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Abstract: The rapid increase of train speed has brought greater challenges to the safety and reliability
of railway systems. Therefore, it is necessary to monitor the operation status of trains, infrastructure,
and their operating environment in real time. Because the operation environment of railway systems
is complex, the construction cost of wired monitoring systems is high, and it is difficult to achieve
full coverage in the operation area of harsh environments, so wireless sensor networks are suitable
for the status monitoring of railway systems. Energy resources of nodes are the basis of ensuring
the lifecycle of wireless sensor networks, but severely restrict the sustainability of wireless sensor
networks. A construction method of special wireless sensor networks for railway status monitoring,
and an optimal energy resources allocation method of wireless sensor networks for intelligent railway
systems are proposed in this paper. Through cluster head selection and rotating probability model,
clustering generation and optimization model, and partial coverage model, the energy consumption
of nodes can be minimized and balanced. The result of simulation experiment proved that the lifetime
of wireless sensor networks can be maximized by the optimal energy resources allocation method
based on clustering optimization and partial coverage model, based on polynomial time algorithm.

Keywords: wireless sensor network; energy resources allocation; intelligent railway system; clustering
optimization; partial coverage

1. Introduction

Railway systems have become one of the main modes of transportation in the world. Therefore,
the stability, reliability, and safety of railway systems are particularly important. At present, the service
state monitoring of railway systems mainly relies on the combination of manual inspection, train
inspection, and on-board inspection equipment. Due to the need for offline processing and analysis of
monitoring data, there is a serious delay in the monitoring of sudden faults. In order to improve the
real-time and reliability of railway system service status monitoring, a cable-based status monitoring
and transmission system can be constructed in critical monitoring areas. Video, fiber Bragg grating,
and stress-strain monitoring and transmission technologies can be used to realize on-line monitoring of
railway system infrastructure. However, due to some drawbacks of cable-based communication itself,
it is difficult for on-line monitoring systems based on wired communication to achieve full coverage of
railway infrastructure.

Wireless sensor network (WSN) [1] has the ability to accurately perceive monitoring objects and
transmit information steadily. WSN has the characteristics of easy maintenance, easy expansion, and
high reliability. It can make up for the defects of railway status monitoring systems based on wired
communication, and improve the efficiency of monitoring. However, the transmission bandwidth

Sensors 2020, 20, 482; doi:10.3390/s20020482 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-7029-2852
http://www.mdpi.com/1424-8220/20/2/482?type=check_update&version=1
http://dx.doi.org/10.3390/s20020482
http://www.mdpi.com/journal/sensors


Sensors 2020, 20, 482 2 of 20

of WSN is small, so it is not suitable for application in monitoring areas with large transmission
volume [2–5].

The main factors restricting the large-scale application of WSN in railway system status monitoring
are as follows: Firstly, the energy storage capacity of wireless sensor node is low, and it is not easy
to replace power supply. Its energy utilization efficiency will determine the life cycle of nodes and
even the whole network, and then it will affect the sustainability and stability of railway infrastructure
and its status monitoring. Secondly, the mutual relay and forwarding of data between wireless sensor
nodes will increase the transmission delay of monitoring data and affect real-time monitoring. Thirdly,
WSN has low communication bandwidth, and there are many kinds and large amounts of data for the
objects in railway monitoring systems. The efficiency of bandwidth resources will affect the efficiency
and reliability of monitoring data transmission.

In recent years, railway status monitoring systems based on wireless sensor networks have been
widely used, including intelligent monitoring system for high speed railway [6], wireless automatic
monitoring and early warning system for subgrade settlement of high speed railway [7], bearing
temperature monitoring system for railway freight cars based on ZigBee and GPRS (General Packet
Radio Service) [8]. However, in these railway systems, the location of monitoring objects is usually
fixed, and the location of sensor nodes is relatively fixed; they have not fundamentally solved the
application of wireless sensor network in the railway service status monitoring system. It is necessary
to optimize the allocation of limited energy and bandwidth resources in the sensor network from the
routing protocol layer and data processing layer, so as to enhance the efficiency and capability of the
wireless sensor network of the railway status monitoring system.

