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Abstract 

Background:  Effective removal of pathogenic bacteria is key to improving the prognosis of sepsis. Polymorphonu-
clear neutrophils (PMNs) are the most important components of innate cellular immunity and play vital roles in clear-
ing pathogenic bacteria. However, the metabolic characteristics and immunomodulatory pathways of PMNs during 
sepsis have not been investigated. In the present study, we explored the immune metabolism characteristics of PMNs 
and the mechanism by which neutrophilic glycolysis is regulated during sepsis.

Methods:  Metabolomics analysis was performed on PMNs isolated from 14 septic patients, 26 patients with acute 
appendicitis, and 19 healthy volunteers. Transcriptome analysis was performed on the PMNs isolated from the healthy 
volunteers and the patients with sepsis to assess glycolysis and investigate its mechanism. Lipopolysaccharide (LPS) 
was used to stimulate the neutrophils isolated from the healthy volunteers at different time intervals to build an 
LPS-tolerant model. Chemotaxis, phagocytosis, lactate production, oxygen consumption rate (OCR), and extracellular 
acidification rate (ECAR) were evaluated.

Results:  Transcriptomics showed significant changes in glycolysis and the mTOR/HIF-1α signaling pathway during 
sepsis. Metabolomics revealed that the Warburg effect was significantly altered in the patients with sepsis. We discov-
ered that glycolysis regulated PMNs’ chemotaxis and phagocytosis functions during sepsis. Lactate dehydrogenase 
A (LDHA) downregulation was a key factor in the inhibition of glycolysis in PMNs. This study confirmed that the PI3K/
Akt-HIF-1α pathway was involved in the LDHA expression level and also influenced PMNs’ chemotaxis and phagocyto-
sis functions.

Conclusions:  The inhibition of glycolysis contributed to neutrophil immunosuppression during sepsis and might be 
controlled by PI3K/Akt-HIF-1α pathway-mediated LDHA downregulation. Our study provides a scientific theoretical 
basis for the management and treatment of patients with sepsis and promotes to identify therapeutic target for the 
improvement of immune function in sepsis.
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Introduction
Sepsis is defined as life-threatening organ dysfunc-
tion caused by dysregulated host response to infection 
[1]. It has become the most common cause of death in 
intensive care units (ICU) [2]. Pathogenic bacteria can 
not be promptly or effectively removed during sepsis 
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[3], potentially resulting in multiple organ dysfunc-
tion aggravation and eventually, death in patients with 
sepsis [4]. Rapid and effective clearance of pathogenic 
bacteria are the key to improving the prognosis of 
sepsis.

Neutrophils are the most important components of 
innate cellular immunity [5]. When pathogenic bacte-
ria invade the host, neutrophils arrive at the infection 
site to clear the infection [6]. In the early stages of sep-
sis, neutrophils are essential for clearing pathogenic 
bacteria and are the first line of defense [7, 8]. Neutro-
phils are multifaceted innate immunocytes that modu-
late the inflammatory response and initiate adaptive 
immune responses by releasing cytokines [9]. This 
coordinated response maintains immune homeostasis.

Neutrophilic dysfunction has been reported in 
patients with sepsis [10]. Previous studies consistently 
suggested that specific changes in neutrophil func-
tion occur in patients with sepsis; some of these are 
associated with poor clinical outcome [11]. A micro-
array analysis indicated the suppression of neutrophil 
immune and inflammatory function in patients with 
sepsis 24 h after admission [12]. Neutrophils may also 
have reduced antimicrobial function and impaired 
ability to inhibit adaptive immunity in  vitro [13]. 
Hence, it is necessary to clarify the roles of neutrophils 
in dysregulated immune response that leads to delete-
rious outcomes in patients with sepsis.

Interest in metabolic reprogramming to regulate 
immune function has grown over the past decade. 
Recent studies on monocytes and lymphocytes have 
focused on metabolic adaptation [14, 15]. The roles of 
metabolic pathways in immune regulation have been 
clarified [16, 17]. Polymorphonuclear neutrophils 
(PMNs) have few mitochondria and may rely exclu-
sively upon relatively inefficient glycolysis for energy 
metabolism, with glycolysis generating the majority 
of ATP required for neutrophil function [18, 19]. In 
the process of phagocytosis, ATP consumption rate is 
very high [20], and in sepsis, systemic ATP inhibits the 
activation and chemotaxis of neutrophils by interfer-
ing with the endogenous purinergic signaling mecha-
nism [21]. However, the metabolic characteristics and 
immunomodulatory pathways of neutrophils during 
sepsis have not yet been investigated.

As the present study focuses on sepsis-related neu-
trophil dysfunction, we compared the metabolic prop-
erties of the neutrophils in patients with and without 
sepsis. We examined the metabolic characteristics and 
mechanisms of neutrophils in sepsis. We also explored 
the possible relationship between immune function 
and metabolism in neutrophils during sepsis.

Materials and methods
Reagents and antibodies
PolymorphPrep™ was obtained from Axis-shield AS 
(Oslo, Norway). HK2, HK3, PKM2, LHDA, Akt, p-Akt, 
PI3k, p-PI3k, and HIF-1α antibodies were purchased 
from Cell Signaling Technology (Danvers, MA, USA). 
Lactate estimation kits were obtained from Jiancheng 
Chemical (Nanjing, China). RPMI 1640 medium, fetal 
bovine serum (FBS), Quant-iT™ PicoGreen dsDNA assay 
kits, and Sytox Green were acquired from Invitrogen 
(Carlsbad, CA, USA). Insulin, 2-DG, LY294002, BAY-85, 
BAY-87 and other chemicals were purchased from Sigma 
Aldrich Corp. (St. Louis, MO, USA) unless otherwise 
specified. Detailed information about these reagents and 
antibodies is shown in Additional file 1: Table S1.

