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Abstract: An efficient, three-component reaction of aldehydes and benzofuran-3-ones was developed.
This process provides a new approach for the preparation of synthetically and biologically important
spirobenzofuran-3-one derivatives with moderate-to-good yields under mild conditions. A switch of
intramolecular to intermolecular domino Michael–aldol–lactonization leading to differential product
formation was achieved by different NHCs catalysis.

Keywords: N-heterocyclic carbenes; α,β-unsaturated acylazoliums; Spirobenzofuran-3-one; three-
component reaction; δ-Lactones

1. Introduction

Spirobenzofuran-3-ones are an important class of structural scaffolds and widely occur
in various natural products, bioactive molecules and pharmaceuticals [1–10]. In particu-
lar, the spiro-bicyclic skeleton has attracted considerable attention due to its outstanding
bioactivity that includes, for example, antibiotic, antidiabetic, anti-inflammatory, antifungal
and antimicrobial activities (Figure 1) [11–15]. Due to its widespread biological activity
and inherent structural importance, great efforts have been devoted to effectively access
spirobenzofuran-3-one derivatives [16–23], and a handful of synthetic transformations for
the construction of spiro-bicyclic benzofuran-3-ones have been developed [24–27]. How-
ever, most of these reported strategies suffer from many deficiencies including multistep
procedures, the requirement of a prefunctionalized benzofuran ring, expensive catalysts
and in some cases harsh reaction conditions. Further development of a mild and facile
method for the formation of spirobenzofuran-3-one starting from readily available materials
is still very much needed.

Figure 1. Naturally occurring bioactive products with spirobenzofuran-3-one core.
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N-heterocyclic carbene (NHC) catalysis has emerged as one of the most popular fields
for the construction of various structurally diverse carbocycles and heterocycles in the past
two decades [28–35]. A wide variety of catalytic transformations proceeding via various
NHC-catalyzed umpolung [36–42] or non-umpolung [43–47] strategies have been achieved.
In general, there are four important modes for NHCs involved in organocatalysis, including
(i) Breslow intermediates [48,49], (ii) homoenolate intermediates [50,51], (iii) enolates [52,53]
and (iv) α,β-unsaturated acylazolium intermediates [54,55]. As shown in Scheme 1, the
state of the art for preparing spiro-bicyclic benzofuran-3-ones utilizing NHC catalysis was
represented by Glorius and co-workers; it was observed that homoenolates generated
from enals by NHCs underwent facile annulation to aurones to give bis-spirofuranones
(eq 1) [56]. At the same time, the Zhao group reported an elegant method for the stereos-
elective construction of spiro-heterocycles from enals and heterocyclic enones, in which
the homoenolate intermediate plays a vital role in the control of the reaction pathway
(eq 2) [57]. Simultaneously, the Nair group described the formation of cyclopentene-fused
spirobenzofuran-3-ones through an NHC-involved generation of homoenolate equiva-
lents with aurone analogs (eq 3) [58]. All these good results have caught our attention for
preparing spiro-bicyclic benzofuran-3-one compounds via a homoenolate intermediate.
Very recently, our group implemented the concept in the construction of benzofuran-fused
δ-lactones using benzofuran-3-one substrates acting as dinucleophilic reagents to react
with the α,β-unsaturated acylazoliums (eq 4) [59]. To the best of our knowledge, direct
and valuable strategies using benzofuran-3-one as a simple starting bisnucleophile for the
corresponding NHC-catalyzed spirocyclization reactions remain unexplored. This is part of
our ongoing interest in developing new strategies for the synthesis of structurally diverse
products by changing the structure of the catalyst and the substrate. Herein, we describe
a very simple and convenient method for an NHC-promoted Michael–intramolecular
aldol–lactonization sequence to deliver the spirocyclic products (eq 5).

Scheme 1. NHC-catalyzed annulation reactions of benzofuran-3-ones or their derivatives.
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2. Results and Discussion

We initiated our studies with the readily available benzofuran-3-one 1a and two molecules
of α-bromoenal 2a as the starting materials in the presence of 20 mol % of NHC in toluene
at room temperature for optimizing the reaction conditions (Table 1, entries 1–10).