Because the battery capacity of sensor nodes is very limited, a large number of nodes will be
distributed in the monitoring area to rotate for prolonging the network life cycle. Therefore, how to
select the optimal nodes and effectively cover the monitoring area with the least working nodes under
the condition of ensuring a certain coverage rate has become an important research field in wireless
sensor network of the railway status monitoring system. Thorvaldsen et al. [9] proposed the optimal
full coverage algorithm under the condition that the locations of sensors are known—it is used to realize
the optimal configuration of network nodes under full coverage. However, full coverage is sometimes
not necessary. For some application scenarios, only a part of the nodes to achieve partial coverage can
better meet the needs. Li et al. [10] considered the problem of partial coverage and emphasized that
proper partial coverage saves more energy than full coverage. Mostafaei et al. [11] focused on partial
coverage, and present an efficient algorithm based on learning automata that aims at minimizing the
number of sensors to activate. Habib et al. [12] proposed a greedy heuristic algorithm to deal with the
coverage problem of heterogeneous WSNs in the case when full coverage of the network is not needed.

In this paper, construction method of special wireless sensor network for railway status
monitoring is proposed. Based on the deployment characteristics of railway monitoring and wireless
communication system, a double-layer communication network based on wireless sensor network is
constructed; it is composed of monitoring sub-network layer and transmission backbone network layer.
Then an optimal energy resources allocation method of monitoring sub-network for intelligent railway
systems is proposed. From routing optimization and data fusion rate optimization, the method is
studied to maximize the lifetime of the monitoring sub-network and enhance the ability to perceive
and transmit the service status information of railway systems. Because of the status monitoring of
railway systems, only partial coverage can meet the demand; at the same time, it can save energy and
prolong network life. Therefore, a new partial coverage model of wireless sensor network is proposed.

The rest of the paper is organized as follows: Section 2 presents the methodology. In Section 3 we
give experiments and results analysis. The last section is a summary with conclusions.
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2. Methodology

2.1. Construction Method of Special Wireless Sensor Network for Railway Status Monitoring

The existing railway status monitoring system is mainly based on air and space integration
technology. It combines the traditional ground monitoring system, on-board monitoring system, and
vehicle-ground communication system, and joins the space monitoring and transmission system to
realize the real-time wide-area monitoring of railway system. Although the railway status monitoring
system based on air and space integration technology provides the richest and most comprehensive
field data, as it is a complete closed system, the failure of any link may lead to the deterioration of
the overall operation state of the system, and even lead to traffic safety accidents. However, wireless
sensor network technology has the characteristics of easy installation, maintenance, expansion, and
networking. It is more suitable for the construction of special wireless sensor network for railway
status monitoring and real-time monitoring of the operation status of the system.

The monitoring objects of the special wireless sensor network for railway status monitoring are
mainly railway infrastructure and its operating environment, which are all deployed along railway
tracks, so they are approximately linear or banded.

The main function of special wireless sensor network is to sense the service status of railway
infrastructure and its operating environment and send monitoring data to the base station near the
monitoring area. Therefore, the deployment location of wireless sensor nodes and infrastructure
correspond to each other. Wireless sensor nodes have limited energy storage, and their communication
energy consumption is mainly determined by the amount of monitoring data and its transmission
distance. At the same time, the communication distance of wireless sensor nodes is limited, so it
is not feasible for the sensor nodes in the monitoring area to communicate directly with the base
station. Therefore, the method divides the whole monitoring area into several sub-monitoring areas,
and deploys a sink node at the edge of each sub-monitoring area to receive the monitoring data of
sub-monitoring area, while the data in all sub-monitoring areas is forwarded from sink node to base
station. On the one hand, the method can ensure that the data perceived by each sensor node can be
sent to the base station smoothly; on the other hand, it also greatly reduces the energy consumption
of sensor nodes and improves the life cycle of special wireless sensor networks. The architecture of
double-layer wireless sensor network for railway status monitoring system is shown in Figure 1.
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As shown in Figure 1, the special wireless sensor network for railway status monitoring is a
double-layer structure, which consists of sub-network layer and transmission backbone network layer.
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The sub-network layer consists of several sub-monitoring areas. The wireless transmission network in
each sub-monitoring area consists of several wireless sensor nodes and one wireless sink node. The sink
node is responsible for collecting the sensing data of all sensor nodes in the sub-areas. The backbone
network layer consists of several wireless sink nodes and a base station. The sink node is responsible
for forwarding the data collected from the subnet layer to the base station. The service status data
of railway infrastructure and its operating environment is first perceived by wireless sensor nodes
in the sub-network, then the sensor nodes in each sub-monitoring area send the sensing data to the
corresponding sink node. Finally, the sink node sends all the sensing data to the base station, and
then the base station sends it to the remote server for the diagnosis and prediction of the status of
railway system.