Study participants
All participants provided written informed consent and 
the study was performed in accordance with the prin-
ciples of the Declaration of Helsinki. Fourteen patients 
admitted to the emergency department or ICU of Ruijin 
Hospital between July 2018 and July 2019 were enrolled 
in this study within 24  h after the diagnosis of sepsis. 
Sepsis 3.0 criteria were used to define sepsis [1]. Patients 
were assigned to the sepsis group if they had life-threat-
ening organ dysfunction indicated by an increase of at 
least two points in the Sequential Organ Failure Assess-
ment (SOFA) score after infection. The study exclusion 
criteria were HIV infection, autoimmune disease, hema-
tological neoplasms, and viral hepatitis. Blood samples 
were collected on the first day of diagnosis of sepsis. In 
order to analyze the differences between the non-septic 
infection group and the septic group, we used two con-
trol groups: (1) a healthy control group comprised of 
healthy volunteers, (2) a non-septic infection group 
(infection group without organ dysfunction) comprised 
of patients with acute appendicitis. Both control groups 
were matched by age and sex. The detailed characteristics 
of the participants are listed in Additional file 2: Table S2.

Human neutrophil isolation
Venous blood was drawn from patients and healthy adult 
volunteers and immediately transferred to tubes contain-
ing EDTA. Neutrophils were isolated from whole blood 
with PolymorphPrep™ (Axis-shield AG, Oslo, Norway). 
Five milliliters PolymorphPrep™ was placed in a 15-mL 
round-bottom tube and 5  mL whole blood was layered 
onto the PolymorphPrep™. This preparation was then 
centrifuged at 500 × g and 20  °C for 30  min to separate 
the blood into its components. The granulocyte layer 
was harvested, resuspended in phosphate-buffered 
saline (PBS), and washed by centrifugation at 350 × g 
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for 10 min. The red blood cells were lysed. The neutro-
phils were washed, counted with a hemocytometer, and 
centrifuged at 350 × g for 10  min. The neutrophils were 
then diluted to the required concentration in RPMI 
1640 medium (Gibco Ltd., Grand Island, NY, USA) sup-
plemented with 10% fetal bovine serum (FBS) or cryo-
preserved in liquid nitrogen until subsequent analysis. 
Differential counts showed that all preparations con-
sisted of > 97% neutrophils and > 95% of them were viable 
according to the Trypan blue dye exclusion assay.

Transcriptomics analysis
RNA was collected with the RNeasy Micro kit (Qiagen, 
Hilden, Germany) from the PMNs of healthy controls and 
patients with sepsis. Total RNA quality was assessed by 
spectrophotometry (NanoDrop; Thermo Fisher Scientific 
Inc., Waltham, MA, USA) and an Agilent 4200 Bioana-
lyzer (Agilent Technologies, Palo Alto, CA, USA). Intact 
mRNA was isolated with a Dynabead mRNA purification 
kit for total RNA (Thermo Fisher Scientific, Waltham, 
MA, USA) according to the manufacturer’s protocol. 
Amplified cDNA was prepared with a NEB Next8.1 
Poly(A) mRNA magnetic isolation module (New England 
Biolabs, Ipswich, MA, USA) according to the manufac-
turer’s protocol. Sequencing libraries were generated with 
the Nextera XT library preparation kit and multiplexing 
primers (Illumina, San Diego, CA, USA) according to 
the manufacturer’s protocols. Library fragment size dis-
tributions were assessed with the Bioanalyzer 4200 and 
a DNA high-sensitivity chip (Agilent Technologies, Santa 
Clara, CA, USA). Library sequence quality was assessed 
by sequencing single-end, 50-bp reads on the Illumina 
MiSeq platform (Illumina, San Diego, CA, USA). Librar-
ies were pooled for high-throughput sequencing on the 
Illumina NovaSeq 6000 (Illumina, San Diego, CA, USA) 
using equal numbers of uniquely mapped protein-cod-
ing reads. RNA sequencing was performed on NovaSeq 
6000 machines (Illumina, San Diego, CA, USA). The raw 
sequencing results were then de-multiplexed, trimmed of 
adapter sequences, and aligned to the reference genome 
using STAR v. 49. DESeq2 was used for normalization by 
size factor (reads per sample) and library complexity. The 
Wald test was used to determine the significance of dif-
ferential expression [22].

Metabolomics analysis
We performed the metabolomics analysis with a Q300 
Kit (Metabo-Profile, Shanghai, China). Harvested cell 
samples were stored in an Eppendorf Safelock micro-
centrifuge tube (Eppendorf, Hamburg, Germany) and 
mixed with ten pre-chilled zirconium oxide beads and 
20 µL deionized water. Samples were homogenized 
for 3  min and 150 µL methanol containing the internal 

standard was added to extract the metabolites. The sam-
ples were homogenized for another 3  min and centri-
fuged at 18,000 × g for 20  min. The supernatants were 
transferred to 96-well plates. The following procedures 
were performed on a Biomek 4000 workstation (Biomek 
4000; Beckman Coulter Inc., Brea, CA, USA). Twenty 
microliters freshly prepared derivative reagent was 
added to each well. The plate was sealed and derivatiza-
tion was conducted at 30  °C for 60  min. After derivati-
zation, the samples were evaporated for 2 h and 330 µL 
ice-cold 50% (v/v) methanol was added to each well to 
reconstitute the samples. The plate was stored at − 20 °C 
for 20 min and the samples were centrifuged at 4000 × g 
and 4 °C for 30 min. Then, 135 µL supernatant was trans-
ferred to a new 96-well plate. Each well contained 10 µL 
internal standards. Serial dilutions of derivatized stock 
standards were added to the wells on the left side and 
the plate was sealed for liquid chromatography-mass 
spectrometry (LC–MS) analysis. All internal standards 
were obtained from Sigma-Aldrich Corp. (St. Louis, 
MO, USA), Steraloids Inc. (Newport, RI, USA), and 
TRC Chemicals (Toronto, ON, Canada). All standards 
were accurately weighed and prepared in water, metha-
nol, aqueous sodium hydroxide, or aqueous hydrochloric 
acid to obtain 5.0  mg/mL stock solutions. Appropriate 
amounts of each stock solution were mixed to prepare 
stock calibration solutions. An ultraperformance liquid 
chromatography coupled to tandem mass spectrometry 
(UPLC-MS/MS) system (ACQUITY UPLC-Xevo TQ-S; 
Waters Corp., Milford, MA, USA) was used by Metabo-
Profile Biotechnology (Shanghai) Co. Ltd. to quantitate 
all metabolites targeted in the present study.

