [PubMed]

66. Taylor, A.; Melton, J.V.; Herrero, L.J.; Thaa, B.; Karo-Astover, L.; Gage, P.W.; Nelson, M.A.; Sheng, K.-C.;
Lidbury, B.A.; Ewart, G.D.; et al. Effects of an in-frame deletion of the 6K gene locus from the genome of
Ross River virus. J. Virol. 2016, 90, 4150–4159. [CrossRef] [PubMed]

67. Bonatti, S.; Blobel, G. Absence of a cleavable signal sequence in Sindbis virus glycoprotein PE2. J. Biol. Chem.
1979, 254, 12261–12264. [PubMed]

68. Bonatti, S.; Migliaccio, G.; Blobel, G.; Walter, P. Role of signal recognition particle in the membrane assembly
of Sindbis viral glycoproteins. Eur. J. Biochem. 1984, 140, 499–502. [CrossRef] [PubMed]

69. Garoff, H.; Huylebroeck, D.; Robinson, A.; Tillman, U.; Liljeström, P. The signal sequence of the p62 protein
of Semliki Forest virus is involved in initiation but not in completing chain translocation. J. Cell Biol. 1990,
111, 867–876. [CrossRef] [PubMed]

70. Burge, B.W.; Strauss, J.H. Glycopeptides of the membrane glycoprotein of Sindbis virus. J. Mol. Biol. 1970, 47,
449–466. [CrossRef]

71. Rice, C.M.; Bell, J.R.; Hunkapiller, M.W.; Strauss, E.G.; Strauss, J.H. Isolation and characterization of the
hydrophobic COOH-terminal domains of the sindbis virion glycoproteins. J. Mol. Biol. 1982, 154, 355–378.
[CrossRef]

72. Welch, W.J.; Sefton, B.M. Characterization of a small, nonstructural viral polypeptide present late during
infection of BHK cells by Semliki Forest virus. J. Virol. 1980, 33, 230–237. [PubMed]

73. Welch, W.J.; Sefton, B.M.; Esch, F.S. Amino-terminal sequence analysis of alphavirus polypeptides. J. Virol.
1981, 38, 968–972. [PubMed]

74. Rice, C.M.; Strauss, J.H. Synthesis, cleavage and sequence analysis of DNA complementary to the 26 S
messenger RNA of Sindbis virus. J. Mol. Biol. 1981, 150, 315–340. [CrossRef]

75. Hashimoto, K.; Erdei, S.; Keränen, S.; Saraste, J.; Kaariainen, L. Evidence for a separate signal sequence for
the carboxy-terminal envelope glycoprotein E1 of Semliki forest virus. J. Virol. 1981, 38, 34–40. [PubMed]

76. Melancon, P.; Garoff, H. Reinitiation of translocation in the Semliki Forest virus structural polyprotein:
Identification of the signal for the E1 glycoprotein. EMBO J. 1986, 5, 1551–1560. [PubMed]

77. Liljeström, P.; Garoff, H. Internally located cleavable signal sequences direct the formation of Semliki Forest
virus membrane proteins from a polyprotein precursor. J. Virol. 1991, 65, 147–154. [PubMed]

http://dx.doi.org/10.1016/0042-6822(91)90133-V
http://dx.doi.org/10.1074/jbc.M207847200
http://www.ncbi.nlm.nih.gov/pubmed/12228229
https://talk.ictvonline.org/
http://dx.doi.org/10.1093/nar/gkv1276
http://www.ncbi.nlm.nih.gov/pubmed/26590407
http://dx.doi.org/10.1016/S0097-8485(99)00012-1
http://dx.doi.org/10.1016/j.compbiolchem.2003.09.002
http://www.ncbi.nlm.nih.gov/pubmed/14642759
http://dx.doi.org/10.1093/nar/gki233
http://www.ncbi.nlm.nih.gov/pubmed/15699183
http://dx.doi.org/10.1093/nar/gki390
http://www.ncbi.nlm.nih.gov/pubmed/15980472
http://www.ncbi.nlm.nih.gov/pubmed/2072446
http://www.ncbi.nlm.nih.gov/pubmed/7983743
http://dx.doi.org/10.1006/viro.1995.1025
http://www.ncbi.nlm.nih.gov/pubmed/7856077
http://dx.doi.org/10.1128/JVI.03192-15
http://www.ncbi.nlm.nih.gov/pubmed/26865723
http://www.ncbi.nlm.nih.gov/pubmed/500711
http://dx.doi.org/10.1111/j.1432-1033.1984.tb08130.x
http://www.ncbi.nlm.nih.gov/pubmed/6723645
http://dx.doi.org/10.1083/jcb.111.3.867
http://www.ncbi.nlm.nih.gov/pubmed/2391367
http://dx.doi.org/10.1016/0022-2836(70)90314-1
http://dx.doi.org/10.1016/0022-2836(82)90069-9
http://www.ncbi.nlm.nih.gov/pubmed/7365868
http://www.ncbi.nlm.nih.gov/pubmed/7241669
http://dx.doi.org/10.1016/0022-2836(81)90550-7
http://www.ncbi.nlm.nih.gov/pubmed/7241658
http://www.ncbi.nlm.nih.gov/pubmed/3017702
http://www.ncbi.nlm.nih.gov/pubmed/1985194