As shown in Figure 2, in sub-monitoring area, sensor nodes are responsible for sensing service
status data of infrastructure and its operating environment on the one hand, and sending sensing data
to sink nodes on the other hand. Because the energy storage of sensor nodes is limited, the energy
efficiency of sensor nodes is mainly considered in routing protocol selection and optimization.
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Figure 2. Structure of sub-monitoring area.

The communication energy consumption of wireless sensor nodes is mainly determined by the
amount of data transmitted and the transmission distance. As can be seen from Figure 2, the distances
between sensor nodes and sink nodes are different. When each sensor node transmits the same amount
of data to sink nodes, the energy consumption of each sensor node will be unbalanced, and the nodes
far away will fail prematurely due to energy exhaustion.

In order to improve the energy efficiency of sensor nodes in the sub-network, cluster communication
routing protocol [13] is adopted in this system. In a sub-network, one node is selected as the cluster
head according to the needs in the cluster, and the other nodes are the members of the cluster.
Cluster members are responsible for the data perception of key components of the railway system
and send the perception data to cluster head nodes. After receiving the data, the cluster head node
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carries out simple processing and analysis, and forwards the data to the sink node. By using clustering
communication routing protocol, the choice of cluster head and the result of clustering have a great
influence on the total energy consumption of all nodes and the balance of energy consumption
among nodes. In addition, the communication energy consumption of wireless sensor nodes is also
related to the amount of data transmitted. Cluster heads collect data from cluster members and then
process data before sending. This can reduce the amount of data transmitted and corresponding
communication energy consumption, but at the same time it will increase the corresponding data
processing energy consumption. The adjustment and balance between them can effectively reduce the
total energy consumption of cluster head nodes and improve the overall energy utilization efficiency
of the sub-network. In order to improve the energy efficiency of nodes in the sub-network and the
lifecycle of the sub-network, the optimization methods of cluster communication routing protocol and
data fusion efficiency of cluster head nodes will be studied.

2.2. An Optimal Energy Resources Allocation Method Based on Clustering Optimization

The sub-network layer of railway wireless monitoring network is mainly composed of several
sensor nodes and a sink node. Sensor nodes are responsible for sensing, processing, and short-distance
transmission of data, while sink nodes are responsible for collecting data perceived by all sensor
nodes in the monitoring sub-network. Sensor nodes are usually composed of four parts: Data sensing
unit, data processing unit, data communication unit, and energy supply unit. Data sensing unit is
responsible for perceiving real-time service status data of monitoring objects. Data processing unit is
responsible for simple format transformation of perceptual data and other processing work. The data
communication unit is responsible for data communication with other sensors or sink nodes, including
the process of receiving and transmitting data. The energy supply unit is responsible for energy supply
for the remaining three units to ensure the stability of each unit.

The energy consumption of wireless sensor nodes is mainly in three stages: Data sensing, data
processing, and data transmission. According to the literature [14], the energy consumed by sensors in
the process of data sensing is negligible compared with the other two stages. Therefore, the energy
consumption of sensor nodes in the process of data processing and communication when establishing
the energy consumption model of railway wireless monitoring sub-network.

As shown as Figure 3, the energy consumption of sensor nodes in data communication process
consists of three parts: Data processing energy consumption, data receiving energy consumption, and
data sending energy consumption [15,16].
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The energy consumption of data processing is mainly determined by the energy consumption
rate of data processing and the amount of data processed, as shown in Equation (1):

EX(l) = l× EA (1)

where l represents the amount of data processed, EA represents energy consumption of data processing
circuits for processing unit data.

The energy consumption of data reception is mainly determined by the amount of data received,
as shown in Equation (2):

ER(l) = l× EC (2)

where l also represents the amount of data processed, EC represents energy consumption of
transmitting circuit.

The energy consumption of data transmission is mainly related to the amount of data sent and the
distance sent, as shown in Equation (3):

ET(l, d) =
{

ER(l) + l× E f × d2, (d < d0)

ER(l) + l× Em × d4, (d ≥ d0)
(3)

where d represents the distance between two nodes, d0 is a constant, the selection of its value is related
to network environment. When the distance between sending node and receiving node is less than d0

in the network, energy dissipation model in free space [17] is adopted, the energy consumption of
sending data is proportional to the square of distance. E f represents the energy consumption coefficient
of free space power amplifier. When the distance between sending node and receiving node is greater
than or equal to d0 in the network, multi-channel attenuated energy dissipation model [18] is adopted,
the energy consumption of sending data is proportional to the fourth power of distance. Em represents
the energy consumption coefficient of multichannel attenuated power amplifier.