Raw data files generated by UPLC-MS/MS were pro-
cessed on the iMAP platform (v. 1.0; Metabo-Profile, 
Shanghai, China). Principal component analysis (PCA) 
and orthogonal partial least squares discriminant analy-
sis (OPLS-DA) were also conducted. Variable importance 
in projection (VIP) was obtained based on the OPLS-DA 
model. Metabolites with VIP > 1 and P < 0.05 were consid-
ered as significantly differentially expressed metabolites 
(DEMs). The Z-score indicates the number of standard 
deviations by which an observation is above or below 
the control group mean, the V-plot integrates the fold 
change, and the P-value indicates significantly different 
metabolites.

In vitro cell model
For the lipopolysaccharide (LPS)-activated and LPS-
tolerant models, primary neutrophils were cultured 
in RPMI 1640 medium supplemented with 10% FBS. 
The cells were treated with two concentrations of LPS 
(100  ng/mL and 1  ug/mL). Chemotaxis, phagocytosis, 
and lactate production were evaluated at 0 h, 1 h, 2 h, 4 h, 
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6 h, 8 h, and 12 h to determine the phase points of neu-
trophil activation and inhibition.

Lactate quantification assay
Lactate accumulation in the culture was assessed with 
a commercially obtained lactate estimation kit (Nan-
jing Jiancheng, China) according to the manufacturer’s 
instructions.

Neutrophil chemotaxis assay
Neutrophil chemotaxis was measured in a 96-well chem-
otaxis chamber (Neuroprobe Inc., Gaithersburg, MD, 
USA) using the method of Frevert et al. [23] with modi-
fications. Wells were filled with fMLP (50  nM), RPMI 
1640 medium, or neutrophils (5 × 104) resuspended in 
RPMI 1640 medium. A filter membrane was positioned 
over the loaded wells and 25 μL neutrophils (2 × 106/mL) 
was placed directly onto 3.0-μm filter sites. The cham-
ber was incubated under 5% CO2 at 37 °C for 1 h. Unmi-
grated neutrophils were removed from the upper surface 
of the filter by wiping and washing with 25-μL aliquots 
of RPMI 1640 medium. Neutrophils that migrated to 
the underside of the filter and into the lower wells were 
counted with a hemocytometer. To dislodge any migrated 
cells adherent to the underside of the filter membrane, 
the plate and attached filter were centrifuged at 350 × g 
for 10 min. The filter was removed and the neutrophils in 
the wells of the chemotaxis plate were resuspended and 
counted with a hemocytometer.

Neutrophil phagocytosis assay
For Neutrophil Phagocytosis Assay, a flow cytometric 
technique was used to detect phagocytosis, as reported 
previously [24, 25]. Aliquots of 100 μL of cells at a con-
centration of 1 × 104/μL were incubated with 10  μL of 
FluoSpheres Fluorescent Microsphere (1 × 1010 micro-
spheres/mL Invitrogen F13081) for 40 min at 37  °C. (In 
this procedure, neutrophils ingest the microsphere par-
ticles through phagocytosis.) Next, the cells were washed 
five times with PBS (to remove the free particles) and 
then suspended in 1 ml of PBS. The cell suspensions were 
analyzed using a flow cytometer (Becton Dickinson, NJ, 
USA).

Annexin V‑FITC/PI FACS (fluorescence‑activated cell 
sorting) apoptosis assay
Cells were trypsinized with an Annexin V-FITC/PI apop-
tosis detection kit (Solarbio Life Sciences, Beijing, China) 
according to the manufacturer’s instructions and then 
washed twice with PBS. The cells were resuspended in a 
mixture of 200 μL binding buffer, 10 μL Annexin V-FITC, 
and 10 μL PI, gently mixed, and incubated in the dark at 
37  °C for 15 min. Binding buffer (300 μL) was added to 

each tube and the samples were analyzed by flow cytom-
etry (Becton Dickinson, Franklin Lakes, NJ, USA) within 
1 h.

Real‑time cell metabolism assay
The XFp Extracellular Flux Analyzer (Seahorse Biosci-
ence, North Billerica, MA, USA) was used for real-time 
analysis of the extracellular acidification rate (ECAR) 
and the oxygen consumption rate (OCR). Briefly, human 
neutrophils (5 × 104/well) were resuspended in sterile XF 
base media supplemented with 10  mM D-glucose (pH 
7.4), plated on XFp cell culture plates pre-coated with 
0.001% poly-L-lysine, and allowed to settle at 37  °C for 
30  min. The manufacturer’s instructions were followed 
to obtain real-time ECAR and OCR measurements. OCR 
was measured under the following conditions: (1) basal; 
(2) 1 μM oligomycin; (3) 0.3 μM FCCP; and (4) 0.5 μM 
rotenone + 0.5  μM antimycin. To quantify ECAR, the 
glycolysis inhibitor 2-DG was injected to stop glycolytic 
acidification. OCR and ECAR were normalized to the 
total protein.