Viruses 2017, 9, 228 18 of 21

78. Migliaccio, G.; Pascale, M.C.; Leone, A.; Bonatti, S. Biosynthesis, membrane translocation, and surface
expression of Sindbis virus E1 glycoprotein. Exp. Cell Res. 1989, 185, 203–216. [CrossRef]

79. Metz, S.W.; Geertsema, C.; Martina, B.E.; Andrade, P.; Heldens, J.G.; Van Oers, M.M.; Goldbach, R.W.;
Vlak, J.M.; Pijlman, G.P. Functional processing and secretion of Chikungunya virus E1 and E2 glycoproteins
in insect cells. Virol. J. 2011, 8, 353. [CrossRef] [PubMed]

80. Schmidt, M.F.; Bracha, M.; Schlesinger, M.J. Evidence for covalent attachment of fatty acids to Sindbis virus
glycoproteins. Proc. Natl. Acad. Sci. USA 1979, 76, 1687–1691. [CrossRef] [PubMed]

81. Schmidt, M.F.; Schlesinger, M.J. Fatty acid binding to vesicular stomatitis virus glycoprotein: A new type of
post-translational modification of the viral glycoprotein. Cell 1979, 17, 813–819. [CrossRef]

82. Schmidt, M.F. Acylation of viral spike glycoproteins: A feature of enveloped RNA viruses. Virology 1982,
116, 327–338. [CrossRef]

83. Schmidt, M.; Schmidt, M.F.; Rott, R. Chemical identification of cysteine as palmitoylation site in a
transmembrane protein (Semliki Forest virus E1). J. Biol. Chem. 1988, 263, 18635–18639. [PubMed]

84. Ivanova, L.; Schlesinger, M.J. Site-directed mutations in the Sindbis virus E2 glycoprotein identify
palmitoylation sites and affect virus budding. J. Virol. 1993, 67, 2546–2551. [PubMed]

85. Ryan, C.; Ivanova, L.; Schlesinger, M.J. Effects of Site-Directed Mutations of Transmembrane Cysteines in
Sindbis Virus E1 and E2 Glycoproteins on Palmitylation and Virus Replication. Virology 1998, 249, 62–67.
[CrossRef] [PubMed]

86. Gaedigk-Nitschko, K.; Schlesinger, M.J. The Sindbis virus 6K protein can be detected in virions and is
acylated with fatty acids. Virology 1990, 175, 274–281. [CrossRef]

87. McInerney, G.M.; Smit, J.M.; Liljeström, P.; Wilschut, J. Semliki Forest virus produced in the absence of the
6K protein has an altered spike structure as revealed by decreased membrane fusion capacity. Virology 2004,
325, 200–206. [CrossRef] [PubMed]

88. Sanz, M.A.; Carrasco, L. Sindbis virus variant with a deletion in the 6K gene shows defects in glycoprotein
processing and trafficking: Lack of complementation by a wild-type 6K gene in trans. J. Virol. 2001, 75,
7778–7784. [CrossRef] [PubMed]

89. Metz, S.W.; Feenstra, F.; Villoing, S.; van Hulten, M.C.; van Lent, J.W.; Koumans, J.; Vlak, J.M.; Pijlman, G.P.
Low Temperature-Dependent Salmonid Alphavirus Glycoprotein Processing and Recombinant Virus-Like
Particle Formation. PLoS ONE 2011, 6, e25816. [CrossRef] [PubMed]

90. Hikke, M.C.; Braaen, S.; Villoing, S.; Hodneland, K.; Geertsema, C.; Verhagen, L.; Frost, P.; Vlak, J.M.;
Rimstad, E.; Pijlman, G.P. Salmonid alphavirus glycoprotein E2 requires low temperature and E1 for virion
formation and induction of protective immunity. Vaccine 2014, 32, 6206–6212. [CrossRef] [PubMed]

91. Rice, C.M.; Levis, R.; Strauss, J.H.; Huang, H.V. Production of infectious RNA transcripts from Sindbis
virus cDNA clones: Mapping of lethal mutations, rescue of a temperature-sensitive marker, and in vitro
mutagenesis to generate defined mutants. J. Virol. 1987, 61, 3809–3819. [PubMed]