The sink node in the subnet is mainly responsible for receiving information, and the energy
storage of the sink node is much larger than that of the other sensor nodes. Therefore, in this chapter, it
is assumed that the energy of the sink node is infinite.

In order to reduce the energy consumption of sensor nodes, a routing protocol based on clustering
communication is used to transmit data in the sub-network. Firstly, all sensors in the sub-network are
divided into several clusters, and then a node in each cluster is selected as the cluster head, which
is responsible for collecting the data of the remaining sensor nodes in the cluster and forwarding
the data to the corresponding sink node. Therefore, the communication load and corresponding
energy consumption of cluster head nodes are much higher than those of other non-cluster head nodes.
In order to ensure the balance of energy consumption of each node and avoid the failure of cluster
head nodes due to excessive energy consumption, it is necessary to re-select and rotate the cluster
head before each round of communication. The data between cluster head and cluster members is
transmitted by single-hop forwarding, and the data transmission between cluster head and sink node
is also carried out by single-hop forwarding.

The structure of cluster-based energy optimization routing protocol for sub-network is shown in
Figure 4.

The structure of cluster-based energy optimization routing protocol consists of three layers:
Data input layer, clustering optimization strategy layer, and data output layer.

The data input layer is mainly responsible for inputting the initial data of each sensor node in the
monitoring sub-network into the target model for optimizing the processing. The input data mainly
includes the number of sensors located around the track, energy storage, and location information.
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In clustering optimization strategy layer, sensor networks and their nodes aim at minimizing and
balancing overall energy consumption, constantly updating the selection of all clusters and their cluster
heads, so as to enhance the life cycle of railway status monitoring systems. In this paper, an efficient
optimization model to optimize the cluster generation and cluster head selection is proposed; it can
ensure that the sub-network always works in the mode of the highest energy efficiency. In the process
of cluster head selection and rotation, a comprehensive index considering the candidate probability,
residual energy, and predicted energy consumption of candidate cluster head nodes is proposed. Then,
a multi-objective optimization model is constructed, and genetic algorithm is used to optimize and
update the formation of clusters.
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In the data output layer, all sensor nodes in the sub-network are allocated to different clusters for
data transmission in an energy-efficient optimization way, which would improve the life cycle of the
monitoring sub-network.

2.2.1. Clustering and Cluster Head Initialization Based on Improved K-Medoids

K-medoids algorithm can cluster all nodes and distribute the nodes with similar distances into a
unified cluster. However, the initial cluster centers of K-medoids algorithm are randomly selected.
The clustering effect depends on the selection of the initial cluster centers. Unbalanced distribution
of cluster centers will lead to local optimum clustering results. Therefore, the improved K-medoids
algorithm is proposed to cluster in this paper. It ensures that the initial cluster centers are distributed
as evenly as possible in the whole monitoring area, and improves the global optimal performance
of the clustering results. In addition, when the improved K-medoids algorithm is used to optimize
clustering based on genetic algorithm, its optimization speed and effect are improved significantly.

When improved K-medoids algorithm is used to initialize clusters, the optimal number of
clusters must be determined firstly. When the number of clusters is too small, the number of cluster
members increases correspondingly, which will greatly increase the communication burden and energy
consumption of cluster head nodes. When the number of clusters is too large, most sensor nodes and
sink nodes transmit data directly, and the clustering optimization algorithm will become meaningless.
So, it is necessary to optimize the number of clusters with the objective of minimizing the total energy
consumption of all nodes in the sub-network.

Suppose that T sensor nodes are evenly located in the monitoring sub-network area of N ×N,
where x ∈ [−N/2, N/2], y ∈ [−(1 + ε)N,−εN], ε is a distance adjustment parameter, it is used to adjust
the vertical distance between monitoring sub-network area and sink node. The probability density of
distribution is S(x, y) = 1/M2. The sink node is located at the origin of coordinates.