Western blot
Proteins from the cultured cells were obtained using cell 
lysis buffer (50 mM Tris (pH 8.0), 150 mM NaCl, 1% (w/v) 
NP-40, and 0.1% (w/v) SDS). Protein concentrations 
were measured with a bicinchoninic acid (BCA) assay 
kit (Thermo Fisher Scientific, Waltham, MA, USA). The 
protein extracts were denatured at 100 °C for 5 min and 
separated by 10% sodium dodecyl sulfate–polyacryla-
mide gel electrophoresis (SDS-PAGE) at 80 V for ~ 1.5 h. 
Proteins were blotted onto an Immobilon-P™ polyvi-
nylidene fluoride (PVDF) membrane (Merck Millipore 
Ltd., Dublin, Ireland) at 100  V for 2  h. The membranes 
were blocked with 5% (v/v) bovine serum albumin (BSA) 
in Tris-buffered saline with 0.1% (w/v) Tween-20 (TBST) 
at room temperature for 30  min. The membranes were 
then incubated overnight at 4 °C with primary antibodies 
to various candidate proteins (1:1,000). The membranes 
were washed thrice with TBST. Specific horseradish per-
oxidase (HRP)-conjugated secondary antibody was added 
at 1:5000 and detected by enhanced chemiluminescence 
(ECL). The optical density was then measured by BioRad 
ChemiDox (BioRad Laboratories, Hercules, CA, USA).

Statistical analyses
Data are presented as means ± standard deviation (SD) 
for at least three independent experiments. Statistical 
analyses were performed using GraphPad Instat v. 3.01 
(GraphPad Software, San Diego, CA, USA). Means of two 
groups were compared using Student’s t-test. One-way 
ANOVA with Brown-Forsythe and Welch ANOVA tests 
were performed for multiple comparisons. P < 0.05 was 
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considered statistically significant. *P < 0.05, **P < 0.01, 
and ***P < 0.001.

Results
PMN transcriptomics indicated significant changes 
in glycolysis and the mTOR/HIF‑1α signaling pathway 
during sepsis
An objective of the present study was to explore the 
immune function and metabolic characteristics of PMNs 
in sepsis. We examined the transcriptomes of PMNs iso-
lated from healthy volunteers and patients with sepsis to 
assess glycolysis and its mechanism in PMNs. RNA-Seq 
returned ~ 39  M raw reads per sample. We reviewed 
the raw data of the RNA-seq and found that the integ-
rity of the RNA met the quality control standards. The 
representative diagram has been shown as Additional 
file  3: Fig. S1. After quality filtration, ~ 95.6% of them 
were mapped as clean reads. The threshold of signifi-
cance was set to a false discovery rate (FDR) < 0.05 and 
677 differentially expressed genes (DEGs) were retained 
(Additional file  4: Table  S3) as shown in a heat map 
(Fig. 1a). Gene ontology (GO) term and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway assign-
ments were used to identify the gene functions affected 
by sepsis. KEGG pathway assignments were determined 
by mapping with the KEGG database and identified 224 
significantly (P < 0.05) enriched genes spanning 88 path-
ways (Additional file  5: Table  S4). Genes encoding the 
proteins involved in glycolysis and the hypoxia-inducible 
factor (HIF)-1α pathway were significantly upregulated 
in the PMNs from patients with sepsis relative to those 
of healthy volunteers (Fig.  1c). The glycolysis-encoding 
genes HK2 (hexokinase-2), HK3 (hexokinase-3), LDHA, 
and PKM (pyruvate kinase M) in the PMNs of patients 
with sepsis were significantly altered compared to those 
in the PMNs of healthy volunteers (Fig. 1b).

PMN spectra and metabolic profiles
We further explored the metabolic characteristics of the 
PMNs from patients with or without sepsis. The study 
included three groups of patients: (1) septic; (2) non-
septic, including patients with acute appendicitis and no 
organ function impairment; and (3) healthy volunteers. 
Patients with sepsis and acute appendicitis were diag-
nosed within 24 h. Clinical characteristics of the groups 
are listed in Additional file 2: Table S2.

PMNs from all three groups were analyzed by untar-
geted high-resolution metabolomics and > 1200 metab-
olite properties were detected. Missing values were 
filtered, and 110 metabolite properties were retained 
for statistical analysis. Differential metabolomic profiles 
of non-septic patients versus healthy controls and sep-
tic patients versus non-septic patients were obtained 

via principal component analysis (PCA) and orthogonal 
partial least square-discriminant analysis (OPLS-DA). 
The score plots displayed significant separation between 
non-septic patients (R2 = 0.634; Q2 = 0.268) and healthy 
controls as well as between patients without sepsis and 
those with sepsis (R2 = 0.661; Q2 = 0.314) (Fig.  2a–f). 
We screened differential metabolites by selecting those 
with P < 0.05 (Student’s t-test) and VIP > 1.0 (OPLS-DA 
model). A schematic illustration of the data analysis 
method is provided. There were twenty-eight DEMs in 
the non-septic group versus the healthy control group, 
and forty-four DEMs in the non-septic group versus the 
septic group. Seventeen DEMs overlapping in these three 
groups were presented in Fig.  2g and i. The heatmap 
showed the relative abundance of all 17 common dif-
ferential metabolites in all individuals based on the VIP 
scores (Fig. 2h). We found that the lactic acid levels in the 
neutrophils were significantly higher in the non-septic 
patients than that in the healthy controls (P = 0.04). In 
contrast, the lactic acid levels in the neutrophils were sig-
nificantly lower in the septic patients compared to that in 
the non-septic patients (P = 0.0007).