92. Ivanova, L.; Le, L.; Schlesinger, M.J. Characterization of revertants of a Sindbis virus 6K gene mutant that
affects proteolytic processing and virus assembly. Virus Res. 1995, 39, 165–179. [CrossRef]

93. Strauss, E.G.; Birdwell, C.R.; Lenches, E.M.; Staples, S.E.; Strauss, J.H. Mutants of Sindbis virus II.
Characterization of a maturation-defective mutant, ts103. Virology 1977, 82, 122–149. [CrossRef]

94. Lusa, S.; Garoff, H.; Liljeström, P. Fate of the 6K membrane protein of Semliki Forest virus during virus
assembly. Virology 1991, 185, 843–846. [CrossRef]

95. Wu, D.; Xu, W.; Jiao, R.; Ding, M.; Zhai, Z. The relationship of Sindbis virus assembly and the viral protein
6K with intermediate filaments. Acta Microbiol. Sin. 1990, 3, 417–421.

96. Yao, J.S.; Strauss, E.G.; Strauss, J.H. Interactions between PE2, E1, and 6K required for assembly of
alphaviruses studied with chimeric viruses. J. Virol. 1996, 70, 7910–7920. [PubMed]

97. Snyder, A.J.; Sokoloski, K.J.; Mukhopadhyay, S. Mutating conserved cysteines in the alphavirus E2
glycoprotein causes virus-specific assembly defects. J. Virol. 2012, 86, 3100–3111. [CrossRef] [PubMed]

98. Snyder, A.J.; Mukhopadhyay, S. The Alphavirus E3 Glycoprotein Functions in a Clade-Specific Manner.
J. Virol. 2012, 86, 13609–13620. [CrossRef] [PubMed]

99. Strauss, E.G.; Lenches, E.M.; Strauss, J.H. Molecular Genetic Evidence that the Hydrophobic Anchors
of Glycoproteins E2 and E1 Interact during Assembly of Alphaviruses. J. Virol. 2002, 76, 10188–10194.
[CrossRef]

http://dx.doi.org/10.1016/0014-4827(89)90049-9
http://dx.doi.org/10.1186/1743-422X-8-353
http://www.ncbi.nlm.nih.gov/pubmed/21762510
http://dx.doi.org/10.1073/pnas.76.4.1687
http://www.ncbi.nlm.nih.gov/pubmed/287008
http://dx.doi.org/10.1016/0092-8674(79)90321-0
http://dx.doi.org/10.1016/0042-6822(82)90424-X
http://www.ncbi.nlm.nih.gov/pubmed/3143715
http://www.ncbi.nlm.nih.gov/pubmed/8474160
http://dx.doi.org/10.1006/viro.1998.9281
http://www.ncbi.nlm.nih.gov/pubmed/9740777
http://dx.doi.org/10.1016/0042-6822(90)90209-A
http://dx.doi.org/10.1016/j.virol.2004.04.043
http://www.ncbi.nlm.nih.gov/pubmed/15246260
http://dx.doi.org/10.1128/JVI.75.16.7778-7784.2001
http://www.ncbi.nlm.nih.gov/pubmed/11462055
http://dx.doi.org/10.1371/journal.pone.0025816
http://www.ncbi.nlm.nih.gov/pubmed/21991361
http://dx.doi.org/10.1016/j.vaccine.2014.09.026
http://www.ncbi.nlm.nih.gov/pubmed/25269093
http://www.ncbi.nlm.nih.gov/pubmed/3479621
http://dx.doi.org/10.1016/0168-1702(95)00083-6
http://dx.doi.org/10.1016/0042-6822(77)90038-1
http://dx.doi.org/10.1016/0042-6822(91)90556-Q
http://www.ncbi.nlm.nih.gov/pubmed/8892914
http://dx.doi.org/10.1128/JVI.06615-11
http://www.ncbi.nlm.nih.gov/pubmed/22238319
http://dx.doi.org/10.1128/JVI.01805-12
http://www.ncbi.nlm.nih.gov/pubmed/23035234
http://dx.doi.org/10.1128/JVI.76.20.10188-10194.2002


Viruses 2017, 9, 228 19 of 21

100. London, S.D.; Schmaljohn, A.L.; Dalrymple, J.M.; Rice, C.M. Infectious enveloped RNA virus antigenic
chimeras. Proc. Natl. Acad. Sci. USA 1992, 89, 207–211. [CrossRef] [PubMed]

101. Schlesinger, M.J.; London, S.D.; Ryan, C. An in-frame insertion into the Sindbis virus 6K gene leads to
defective proteolytic processing of the virus glycoproteins, a trans-dominant negative inhibition of normal
virus formation, and interference in virus shut off of host-cell protein synthesis. Virology 1993, 193, 424–432.
[CrossRef] [PubMed]

102. Fischer, W.B.; Krüger, J. Viral Channel-Forming Proteins. Int. Rev. Cell Mol. Biol. 2009, 275, 35–63. [PubMed]
103. Martinez-Gil, L.; Mingarro, I. Viroporins, Examples of the Two-Stage Membrane Protein Folding Model.