All sensors distributed in the sub-network are divided into cluster head nodes and cluster member
nodes, so the total energy consumption of sub-network nodes is also composed of two parts as follows:

Etotal =
k∑

i=1

(Ei
C +

n−1∑
j=1

E ji
Non−C) (4)

where Ei
C represents energy consumption of the i-th cluster head node, E ji

Non−C represents energy
consumption of the j-th non-cluster head node in the i-th group, n represents the number of sensor
nodes within each cluster, k represents the number of clusters. Assuming that T nodes within the
sub-network are evenly allocated to each cluster, there are n = T/k nodes in each cluster, including
one cluster head and T − 1 non-cluster head nodes.

When all nodes have enough energy to receive, process, and send all data in the cluster with
the role of cluster head. However, the residual energy of sensor nodes decreases with the increase of
communication rounds. When the energy of all nodes in a cluster is below a certain threshold, it is not
enough to send all data in the cluster to the sink node as the cluster head. In this paper, the number of
sensor nodes in each cluster and the amount of data transmitted by cluster head will be reduced by
increasing the number of clusters, effectively reducing the energy consumption of cluster head so that
the communication of the system can be restored and continued.

In this paper, based on the optimal cluster groups, an improved K-medoids algorithm is used to
initialize the clusters. According to the distance information of all sensor nodes in the sub-network,
it is allocated to K clusters. The specific steps of cluster initialization based on improved K-medoids
algorithm (Algorithm 1) are defined as follows:
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Algorithm 1 Cluster initialization based on improved K-medoids algorithm

Input: Location and energy information of T sensor node in in the monitoring sub-network area of N ×N
Output: T sensor nodes are allocated to K clusters in the mode of optimal energy consumption
Step 1: Determining the optimal clustering group number kopt;
Step 2: Selecting a sensor node as the first cluster center randomly;
Step 3: Calculating the distance from each node to the selected cluster center;

repeat
for i = 1, 2, . . . , k

for j = 1, 2, . . . , T − k

dCtoC ji =

√
(x( j) − x(i))2 + (y( j) − y(i))2

until the distances between all nodes are calculated
Step 4: Selecting the k-th (1 < k < kopt) clustering center

repeat
for j = 1, 2, . . . , T − k

for i = 1, 2, . . . , k
dCtoC j = min

(
dCtoC ji

)
;

sum
(
d
(
xCtoH j

))
=

T−k∑
j=1

dCtoC j

p j =
d
(
xCtoHj

)
sum

(
d
(
xCtoHj

))
until all kopt cluster centers had been selected

Step 5: Initialization of all clusters based on selected kopt cluster centers
repeat

for i = 1, 2, . . . ,k opt

for j = 1, 2, . . . , T − kopt

dCtoC ji =

√
(x( j) − x(i))2 + (y( j) − y(i))2

for j = 1,2, . . . ,T-kopt

for i = 1, 2, . . . , kopt

dCtoC j = min
(
dCtoC ji

)
;

until all sensor nodes are allocated to the cluster with the lowest energy consumption.

In Step 4, the node far from the selected cluster center is more likely to be selected as the new
cluster center, which can ensure the decentralization of the cluster center in the whole monitoring
area. In Step 5, on the basis of determining the cluster center, each sensor chooses to join the cluster
corresponding to the nearest cluster center, thus the initialization of the cluster would be completed.

In the process of assigning all sensor nodes in the sub-network to K clusters by using the improved
K-medoids algorithm, the cluster center is not the final cluster head. Therefore, after initialization of
cluster, in order to minimize the total energy consumption of cluster members and cluster heads, the
node with the smallest sum of distances from all nodes in the cluster is chosen as the cluster head.
According to Equation (5), the position of virtual cluster head (the center of all nodes) is calculated,
and then the nearest node to the virtual cluster head is selected as the initial cluster head node.

VirtualH(x(k),y(k)) = (

∑nk
i=1 x(i)

nk
,

∑nk
i=1 y(i)

nk
) (5)

Compared with other existing methods, cluster initialization based on improved K-medoids
algorithm can divide the nodes with similar distance into the same cluster, which can reduce the energy
consumption of information transmission between cluster members and cluster heads, and greatly
improve the life cycle of the network.
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2.2.2. Cluster Head Selection and Rotating Probability Model

In the routing protocol of cluster communication, the energy consumption of cluster head node
is much larger than that of non-cluster head node. Therefore, the cluster head should be re-selected
before each round of communication. It could effectively guarantee the energy balance among sensor
nodes and avoid the failure of cluster head node due to excessive energy consumption. In the cluster
head selection and rotating probability model, the candidate probability of cluster head, the residual
energy rate of nodes, and the energy consumption rate of cluster head prediction are considered.