Warburg effect was significantly altered 
in the patients with sepsis
We compared the pathways between the septic patients 
and the healthy controls (Fig.  3a). We also compared 
the pathways between the non-septic patients with 
the patients with sepsis (Fig.  3b). Figure  3c showed the 
enriched pathways that overlapped in the healthy control 
group, the non-septic group, and the septic group. The 
most significantly enriched pathways included the War-
burg Effect, Mitochondrial Electron Transport Chain, 
Ammonia Recycling, Glycerolipid Metabolism, and De 
Novo Triacylglycerol Biosynthesis (Fig. 3d).

The inhibition of neutrophil glycolysis was accompanied 
with immune dysfunction in the LPS‑tolerant model 
in vitro
Using metabolomics analysis, we observed that the War-
burg effect was significantly altered in patients with sepsis 
compared with that in non-septic patients. Chemotaxis 
and phagocytosis were used to evaluate the immune 
function of neutrophils from healthy controls, non-sep-
tic patients, and septic patients. The neutrophils from 
the non-septic patients showed significantly higher lev-
els of chemotaxis and phagocytosis compared to healthy 
controls. However, when compared to the non-septic 
patients, the levels of chemotaxis and phagocytosis in 
the neutrophils of septic patients were significantly lower 
(Additional file 6: Fig. S2). To explore the mechanism of 
immunometabolism in PMNs during sepsis, we used LPS 
to stimulate neutrophils for different time periods and 
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established the LPS-tolerant model. It has been widely 
recognized that continuous LPS stimulation induces tol-
erance of defensive or allergic responses such as fever, 
shock [26], and inflammatory cytokine production in 

the host. Since LPS tolerance was first described, many 
studies have reported on the hyporesponsiveness to LPS 
in  vitro based on the attenuation of proinflammatory 
cytokine production [27]. We used two concentrations 

Fig. 1  PMN transcriptomics revealed significant changes in glycolysis and mTOR/HIF-1α signaling pathway. a Heat map of DEGs identified by 
RNA-seq between patients with sepsis and healthy controls (P < 0.05). b Differential expression levels of glycolysis-associated genes in patients with 
sepsis versus those in healthy controls. c Histogram of KEGG enrichment analysis showing 22 significantly enriched pathways in patients with sepsis. 
KEGG ontology assignments were used to classify functional annotations of identified genes to elucidate their biological functions
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of LPS (100 ng/mL and 1ug/mL) to continuously stimu-
late primary neutrophils over time, the relevant chart has 
been shown in Fig.  4a and Additional file  7: Fig. S3. As 
shown in Additional file  6: Fig. S2, the mRNA levels of 
TNF⍺, IL-6, CX3CR1, and CCL2 were significantly lower 
in neutrophils stimulated with LPS for 8 h compared to 
that in neutrophils stimulated with LPS for 4 h. In addi-
tion, the levels of chemotaxis and phagocytosis were both 
significantly lower in the 8  h treated neutrophils than 
that in the 4  h treated cells (Fig.  4d–f). Hence, 4  h and 
8  h LPS-stimulated neutrophils were taken as the LPS-
activated and LPS-tolerant cell models, respectively. 
Although Neutrophils have short lifespans in periph-
eral blood, certain studies have shown that stimulated 
neutrophils may live relatively longer than unstimulated 
ones [28, 29]. In addition, no significant differences were 
shown between LPS-tolerant and LPS-activated neutro-
phils in terms of apoptosis or necrosis rate (Fig. 4b, c).

The lactic acid level peaked at 4  h after LPS stimula-
tion and decreased thereafter (Fig.  4a). To understand 
the metabolic changes that occur in neutrophil activa-
tion, we stimulated neutrophils with LPS for 4 h or 8 h 
and evaluated real-time changes in oxygen consumption 
rate (OCR) and extracellular acidification rate (ECAR) in 
a Seahorse system (Seahorse Bioscience, North Billerica, 
MA, USA). ECAR is an index of lactate production. After 
4 h LPS stimulation, both OCR and ECAR had dramati-
cally increased in the neutrophils (Fig.  4g–l). After 8  h 
LPS stimulation, all LPS-tolerant neutrophils exhib-
ited similar OCR whereas their ECAR had significantly 
decreased (Fig.  4g–l). Whereas the PMNs switched 
towards aerobic glycolysis in response to activation, gly-
colysis was inhibited in the LPS-tolerant neutrophils.

Glycolysis regulates PMN chemotaxis and phagocytosis 
function during sepsis
HK2, HK3, LDHA, and PKM were screened by tran-
scriptomics and verified by western blot to clarify their 
involvement in the regulation of glycolysis in neutrophils. 
After 4 h LPS stimulation, LDHA and PKM were upreg-
ulated in the PMNs compared to the control. After 8  h 
LPS stimulation, LDHA and PKM were downregulated 
compared with their expression levels in response to 4 h 
LPS stimulation (Fig.  5a, d, f ). However, there were no 

significant differences between HK2 and HK3 in terms of 
their relative expression levels in response to 4 h or 8 h 
LPS stimulation (Fig. 5a–c).

We used the glycolysis inhibitor 2-DG (2-deoxyglu-
cose) to establish the roles of glycolysis in PMNs’ chem-
otaxis and phagocytosis functions during sepsis. In 
LPS-tolerant neutrophils, 2-DG reduced lactate produc-
tion (Fig. 5f ), neutrophil chemotaxis (Fig. 5g), and phago-
cytosis (Fig. 5h) compared with LPS-tolerant neutrophils 
without 2-DG treatment. In contrast, insulin increased 
the lactate production, chemotaxis, and phagocytosis of 
neutrophils (Fig. 5f–h).