Viruses 2015, 7, 3462–3482. [CrossRef] [PubMed]
104. Carrasco, L. Modification of membrane permeability by animal viruses. Adv. Virus Res. 1995. [CrossRef]
105. Sanz, M.A.; Pérez, L.; Carrasco, L. Semliki Forest virus 6K protein modifies membrane permeability after

inducible expression in Escherichia coli cells. J. Biol. Chem. 1994, 269, 12106–12110. [PubMed]
106. Sanz, M.A.; Madan, V.; Carrasco, L.; Nieva, J.L. Interfacial domains in Sindbis virus 6K protein. Detection

and functional characterization. J. Biol. Chem. 2003, 278, 2051–2057. [CrossRef] [PubMed]
107. Madan, V.; Sanz, M.A.; Carrasco, L. Requirement of the vesicular system for membrane permeabilization by

Sindbis virus. Virology 2005, 332, 307–315. [CrossRef] [PubMed]
108. Madan, V.; de García, M.J.; Sanz, M.A.; Carrasco, L. Viroporin activity of murine hepatitis virus E protein.

FEBS Lett. 2005, 579, 3607–3612. [CrossRef] [PubMed]
109. Madan, V.; Redondo, N.; Carrasco, L. Cell permeabilization by poliovirus 2B viroporin triggers bystander

permeabilization in neighbouring cells through a mechanism involving gap junctions. Cell. Microbiol. 2010,
12, 1144–1157. [CrossRef] [PubMed]

110. Antoine, A.-F.; Montpellier, C.; Cailliau, K.; Browaeys-Poly, E.; Vilain, J.-P.; Dubuisson, J. The Alphavirus
6K Protein Activates Endogenous Ionic Conductances when Expressed in Xenopus Oocytes. J. Membr. Biol.
2007, 215, 37–48. [CrossRef] [PubMed]

111. Kelly, M.L.; Cook, J.A.; Brown-Augsburger, P.; Heinz, B.A.; Smith, M.C.; Pinto, L.H. Demonstrating the
intrinsic ion channel activity of virally encoded proteins. FEBS Lett. 2003, 552, 61–67. [CrossRef]

112. Jose, J.; Kuhn, R.J. Purdue University, West Lafayette, IN, USA. Personal communication, 2017.
113. Nieva, J.L.; Sanz, M.A.; Carrasco, L. Membrane-permeabilizing motif in Semliki forest virus E1 glycoprotein.

FEBS Lett. 2004, 576, 417–422. [CrossRef] [PubMed]
114. Guo, H.-C.; Jin, Y.; Zhi, X.-Y.; Yan, D.; Sun, S.-Q. NLRP3 Inflammasome Activation by Viroporins of Animal

Viruses. Viruses 2015, 7, 3380–3391. [CrossRef] [PubMed]
115. Hyser, J.M.; Estes, M.K. Pathophysiological Consequences of Calcium-Conducting Viroporins.

Annu. Rev. Virol. 2015, 2, 473–496. [CrossRef] [PubMed]
116. Fung, T.; Torres, J.; Liu, D. The Emerging Roles of Viroporins in ER Stress Response and Autophagy Induction

during Virus Infection. Viruses 2015, 7, 2834–2857. [CrossRef] [PubMed]
117. Rossman, J.S.; Jing, X.; Leser, G.P.; Balannik, V.; Pinto, L.H.; Lamb, R.A. Influenza Virus M2 Ion Channel

Protein Is Necessary for Filamentous Virion Formation. J. Virol. 2010, 84, 5078–5088. [CrossRef] [PubMed]
118. Rossman, J.S.; Jing, X.; Leser, G.P.; Lamb, R.A. Influenza Virus M2 Protein Mediates ESCRT-Independent

Membrane Scission. Cell 2010, 142, 902–913. [CrossRef] [PubMed]
119. Rossman, J.S.; Lamb, R.A. Influenza virus assembly and budding. Virology 2011, 411, 229–236. [CrossRef]

[PubMed]
120. Stouffer, A.L.; Acharya, R.; Salom, D.; Levine, A.S.; di Costanzo, L.; Soto, C.S.; Tereshko, V.; Nanda, V.;