In order to maintain the balance of energy consumption among nodes, each node in the cluster
should have a relatively equal opportunity to serve as cluster head. That is to say, the T/k cluster
members in the cluster have a chance to act as cluster head in the next T/k round communication
process [19,20].

If the sensor node in the subnet has served as cluster head in the previous r-1 round of
communication, then the node will not participate in the cluster head election in the r-th round,
so the candidate probability model of cluster head is defined as:

p1i(r) =
{

k/T − k× r, Ci(r) = 1
0, Ci(r) = 0

(6)

where r ∈ [1, T/k] represents that when all the nodes in the cluster have served as the cluster head
once in the previous communication process, r will be reset to 1, then it gradually grows to T/k. Ci(r)
represents role state of node i in the past r round communication. If it had served as a cluster head,
then Ci(r) = 0, otherwise, Ci(r) = 1.

After multiple rounds of communication, the residual energy of each sensor node in the
sub-network will be different from each other. In the process of cluster head selection and rotation, the
probability that nodes with more residual energy are selected as cluster heads is higher. The residual
energy probability model of each node is defined as follows.

p2i(r) =

∣∣∣Ei
R(r) − Emin

R (r)
∣∣∣∑n

i=1

∣∣∣Ei
R(r) − Emin

R (r)
∣∣∣ (7)

where Ei
R(r) represents residual energy of the i-th node in the r-th round, Emin

R (r) represents minimum
residual energy of intra-cluster nodes.

The residual energy of the i-th node in the r-th round is calculated as follows.

Ei
R(r) = Ei

R(r− 1) − Ei
Co(r− 1) (8)

where Ei
Co(r− 1) represents energy consumption of nodes in (r − 1)-th round.

If the node acts as cluster head in the (r − 1)-th round, its energy consumption can be calculated
by Equations (9)–(12).

ECo−CH(r− 1) = ER(r− 1) + ED(r− 1) + ET(r− 1) (9)

ER(r− 1) = (nk − 1) × l× EC (10)

ED(r− 1) = nk × l× EA (11)

ET(r− 1) = l× EC + l× ϑm × d4
t (r− 1) (12)

where ϑm represents energy consumption coefficient of power amplifier based on multipath attenuation
model, dt represents distance from cluster head node to sink node.
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If a node acts as a non-cluster head node in the (r − 1)-th round, its energy consumption can be
calculated as follows.

ECo−NCH(r− 1) = l× EC + l× ϑ f × d2
t (r− 1) (13)

where ϑ f represents energy consumption coefficient of power amplifier based on free space model.
If a node has a lot of residual energy, but it consumes a lot of energy when it is chosen as cluster

head node, and even fails because of the exhaustion of energy after it is chosen as cluster head, such
a node is not suitable for serving as cluster head. Therefore, in the process of cluster head selection
and rotation, the energy consumption of nodes as cluster heads is predicted and compared, and
higher priority probability is given to nodes with less energy consumption. The predicting energy
consumption rate model of cluster head nodes in (r + 1)-th round is defined as follows:

p3i(r) =

∣∣∣Ei
Co(r + 1) − Emax

Co (r + 1)
∣∣∣∑nk

i=1

∣∣∣Ei
Co(r + 1) − Emax

Co (r + 1)
∣∣∣ (14)

where Ei
Co(r + 1) represents the predicting energy consumption of node in r + 1 round after serving

as cluster head, Emax
Co (r + 1) represents the predicting maximum energy consumption of all nodes as

cluster heads.
Considering the above three factors, the comprehensive probability model is defined as:

pi(r) = µ1 × p1i(r) + µ2 × p2i(r) + µ3 × p3i(r) (15)

where µ1, µ2 and µ3 are weight coefficients, which are used to adjust the influence of various factors on
the comprehensive model.

2.2.3. Clustering Generation and Optimization Model

After the cluster head is determined, the system will optimize the cluster with the goal of
minimizing the total energy consumption and balancing the energy consumption among nodes, so as
to maximize the lifetime of the special wireless sensor network sub-network. By optimizing the number
of cluster members and the corresponding relationship between cluster head and cluster members, the
minimization of energy consumption is taken into account under the premise of ensuring the balance
of energy consumption, effectively guaranteeing the maximization of sub-network life cycle.