To clarify the role of LDHA in phagocytosis, we used 
LDHA inhibitors (FX-11) to explore the role of LDHA 
in primary neutrophils. FX-11 was found to be a potent, 
competitive inhibitor of the enzyme’s NADH binding 
pocket [30]. As shown in the Additional file  8: Fig. S4, 
phagocytosis of neutrophils was significantly inhibited 
by FX-11 pretreatment. In addition, we developed LPS-
activated/tolerant model with the neutrophil-like sec-
ondary cell line (HL-60 cells). Different from the primary 
neutrophils, phagocytosis and lactate level were signifi-
cantly lower in the 6 h LPS-treated group than in the 2 h 
LPS-treated group. Therefore, 2  h and 6  h LPS-treated 
neutrophils were used as the LPS-activated and LPS-tol-
erant cell models. We found that knock down of LDHA 
significantly reduced the phagocytosis level of neutro-
phils upon 2 h LPS stimulation (Additional file 8: Fig. S4). 
These results indicated that LDHA plays an important 
role in regulating the phagocytosis of neutrophils.

LPS stimulation decreased PMN glycolysis level via PI3K/
Akt/HIF‑1α pathway
PMN transcriptomics identified HIF-1α as the LDHA-
associated signaling pathway in neutrophils during 
sepsis (Fig.  6a). To validate this, we found that 4  h LPS 
stimulation dramatically upregulated the levels of phos-
phorylated PI3K and Akt as well as the protein levels of 
HIF-1α and LDHA in the neutrophils, which were signifi-
cantly higher than that in the LPS-tolerant neutrophils 
(Fig. 6b–f).

To investigate the effects of PI3K/Akt pathway on 
PMN glycolysis during sepsis, PMNs were stimulated 
with LPS for 4 h or 8 h in the presence of the PI3K/Akt 

(See figure on next page.)
Fig. 2  Multivariate metabolite data analysis. a, b Principal component analysis (PCA) scores plots (left panels) and orthogonal partial least 
square-discriminant analysis (OPLS-DA) scores plots (right panels) of patients with non-septic infection versus those of healthy controls. Shaded 
areas are 95% confidence interval (CI) regions of each group. c Permutation test for OPLS-DA model of patients with non-septic infection versus 
that of healthy controls. d, e PCA and OPLS-DA score plots of patients with non-septic infection versus those of patients with sepsis. Shaded areas 
are 95% confidence interval (CI) regions of each group. f Permutation test for OPLS-DA model of patients with non-septic infection versus that of 
patients with sepsis. g Schematic diagram of data analysis procedures. h Heatmap showing abundance of 17 metabolites based on VIP scores of 
patients with sepsis, patients with non-septic infection, and healthy controls. i Differentiated metabolites among patients with sepsis, patients with 
non-septic infection, and healthy controls
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Fig. 2  (See legend on previous page.)
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pathway inhibitor LY294002. LY294002 pretreatment 
markedly reduced the phosphorylation levels of PI3K 
and Akt as well as the protein levels of HIF-1α and 
LDHA (Fig.  6g). In addition, lactate production, neu-
trophil chemotaxis, and phagocytosis also substantially 
inhibited by LY294002 (Fig. 6h–j). These data suggested 

that PI3K/Akt inhibition contributes to the decrease in 
PMN glycolysis during sepsis.

HIF-1α plays a central role in the development of mye-
loid cell-mediated inflammation. The HIF-1α stabilizer 
BAY-85 and inhibitor BAY-87 were used to explore the 
role of HIF-1α in PMN glycolysis during sepsis. BAY-85 

Fig. 3  Pathway analysis showing that the Warburg Effect pathway was significantly changed in patients with sepsis. a Pathway analysis revealed 
altered pathways in patients with non-septic infection versus those in healthy controls. b Pathway analysis revealed altered pathways in patients 
with non-septic infection versus those in patients with sepsis. c, d Pathways altered in patients with non-septic infection versus those in healthy 
controls (white circle) and in patients with non-septic infection versus those patients with sepsis (yellow circle). Pathways in cross area (red circle) 
were identified in both groups
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inhibits HIF proline hydroxylase (HIF-PH) and reduces 
the degradation of HIF, thereby stabilizing HIF-1α [31, 
32]. BAY-87 is a potent and selective HIF-1α inhibitor 
which was found to inhibit the expression of HIF target 
genes and the accumulation of HIF-1α protein [33]. The 
results showed that the levels of LDHA, lactate, chemo-
taxis, and phagocytosis functions were significantly 
enhanced in the LPS-tolerant neutrophils upon BAY-85 
pretreatment (Fig.  7a–d). In contrast, the levels of gly-
colysis, chemotaxis, and phagocytosis functions were 
inhibited in the LPS-activated neutrophils upon BAY-87 

pretreatment (Fig. 7b–d). In addition, by knocking down 
HIF-1α in HL60 cell models, we found that the levels 
of glycolysis and phagocytosis of neutrophils after LPS 
stimulation for 2  h were significantly lower (Additional 
file 9: Fig. S5).

Discussion
Effective removal of pathogenic bacteria is key to improv-
ing the prognosis of sepsis. Neutrophils play vital roles in 
the clearance of pathogenic bacteria [4]. Neutrophils are 
required to meet their energy demands at inflamed sites 