Stayrook, S.; DeGrado, W.F. Structural basis for the function and inhibition of an influenza virus proton
channel. Nature 2008, 451, 596–599. [CrossRef] [PubMed]

121. Schnell, J.R.; Chou, J.J. Structure and mechanism of the M2 proton channel of influenza a virus. Nature 2008,
451, 591–595. [CrossRef] [PubMed]

122. Cady, S.D.; Mishanina, T.V.; Hong, M. Structure of amantadine-bound M2 transmembrane peptide of
influenza A in lipid bilayers from magic-angle-spinning solid-state NMR: The role of Ser31 in amantadine
binding. J. Mol. Biol. 2009, 385, 1127–1141. [CrossRef] [PubMed]

123. Luik, P.; Chew, C.; Aittoniemi, J.; Chang, J.; Wentworth, P.; Dwek, R.A.; Biggin, P.C.; Vénien-Bryan, C.;
Zitzmann, N. The 3-dimensional structure of a hepatitis C virus p7 ion channel by electron microscopy.
Proc. Natl. Acad. Sci. USA 2009, 106, 12712–12716. [CrossRef] [PubMed]

http://dx.doi.org/10.1073/pnas.89.1.207
http://www.ncbi.nlm.nih.gov/pubmed/1370348
http://dx.doi.org/10.1006/viro.1993.1139
http://www.ncbi.nlm.nih.gov/pubmed/8094927
http://www.ncbi.nlm.nih.gov/pubmed/19491052
http://dx.doi.org/10.3390/v7072781
http://www.ncbi.nlm.nih.gov/pubmed/26131957
http://dx.doi.org/10.1016/S0065-3527(08)60058-5
http://www.ncbi.nlm.nih.gov/pubmed/8163515
http://dx.doi.org/10.1074/jbc.M206611200
http://www.ncbi.nlm.nih.gov/pubmed/12424249
http://dx.doi.org/10.1016/j.virol.2004.11.001
http://www.ncbi.nlm.nih.gov/pubmed/15661162
http://dx.doi.org/10.1016/j.febslet.2005.05.046
http://www.ncbi.nlm.nih.gov/pubmed/15963987
http://dx.doi.org/10.1111/j.1462-5822.2010.01460.x
http://www.ncbi.nlm.nih.gov/pubmed/20331640
http://dx.doi.org/10.1007/s00232-007-9003-6
http://www.ncbi.nlm.nih.gov/pubmed/17483865
http://dx.doi.org/10.1016/S0014-5793(03)00851-2
http://dx.doi.org/10.1016/j.febslet.2004.09.061
http://www.ncbi.nlm.nih.gov/pubmed/15498572
http://dx.doi.org/10.3390/v7072777
http://www.ncbi.nlm.nih.gov/pubmed/26114475
http://dx.doi.org/10.1146/annurev-virology-100114-054846
http://www.ncbi.nlm.nih.gov/pubmed/26958925
http://dx.doi.org/10.3390/v7062749
http://www.ncbi.nlm.nih.gov/pubmed/26053926
http://dx.doi.org/10.1128/JVI.00119-10
http://www.ncbi.nlm.nih.gov/pubmed/20219914
http://dx.doi.org/10.1016/j.cell.2010.08.029
http://www.ncbi.nlm.nih.gov/pubmed/20850012
http://dx.doi.org/10.1016/j.virol.2010.12.003
http://www.ncbi.nlm.nih.gov/pubmed/21237476
http://dx.doi.org/10.1038/nature06528
http://www.ncbi.nlm.nih.gov/pubmed/18235504
http://dx.doi.org/10.1038/nature06531
http://www.ncbi.nlm.nih.gov/pubmed/18235503
http://dx.doi.org/10.1016/j.jmb.2008.11.022
http://www.ncbi.nlm.nih.gov/pubmed/19061899
http://dx.doi.org/10.1073/pnas.0905966106
http://www.ncbi.nlm.nih.gov/pubmed/19590017


Viruses 2017, 9, 228 20 of 21

124. Madan, V.; Bartenschlager, R. Structural and Functional Properties of the Hepatitis C Virus p7 Viroporin.
Viruses 2015, 7, 4461–4481. [CrossRef] [PubMed]

125. Wozniak, A.L.; Griffin, S.; Rowlands, D.; Harris, M.; Yi, M.; Lemon, S.M.; Weinman, S.A. Intracellular
proton conductance of the hepatitis C virus p7 protein and its contribution to infectious virus production.
PLoS Pathog. 2010, 6, e1001087. [CrossRef] [PubMed]