The energy consumption of cluster head node is determined together by the distance between
cluster head and sink node and the number of cluster members. However, the distance between
cluster head and sink node varies with the choice of cluster head. Therefore, the number of cluster
members should also change to ensure the energy balance between cluster head nodes. The cluster
size optimization model is defined as follows:

f1(ECi(ni)) = min

∑k
i=1

(
ECi(ni) − EC

)2

k
(16)

where the objective of f1(ECi(ni)) is to minimize the variance of energy consumption among all cluster
heads, it represents the equilibrium of energy consumption of each cluster head. ECi represents cluster
head energy consumption of i-th cluster, EC represents mean energy consumption of cluster heads for
all clusters, k represents the number of clusters and cluster heads.

After cluster size optimization, the energy consumption among cluster heads is basically balanced,
while the cluster size optimization model only determines the number of members in each cluster, and
it does not determine the corresponding relationship between non-cluster head nodes and cluster heads.
However, when the same cluster member node is assigned to different clusters, the communication
energy consumption varies with the distance from the cluster head node. In order to minimize
the communication energy consumption of non-cluster head nodes, the corresponding relationship
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between cluster head and cluster members needs to further optimize. The total energy consumption
model for all nodes is defined as:

f2
(
ECj, Enon−Ci

)
= min(

T−k∑
i=1

Enon−Ci +
k∑

j=1

ECj) (17)

where the objective of f2
(
ECj, Enon−Ci

)
is to minimize the total energy consumption of all nodes, Enon−Ci

represents energy consumption of the i-th non-cluster head node, ECj represents energy consumption
of the j-th cluster head.

The optimization of cluster size is used to balance the energy consumption among cluster head
nodes, while the optimization of the corresponding relationship between cluster head and cluster
members can effectively reduce the total energy consumption of non-cluster head nodes. At the same
time, the optimization of the corresponding relationship between cluster head and cluster members
will affect the optimization of cluster size in turn. Therefore, the optimization of cluster size and the
corresponding relationship between cluster head and cluster members is a multi-objective optimization
problem, which can be summed up as a kind of problem which can make multiple objectives reach
optimal simultaneously under certain constraints. For example, in order to select the appropriate
cutting speed and feed ratio in mechanical processing, the objectives are put forward: (1) The lowest
machining cost, (2) the highest productivity, and (3) the longest cutter life.

The comprehensive optimization model of node clustering is defined as:

min f (E) =
(

f1(ECi(ni)), f2
(
ECj, Enon−Ci

))
(18)

There are two constraints which must be satisfied for clustering multi-objective optimization
model: The first constraint is that the total number of nodes in each cluster should be at least two, and
the second constraint is that failed sensor nodes do not participate in the formation and optimization
of a new round of node clustering.

Clustering formation and optimization process is a non-linear multi-objective optimization
problem [21]. Therefore, in the actual optimization process, heuristic optimization algorithm is often
used to solve multi-objective optimization problems. In this paper, genetic algorithm [22] is used to
solve the multi-objective optimization model.

The optimization algorithm based on genetic algorithm is a process of getting the optimal
chromosome through chromosome selection, crossover, mutation, and other processes based on
the initial population. In this paper, the population size (the number of chromosomes) is m, each
chromosome consists of N genes. The position and content of each gene respectively represent the
position of the sensor and the corresponding cluster number to be assigned.

As shown Figure 5, the sensors of the railway status monitoring system are all assigned with fixed
numbers [1, 2, . . . , N], and the cluster numbers [1, 2, ..., k] indicate the corresponding cluster serial
numbers of each sensor.

Genetic algorithm needs many iterations to get the optimal result. In order to improve the
optimization speed of genetic algorithm, K-medoids algorithm is used to initialize clustering, and
an initial chromosome close to the optimal result is generated in this paper. Then, on the basis of
clustering chromosomes, the remaining m − 1 chromosomes are generated by the way of frameshift
mutation. All m chromosomes together constitute the initial parent population P.

The specific steps for solving multi-objective optimization of clustering by genetic algorithm
(Algorithm 2) are defined as follows:



Sensors 2020, 20, 482 13 of 20

Algorithm 2 Multi-objective optimization of clustering by genetic algorithm

Input: Population size m, iteration times T
Output: Optimal clustering results (the optimal chromosomes)
Step 1: Generation of m chromosomes and formation of initial paternal population P based on improved
K-medoids algorithm;
Step 2: Generation of m chromosomes by two-point crossover selection to form a new offspring population Q;
Step 3: Combining the parent population P with the offspring population Q to form a new population A;
Step 4: Non-dominant sorting;
Step 5: Crowding-distance operator computing;
Step 6: Based on the non-dominant sorting value and crowding-distance information, the optimal m
chromosomes were selected from the new population A, and the parent population P was updated.;
Step 7: If the optimal termination condition is satisfied (the optimal result is obtained or the maximum number
of iterations is reached), the optimal chromosome in the optimal population is selected, and the final result of
clustering for sub-network is output, otherwise go to Step 2.