Fig. 4  Glycolysis in neutrophils is inhibited and accompanied by immune dysfunction in LPS-tolerant model. To build the LPS-tolerant model, PMNs 
were treated with LPS (100 ng/mL) for 4 h or 8 h. a L-lactate concentrations in untreated PMNs and in those stimulated with LPS for 4 h and 8 h. b 
Apoptosis and c necrosis in untreated PMNs and in those stimulated with LPS for 4 h and 8 h. d Chemotaxis and e Phagocytosis in culture media 
of untreated PMNs and those stimulated with LPS for 4 h and 8 h. f Representative flow cytometry images of neutrophils stained with FITC and 
showing MFI in untreated PMNs and those stimulated with LPS for 4 h and 8 h. Neutrophils were seeded in Seahorse XFp analyzer culture plates 
(Seahorse Bioscience, North Billerica, MA, USA) and real-time OCR (g, i, j) and ECAR (h, k, l) were measured. ECAR reflected lactate production in 
untreated PMNs and those stimulated with LPS for 4 h and 8 h. One-way ANOVA with Brown-Forsythe and Welch ANOVA tests were performed. 
Error bars represent SD. Data are means ± SD of at least three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001
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where nutrients may be limited [34]. However, the meta-
bolic characteristics and immunomodulatory pathways 
of neutrophils during sepsis have not been explored. Our 
study demonstrated that the inhibition of glycolysis con-
tributed to neutrophil immunosuppression during sepsis 
and might be controlled by PI3K/Akt-HIF-1α pathway-
mediated LDHA downregulation. Walmsley et  al. [35] 
have provided evidence of a specialized metabolism that 
enables neutrophils to utilize glycogen cycling for energy 
production, which is essential for neutrophil func-
tion and survival, and dysregulation of this metabolism 
was associated with chronic disease states. Our study 
revealed more insights into the metabolic characteristics 
of neutrophils during acute inflammation and focused on 
glycolysis.

Neutrophils play a crucial role in controlling infec-
tion under normal conditions. However, their antimi-
crobial activity is impaired and their immune responses 
are dysregulated during sepsis. Neutrophils participate 
in chemotaxis, phagocytosis, oxidative burst, and neu-
trophil extracellular traps (NET). These mechanisms 
help eliminate pathogenic microorganisms [36]. These 

functions often require cytoskeleton reorganization and 
metabolic energy. Nevertheless, neutrophils with long 
lifespans depend mainly on glycolysis. Neutrophils have 
few functional mitochondria. Hence, their Krebs cycle 
and oxidative phosphorylation rates are low [20, 37, 38]. 
Metabolic shifts might introduce heterogeneity in the 
neutrophil population [39]. However, the relationship 
between neutrophil metabolism and plasticity merits fur-
ther investigation.

Technological advancements in metabolomics will 
help clarify neutrophil immune functions and metabo-
lism. Dysregulation of neutrophil metabolism has been 
observed in various inflammatory diseases such as dia-
betes [40, 41], cystic fibrosis [42], lupus [43], and ath-
erosclerosis [44]. However, the association between the 
metabolic characteristics and the immunomodulatory 
pathways of neutrophils during sepsis has not been ana-
lyzed. In the present study, we used metabolomics to 
examine the metabolic properties of neutrophils dur-
ing sepsis. The Warburg Effect, Mitochondrial Electron 
Transport Chain, Ammonia Recycling, Glycerolipid 
Metabolism, and De Novo Triacylglycerol Biosynthesis 

Fig. 5  Glycolysis regulates PMNs’ chemotaxis and phagocytosis functions during sepsis. PMNs were treated with LPS (100 ng/mL) for 4 h or 8 h 
to build LPS-activated and LPS-tolerant models. a–e Hexokinase2 (HK2), hexokinase3 (HK3), M2 isoform of pyruvate kinase (PKM2), and lactate 
dehydrogenase A (LDHA) expression levels were measured by western blot. Neutrophils were pretreated with 100 μM insulin or 1 mM 2-DG for 
30 min and then incubated with LPS for 4 h or 8 h. f L-lactate concentrations in untreated PMNs and those stimulated with LPS for 4 h and between 
PMNs pretreated with 100 μM insulin or 1 mM 2-DG for 30 min before incubation and those subjected to LPS for 8 h. g PMN chemotaxis. h PMN 
phagocytosis. Images are representative of three independent experiments. One-way ANOVA with Brown-Forsythe and Welch ANOVA tests were 
performed. Error bars represent SD. Data are means ± SD of at least three independent experiments. *P < 0.05, **P < 0.01
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pathways were the most significantly altered during sep-
sis. We found that lactic acid levels were significantly 
higher in the neutrophils of infected patients without 
sepsis than in those of healthy controls. Furthermore, lac-
tic acid levels were significantly lower in the neutrophils 
of infected patients with sepsis than in those of infected 
patients without sepsis. For decades, lactate has been 
considered a waste product of cellular metabolism. How-
ever, recent studies have reported lactate to be an essen-
tial and novel molecule that affects human immune cell 
metabolism and may therefore serve as a negative feed-
back signal limiting glycolysis [45, 46]. Exposure to lactate 

immediately reduced glycolytic rates and increased oxi-
dative rates in human monocytes in  vitro and thereby 
influenced cellular function [45]. Although metabolism-
modulating effects of lactate have been reported, evi-
dence from human neutrophils is scarce. Further studies 
are required to investigate whether lactate exerts a feed-
back effect limiting glycolysis in neutrophils.

In vitro, we found that PMNs switched towards aer-
obic glycolysis when they were activated. Moreover, 
glycolysis was inhibited in LPS-tolerant neutrophils. 
In contrast, neutrophilic chemotaxis and phagocytosis 
functions were inhibited when the glycolysis inhibitor 