126. Atoom, A.M.; Jones, D.M.; Russell, R.S. Evidence suggesting that HCV p7 protects E2 glycoprotein from
premature degradation during virus production. Virus Res. 2013, 176, 199–210. [CrossRef] [PubMed]

127. Scull, M.A.; Schneider, W.M.; Flatley, B.R.; Hayden, R.; Fung, C.; Jones, C.T.; van de Belt, M.; Penin, F.;
Rice, C.M. The N-terminal Helical Region of the Hepatitis C Virus p7 Ion Channel Protein Is Critical for
Infectious Virus Production. PLoS Pathog. 2015, 11, e1005297. [CrossRef] [PubMed]

128. Pielak, R.M.; Chou, J.J. Flu channel drug resistance: A tale of two sites. Protein Cell 2010, 1, 246–258.
[CrossRef] [PubMed]

129. Das, K.; Aramini, J.M.; Ma, L.-C.; Krug, R.M.; Arnold, E. Structures of influenza a proteins and insights into
antiviral drug targets. Nat. Struct. Mol. Biol. 2010, 17, 530–538. [CrossRef] [PubMed]

130. Biotron Limited. Available online: www.biotron.com.au (accessed 26 May 2017). (Universal Trial
Number U1111-1150-4404).

131. Sugrue, R.J.; Belshe, R.B.; Hay, A.J. Palmitoylation of the influenza a virus M2 protein. Virology 1990, 179,
51–56. [CrossRef]

132. Veit, M.; Klenk, H.D.; Kendal, A.; Rott, R. The M2 protein of influenza a virus is acylated. J. Gen. Virol. 1991,
72 Pt. 6, 1461–1465. [CrossRef] [PubMed]

133. Corse, E.; Machamer, C.E. The Cytoplasmic Tail of Infectious Bronchitis Virus E Protein Directs Golgi
Targeting. J. Virol. 2002, 76, 1273–1284. [CrossRef] [PubMed]

134. Shipston, M.J. Ion channel regulation by protein S-acylation. J. Gen. Physiol. 2014, 143, 659–678. [CrossRef]
[PubMed]

135. González, M.E.; Carrasco, L. Human immunodeficiency virus type 1 VPU protein affects Sindbis virus
glycoprotein processing and enhances membrane permeabilization. Virology 2001, 279, 201–209. [CrossRef]
[PubMed]

136. Hallengärd, D.; Kakoulidou, M.; Lulla, A.; Kümmerer, B.M.; Johansson, D.X.; Mutso, M.; Lulla, V.;
Fazakerley, J.K.; Roques, P.; Le Grand, R.; et al. Novel attenuated Chikungunya vaccine candidates elicit
protective immunity in C57BL/6 mice. J. Virol. 2014, 88, 2858–2866. [CrossRef] [PubMed]

137. Jansen, M.D.; Bang Jensen, B.; McLoughlin, M.F.; Rodger, H.D.; Taksdal, T.; Sindre, H.; Graham, D.A.;
Lillehaug, A. The epidemiology of pancreas disease in salmonid aquaculture: A summary of the current
state of knowledge. J. Fish Dis. 2016, 40, 141–155. [CrossRef] [PubMed]

138. Weston, J.H.; Welsh, M.D.; McLoughlin, M.F.; Todd, D. Salmon pancreas disease virus, an alphavirus infecting
farmed Atlantic salmon, Salmo salar L. Virology 1999, 256, 188–195. [CrossRef] [PubMed]

139. Weston, J.; Villoing, S.; Bremont, M.; Castric, J.; Pfeffer, M.; Jewhurst, V.; McLoughlin, M.; Rodseth, O.;
Christie, K.E.; Koumans, J.; et al. Comparison of Two Aquatic Alphaviruses, Salmon Pancreas
Disease Virus and Sleeping Disease Virus, by Using Genome Sequence Analysis, Monoclonal Reactivity,
and Cross-Infection. J. Virol. 2002, 76, 6155–6163. [CrossRef] [PubMed]

140. Jansen, M.D.; Gjerset, B.; Modahl, I.; Bohlin, J. Molecular epidemiology of salmonid alphavirus (SAV) subtype
3 in Norway. Virol. J. 2010, 7, 188. [CrossRef] [PubMed]

141. Díaz-Quiñonez, J.A.; Escobar-Escamilla, N.; Ortíz-Alcántara, J.; Vázquez-Pichardo, M.;
Torres-Rodríguez, M.L.; Nuñez-León, A.; Torres-Longoria, B.; López-Martínez, I.; Ruiz-Matus, C.;
Kuri-Morales, P.; et al. Identification of Asian genotype of chikungunya virus isolated in Mexico. Virus Genes
2016, 52, 127–129. [CrossRef] [PubMed]