Table 1. Optimization of reaction conditions a.

Entry Catalyst Base Solvent Yield (%) b

1 A Cs2CO3 toluene 32
2 B Cs2CO3 toluene 55
3 C Cs2CO3 toluene 22
4 D Cs2CO3 toluene 11
5 E Cs2CO3 toluene 38
6 F Cs2CO3 toluene Trace d

7 G Cs2CO3 toluene <5
8 H Cs2CO3 toluene Trace d

9 I Cs2CO3 toluene Trace d

10 J Cs2CO3 toluene <5
11 B DABCO toluene <5
12 B DBU toluene Trace d

13 B DIPEA toluene <5
14 B DMAP toluene 20
15 B Et3N toluene 34
16 B NaOAc toluene <5
17 B K2CO3 toluene 22
18 B KOBu t toluene Trace d

19 B Cs2CO3 THF 34
20 B Cs2CO3 DCM 12
21 B Cs2CO3 CH3CN Trace d

22 B Cs2CO3 anisole 35
23 B Cs2CO3 MTBE 46

24 c B Cs2CO3 toluene 63
25 - Cs2CO3 toluene Trace d

a Reaction conditions: 1a (0.1 mmol), 2a (0.25 mmol), cat (0.02 mmol), base (0.12 mmol), solvent (1.0 mL), room
temperature, 24 h. Diastereoselectivity ratio (d.r) values (all products > 20:1) were determined by crude 1H NMR.
b Isolated yields. c 4 A MS (50 mg) was used. d Degradation of the reactant and traces of the targeted compound.
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Various NHC precursors were investigated by using Cs2CO3 as a base. In the presence
of the precatalyst A, the desired product 3a was formed in only 32% yield. In some cases,
such as when F, H and I were employed, the degradation of the reactant was observed
along the traces of the targeted compound (Table 1, entries 6, 8, 9); in other cases, the
reactions were complicated and only small amounts of products were isolated (Table 1,
entries 7, 10). Further adjustment of other NHC catalysts revealed that precatalyst B
exhibited the highest catalytic activity, and the desired spirobenzofuranone derivative 3a
was isolated in 55% yield (Table 1, entry 2 vs. entries 1, 3–10). These results show that
precatalyst B exhibited the highest catalytic activity. It is possible that due to the partially
non-aromatic ring structure of B, the electrophilicity of the carbonyl attached to the partially
aromatic ring structure of B was not as strong as that of other NHCs, which resulted in
intermolecular aldol reaction rather than intramolecular cyclization [59]. Then, a wide
range of organic and inorganic bases were investigated. DABCO, DIPEA and NaOAc could
not push the reaction forward effectively and gave the isolated product in poor yields. The
screening of various bases revealed that Cs2CO3 was the optimal choice (Table 1, entry
2 vs. entries 11–18). Subsequently, several solvents were further screened, but no better
result was obtained (Table 1, entry 2 vs. entries 19–23). The use of 4 Å MS did give some
improvement in reactivity (Table 1, entry 24). It should be noted that the desired product
3a that we obtained in these screening cases are single diastereomers (dr >20:1). Finally,
the optimal reaction conditions with respect to yield was established (see Figure S1 in
Supplementary Materials).

With the optimized reaction conditions, the generality of the reaction was further evaluated
using enals 2 with various substitution patterns (see Figure S3 in Supplementary Materials). As
can be seen from Scheme 2, both electron-donating and electron-withdrawing substituents
all proceeded smoothly to give the desired spiro products in moderate-to-good yields
under the optimized conditions (3a–3o). In addition, enals 2 bearing different halogen
groups, e.g., I, Br and Cl, were all tolerated in the reaction (3a–3c). Enals bearing strong
electron-withdrawing substituents, such as 4-NO2, could be well-tolerated to give a high
yield of the corresponding product 3f. Moreover, enals with a meta-substituent on the
phenyl ring did not affect the reaction outcome and gave the cycloadduct in good yield
(3h); however, the ortho-substituent of the enal gave the corresponding product in quite
a low yield. Due to the electronic properties of naphthalene, 1-naphthaleneacrolein resulted
in higher reactivity (3i–3j). Subsequently, the easily accessible benzofuran-3-ones 1 also
underwent a smooth cascade reaction leading to the formation of the desired products in
good yields (3k–3o). In addition, when the enals were heterocyclic-substituted, the protocol
could still work well with a moderate yield (3p).