Fig. 6  PI3K/Akt/HIF-1α pathway is responsible for the decrease in PMN glycolysis during sepsis. a Schematic representation of enzymes 
transcriptomically associated with the PI3K/Akt/HIF-1α signaling pathway. b Western blot for untreated PMNs and those stimulated with LPS for 
4 h and 8 h. Endogenous phospho-PI3K, total PI3K, phospho-Akt, total Αkt, ΗΙF-1α, LDHA, and actin. c–f Representative bar chart of p-PI3K/t-PI3K, 
p-Αkt/t-Αkt, ΗΙF-1α/β-actin, and LDHA/β-actin ratios. To examine the effects of PI3K/Akt pathway on PMN glycolysis during sepsis, PMNs were 
stimulated with LPS for 4 h or 8 h in the presence of LY294002 (LY; 10 mM). Cell lysates were prepared at the indicated time points. g Western blot 
for endogenous p-PI3K, t-PI3K, p-Akt, t-Αkt, ΗΙF-1α, LDHA, and actin. h L-lactate concentrations in PMNs. i PMN chemotaxis. j PMN phagocytosis. 
Images are representative of three independent experiments. One-way ANOVA with Brown-Forsythe and Welch ANOVA tests were performed. Error 
bars represent SD. Data are means ± SD of at least three independent experiments. *P < 0.05, **P < 0.01
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2-DG abrogated ECAR and lactate production. Thus, 
we concluded that glycolysis regulated neutrophil 
immune function in the LPS-tolerant model. Recent 
studies showed lactate could play an immunosuppres-
sive role in sepsis [47, 48]. Xu et  al. reported that lac-
tate might induce immunosuppression by promoting 
lymphocytic apoptosis in acute septic kidney injury 
[49]. Colegio et  al. reported that lactate could be the 
primary mediator responsible for promoting M2 mac-
rophage polarization [50]. Lactate treatment also 
upregulated M2-associated genes and markers by a 
mechanism dependent on HIF-1α [51]. Recent stud-
ies have suggested that lactate may serve as a feedback 
signal that limits excessive inflammatory response by 
interfering with cellular metabolism [52, 53]. Selleri 
et  al. reported that lactate induced dose-dependent 
preferential monocyte differentiation into M2 mac-
rophages by metabolic reprogramming [54]. Besides 
the anti-inflammatory effects of lactate in murine mac-
rophages, it has been reported that elevated levels of 
lactate can decrease pro-inflammatory cytokines pro-
duction in human PBMCs in  vitro [53]. However, it is 

unknown how lactate triggers immunosuppression in 
neutrophils, which deserves to be explored further.

The changes that occur in metabolism-related enzymes 
in immunocytes during sepsis play critical roles in the 
immune function of these cells [55–57]. Neutrophils are 
highly dependent on glycolysis for energy. Hence, their 
immune functions such as chemotaxis, phagocytosis, 
and NET formation are fueled mainly by glycolysis [20, 
37, 38]. Here, we observed significant in vitro decreases 
in lactate and LDHA in LPS-tolerant neutrophils. The 
results of our metabonomics and transcriptomics analy-
ses were consistent with this phenomenon. Moreover, 
changes in the expression levels of pyruvate dehydro-
genase kinase 1(PDK1), glucose transporter 1(GLUT1), 
LDHA, and pyruvate kinase M2 (PKM2) regulate mac-
rophage glycolysis, the release of proinflammatory 
cytokines, and macrophage activation during sepsis [58].

Our subsequent in vitro experiments revealed that pre-
treatment with BAY-85 to stabilize HIF-1α significantly 
increased LDHA expression and lactate levels, which 
further enhanced the chemotactic and phagocytosis 
functions. PI3K/Akt-HIF-1α pathway was demonstrated 

Fig. 7  HIF-1α regulates LDHA expression in PMNs during sepsis. The HIF-1α stabilizer BAY-85 and the HIF-1α inhibitor BAY-87 were used to clarify 
the roles of HIF-1α in the regulation of PMN glycolysis during sepsis. PMNs were stimulated with LPS for 4 h or 8 h in the presence of BAY-85 or 
BAY-87. Cell lysates were prepared at the indicated time points. a Western blot for ΗΙF-1α, LDHA, and actin. b L-lactate concentrations in PMNs. c 
PMN chemotaxis. d PMN phagocytosis. Images are representative of three independent experiments. One-way ANOVA with Brown-Forsythe and 
Welch ANOVA tests were performed. Error bars represent SD. Data are means ± SD of at least three independent experiments. *P < 0.05, **P < 0.01
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to be involved in the expression of LDHA and affect the 
immune function of neutrophils. The PI3K/Akt pathway 
plays vital roles in the normal immune function of neu-
trophils [59, 60]. Oxidative burst and phagocytic activ-
ity were significantly reduced in the neutrophils of mice 
with sepsis when the PI3K pathway was inhibited [61]. 
These findings were consistent with our results. Other 
studies showed that HIF-1α plays a crucial role in the 
development of myeloid cell-mediated inflammation dur-
ing LPS-induced sepsis [62, 63]. Oncological research 
has reported that HIF-1α upregulation significantly pro-
moted LDHA expression in bladder cancer cells [64]. 
HIF-1α upregulation in breast cancer cells inhibited the 
Warburg effect, enhanced mitochondrial oxidative phos-
phorylation, induced the accumulation of reactive oxygen 
species (ROS), and contributed to tumor cell apoptosis 
[65]. HIF-1α also directly regulated LDHA expression 
in neuroinflammation [66]. In the microglia of ischemic 
rat brain tissue, HIF-1α was upregulated, which in turn 
promoted LDHA expression and aggravated inflamma-
tion [66]. Our present study indicated for the first time 
that HIF-1α may regulate neutrophil functions in sepsis 
via LDHA. HIF-1α might signify an important and novel 

therapeutic target to improve neutrophil function during 
sepsis. Future studies are required to investigate the role 
of HIF-1α in neutrophils’ immune function in the early 
stage of sepsis.

Conclusions
In conclusion, the inhibition of glycolysis suppressed 
the immune function of neutrophils during sepsis. This 
mechanism may have been controlled by PI3K/Akt-
HIF-1α pathway-mediated decrease in LDHA expression 
(Fig. 8). To the best of our knowledge, the present study 
is the first to explore the mechanism by which glycolysis 
is inhibited in an in vitro LPS-tolerant model of neutro-
phils. This discovery could provide a scientific theoretical 
basis for the management and treatment of patients with 
sepsis.
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