142. Rodas, J.D.; Kautz, T.; Camacho, E.; Paternina, L.; Guzman, H.; Díaz, F.J.; Blanco, P.; Tesh, R.; Weaver, S.C.
Genetic Characterization of Northwestern Colombian Chikungunya Virus Strains from the 2014–2015
Epidemic. Am. J. Trop. Med. Hyg. 2016, 95, 639–646. [CrossRef] [PubMed]

143. Erasmus, J.H.; Rossi, S.L.; Weaver, S.C. Development of Vaccines for Chikungunya Fever. J. Infect. Dis. 2016,
214, S488–S496. [CrossRef] [PubMed]

144. Weaver, S.C.; Osorio, J.E.; Livengood, J.A.; Chen, R.; Stinchcomb, D.T. Chikungunya virus and prospects for
a vaccine. Expert Rev. Vaccines 2014, 11, 1087–1101. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/v7082826
http://www.ncbi.nlm.nih.gov/pubmed/26258788
http://dx.doi.org/10.1371/journal.ppat.1001087
http://www.ncbi.nlm.nih.gov/pubmed/20824094
http://dx.doi.org/10.1016/j.virusres.2013.06.008
http://www.ncbi.nlm.nih.gov/pubmed/23816605
http://dx.doi.org/10.1371/journal.ppat.1005297
http://www.ncbi.nlm.nih.gov/pubmed/26588073
http://dx.doi.org/10.1007/s13238-010-0025-y
http://www.ncbi.nlm.nih.gov/pubmed/21203971
http://dx.doi.org/10.1038/nsmb.1779
http://www.ncbi.nlm.nih.gov/pubmed/20383144
www.biotron.com.au
http://dx.doi.org/10.1016/0042-6822(90)90272-S
http://dx.doi.org/10.1099/0022-1317-72-6-1461
http://www.ncbi.nlm.nih.gov/pubmed/2045796
http://dx.doi.org/10.1128/JVI.76.3.1273-1284.2002
http://www.ncbi.nlm.nih.gov/pubmed/11773403
http://dx.doi.org/10.1085/jgp.201411176
http://www.ncbi.nlm.nih.gov/pubmed/24821965
http://dx.doi.org/10.1006/viro.2000.0708
http://www.ncbi.nlm.nih.gov/pubmed/11145902
http://dx.doi.org/10.1128/JVI.03453-13
http://www.ncbi.nlm.nih.gov/pubmed/24371047
http://dx.doi.org/10.1111/jfd.12478
http://www.ncbi.nlm.nih.gov/pubmed/27136332
http://dx.doi.org/10.1006/viro.1999.9654
http://www.ncbi.nlm.nih.gov/pubmed/10191183
http://dx.doi.org/10.1128/JVI.76.12.6155-6163.2002
http://www.ncbi.nlm.nih.gov/pubmed/12021349
http://dx.doi.org/10.1186/1743-422X-7-188
http://www.ncbi.nlm.nih.gov/pubmed/20701761
http://dx.doi.org/10.1007/s11262-015-1275-9
http://www.ncbi.nlm.nih.gov/pubmed/26781948
http://dx.doi.org/10.4269/ajtmh.16-0091
http://www.ncbi.nlm.nih.gov/pubmed/27430542
http://dx.doi.org/10.1093/infdis/jiw271
http://www.ncbi.nlm.nih.gov/pubmed/27920179
http://dx.doi.org/10.1586/erv.12.84
http://www.ncbi.nlm.nih.gov/pubmed/23151166


Viruses 2017, 9, 228 21 of 21

145. Cheng, R.H.; Kuhn, R.J.; Olson, N.H.; Rossmann, M.G.; Choi, H.K.; Smith, T.J.; Baker, T.S. Nucleocapsid and
glycoprotein organization in an enveloped virus. Cell 1995, 80, 621–630. [CrossRef]

146. Akahata, W.; Yang, Z.-Y.; Andersen, H.; Sun, S.; Holdaway, H.A.; Kong, W.-P.; Lewis, M.G.; Higgs, S.;
Rossmann, M.G.; Rao, S.; et al. A virus-like particle vaccine for epidemic Chikungunya virus protects
nonhuman primates against infection. Nat. Med. 2010, 16, 334–338. [CrossRef] [PubMed]

147. Kostyuchenko, V.A.; Jakana, J.; Liu, X.; Haddow, A.D.; Aung, M.; Weaver, S.C.; Chiu, W.; Lok, S.M. The
Structure of Barmah Forest Virus as Revealed by Cryo-Electron Microscopy at a 6-Angstrom Resolution Has
Detailed Transmembrane Protein Architecture and Interactions. J. Virol. 2011, 85, 9327–9333. [CrossRef]
[PubMed]