To further extend the substrate scope of this methodology, we turned our attention
to the three-component annulation with two different aldehydes. It was found that this
method was successful in the preparation of spiro-bicyclic benzofuran-3-ones in moderate
yields (Scheme 3). Substitution at the 4-position with electron-withdrawing groups gave the
products 5d to 5g with moderate yields. The same result of 3,5-Dichlorobenzaldehyde could
work in this cycloaddition reaction, with the corresponding product 5h. Probably affected
by steric hindrance, the ortho-substituents were not effective for this transformation.

Based on the above results of the study and previous reports [60–62], we propose
a mechanistic rationalization for the construction of spiro-bicyclic benzofuran-3-one as
follows (Scheme 4). Initially, the reaction proceeds via the free carbene nucleophilic attack
on α-bromoenal 2a and the debromination to generate the key α,β-unsaturated acylazolium
intermediate I under basic reaction conditions. The substrate 1a forms the enolate 1a’. Sub-
sequently, the Michael addition of the enolate 1a’ to intermediate I forms the intermediate II,
and an intramolecular proton transfer gives the intermediate III. After this, intermediate III
underwent an intermolecular aldol reaction with another molecule of α-bromoenal 2a to
form IV. Finally, intermediate IV via intramolecular lactonization results in the formation
of the desired spirobenzofuranones 3.
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Scheme 2. Substrate scope of the reaction between benzofuran-3-ones 1 and enals 2. All reactions
were carried out as stated in Table 1, entry 24. Isolated yields. Dr values (all products > 20:1) were
determined by crude 1H NMR.
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Scheme 3. Three-component cascade reactions with two different aldehydes. All reactions were
carried out as stated in Table 1, entry 24. Isolated yields. Dr values (all products > 20:1) were
determined by crude 1H NMR.

Scheme 4. Plausible catalytic cycle.
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3. Materials and Methods

NMR spectra were obtained on a Bruker Avance 400 spectrometer (Bruker Corporation,
Billerica, MA, USA); 400 for 1H NMR or 100 MHz for 13C NMR. 1H NMR spectra J-values
were reported in Hz. Toluene was dried and fractionally distilled from CaH2. Commercially
obtained reagents were used as received. Column chromatography was performed using
Huanghai 300–400 mesh silica gel (Huanghai Corporation, Yantai, China) at increased
pressure. HRMS (m/z) was measured using a Thermo Scientific™ Q Exactive (Thermo
Scientific, New York, NY, USA).

4. Conclusions

In conclusion, we accomplished a novel NHC-catalyzed three-component annu-
lation reaction for the efficient synthesis of the medicinally important spirobenzofura-
none derivatives containing three contiguous stereocenters and one all-carbon quater-
nary spirocenter. The interception of the α-bromoenals with the catalytically generated
α,β-unsaturated acylazoliums proceeds in a Michael addition–aldol reaction–cyclization
sequence. This protocol can tolerate a series of available substrates and spiro-bicyclic
benzofuran-3-ones were obtained in moderate-to-good yields with excellent diastereoselec-
tivities (all products > 20:1 dr). Given the importance of the spirobenzofuranone deriva-
tives, it is conceivable that the method outlined here may be a practical way to access these
relevant molecules.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27185952/s1. Figure S1: General procedure for synthesis
of δ-Lactone-fused spirobenzofuran-3-ones 3 and 5, Figure S2: Crystal data and structural refinement
for 3a, Figure S3: Copies of NMR spectra. References [63–77] are cited in the Supplementary Materials.
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