148. Mukhopadhyay, S.; Zhang, W.; Gabler, S.; Chipman, P.R.; Strauss, E.G.; Strauss, J.H.; Baker, T.S.; Kuhn, R.J.;
Rossmann, M.G. Mapping the Structure and Function of the E1 and E2 Glycoproteins in Alphaviruses.
Structure 2006, 14, 63–73. [CrossRef] [PubMed]

149. Tang, J.; Jose, J.; Chipman, P.; Zhang, W.; Kuhn, R.J.; Baker, T.S. Molecular Links between the E2 Envelope
Glycoprotein and Nucleocapsid Core in Sindbis Virus. J. Mol. Biol. 2011, 414, 442–459. [CrossRef] [PubMed]

150. Zhang, R.; Hryc, C.F.; Cong, Y.; Liu, X.; Jakana, J.; Gorchakov, R.; Baker, M.L.; Weaver, S.C.; Chiu, W. 4.4
Å cryo-EM structure of an enveloped alphavirus Venezuelan equine encephalitis virus. EMBO J. 2011, 30,
3854–3863. [CrossRef] [PubMed]

151. Ruch, T.R.; Machamer, C.E. A Single Polar Residue and Distinct Membrane Topologies Impact the Function
of the Infectious Bronchitis Coronavirus E Protein. PLoS Pathog. 2012, 8, e1002674. [CrossRef] [PubMed]

152. Ruch, T.R.; Machamer, C.E. The Coronavirus E Protein: Assembly and Beyond. Viruses 2012, 4, 363–382.
[CrossRef] [PubMed]

153. Westerbeck, J.W.; Machamer, C.E. A Coronavirus E Protein Is Present in Two Distinct Pools with Different
Effects on Assembly and the Secretory Pathway. J. Virol. 2015, 89, 9313–9323. [CrossRef] [PubMed]

154. Holodniy, M.; Kamali, A. Influenza treatment and prophylaxis with neuraminidase inhibitors: A review.
Infect. Drug Resistance 2013, 6, 187–198. [CrossRef] [PubMed]

155. Von Itzstein, M.; Wu, W.Y.; Kok, G.B.; Pegg, M.S.; Dyason, J.C.; Jin, B.; Van Phan, T.; Smythe, M.L.; White, H.F.;
Oliver, S.W. Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 1993,
363, 418–423. [CrossRef] [PubMed]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0092-8674(95)90516-2
http://dx.doi.org/10.1038/nm.2105
http://www.ncbi.nlm.nih.gov/pubmed/20111039
http://dx.doi.org/10.1128/JVI.05015-11
http://www.ncbi.nlm.nih.gov/pubmed/21752915
http://dx.doi.org/10.1016/j.str.2005.07.025
http://www.ncbi.nlm.nih.gov/pubmed/16407066
http://dx.doi.org/10.1016/j.jmb.2011.09.045
http://www.ncbi.nlm.nih.gov/pubmed/22001018
http://dx.doi.org/10.1038/emboj.2011.261
http://www.ncbi.nlm.nih.gov/pubmed/21829169
http://dx.doi.org/10.1371/journal.ppat.1002674
http://www.ncbi.nlm.nih.gov/pubmed/22570613
http://dx.doi.org/10.3390/v4030363
http://www.ncbi.nlm.nih.gov/pubmed/22590676
http://dx.doi.org/10.1128/JVI.01237-15
http://www.ncbi.nlm.nih.gov/pubmed/26136577
http://dx.doi.org/10.2147/IDR.S36601
http://www.ncbi.nlm.nih.gov/pubmed/24277988
http://dx.doi.org/10.1038/363418a0
http://www.ncbi.nlm.nih.gov/pubmed/8502295
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The Assembly-Centric Alphavirus Lifecycle 
	Enter TF, the Other 6K 
	Looking Back at the Discovery of the 6K Protein 
	Posttranslational Modification in TF, but not 6K 
	Mutations that Control the Production of 6K and TF during an Infection 
	Evidence that 6K Functions as a Spacer during Spike Assembly 
	Direct Evidence for a 6K:E2 Interaction in Glycoprotein Maturation 
	6K is a Viroporin 
	TF as a Virulence Determinant in Animal Infections 
	Future Directions in 6K and TF Research 
	How Does 6K Promote Budding from Inside the Cell? 
	What Regulates TF Translation and Palmitoylation? 
	What is the Structure and Oligomeric State of the 6K and TF Proteins? 
	Can We Target the Budding Proteins 6K and TF for Antivirals? 

	Conclusions 