Sensors 2020, 20, x FOR PEER REVIEW 12 of 19 

 

There are two constraints which must be satisfied for clustering multi-objective optimization 
model: The first constraint is that the total number of nodes in each cluster should be at least two, 
and the second constraint is that failed sensor nodes do not participate in the formation and 
optimization of a new round of node clustering.  

Clustering formation and optimization process is a non-linear multi-objective optimization 
problem [21]. Therefore, in the actual optimization process, heuristic optimization algorithm is often 
used to solve multi-objective optimization problems. In this paper, genetic algorithm [22] is used to 
solve the multi-objective optimization model. 

The optimization algorithm based on genetic algorithm is a process of getting the optimal 
chromosome through chromosome selection, crossover, mutation, and other processes based on the 
initial population. In this paper, the population size (the number of chromosomes) is m, each 
chromosome consists of N genes. The position and content of each gene respectively represent the 
position of the sensor and the corresponding cluster number to be assigned. 

As shown Figure 5, the sensors of the railway status monitoring system are all assigned with 
fixed numbers [1, 2, …, N], and the cluster numbers [1, 2, ..., k] indicate the corresponding cluster 
serial numbers of each sensor. 

 
Figure 5. Chromosome mutation process. 

Genetic algorithm needs many iterations to get the optimal result. In order to improve the 
optimization speed of genetic algorithm, K-medoids algorithm is used to initialize clustering, and an 
initial chromosome close to the optimal result is generated in this paper. Then, on the basis of 
clustering chromosomes, the remaining m − 1 chromosomes are generated by the way of frameshift 
mutation. All m chromosomes together constitute the initial parent population P. 

The specific steps for solving multi-objective optimization of clustering by genetic algorithm 
(Algorithm 2) are defined as follows: 

Algorithm 2 Multi-objective optimization of clustering by genetic algorithm 
Input: Population size m, iteration times T 
Output: Optimal clustering results (the optimal chromosomes) 
Step 1: Generation of m chromosomes and formation of initial paternal population 
P based on improved K-medoids algorithm; 
Step 2: Generation of m chromosomes by two-point crossover selection to form a 
new offspring population Q; 
Step 3: Combining the parent population P with the offspring population Q to 
form a new population A; 
Step 4: Non-dominant sorting; 
Step 5: Crowding-distance operator computing; 

Figure 5. Chromosome mutation process.

2.3. Partial Coverage Model of Wireless Sensor Network Based on Polynomial Time Algorithm

The basic idea of wireless sensor network coverage model is to give the number of targets T, use
the number of limited nodes N, limited energy E, and improve the lifetime of wireless sensor network
on the premise of meeting the coverage requirements.

In order to ensure that any position in the monitoring area is covered by at least one sensor node
at any time, the full coverage model is often adopted. In wireless sensor network coverage model,
S = {s1, s2, . . . , sN} represents sensor nodes set, R = {r1, r2, . . . , rT} represents coverage targets set.
The sensing range of wireless sensor nodes sk is a circle with sensing radius as its radius.

An example of node coverage of wireless sensor network is shown in Figure 6.
As shown in Figure 6, target r1, r2, r3, r4 receive wireless sensor node s1, s2, s3 monitoring,

respectively. The relationship between sensor node and target is not one to one; it results in the
imbalance between energy consumption and residual energy of sensor nodes.

Considering the balance of energy consumption of wireless sensor network, the energy of a certain
area Ek is defined as follows:

Ek =

∑Nk
i=1 Eki

Nk
(19)

where Eki represents the residual energy of the k-th cluster, Nk represents number of nodes in the
k-th cluster.
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However, the full coverage algorithm would produce a large number of redundant nodes and
generally require nodes to have accurate location information, which generates a great challenge for
constructing a low-cost and high-density wireless sensor network.
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In reality, full coverage sometimes is not necessary. Partial coverage algorithm means that the
deployed wireless sensor network only covers part of the monitoring area at a certain time. Under the
premise of meeting the required coverage, in each round, some nodes are selected to work, and the rest
nodes are in the sleep state.

In this paper, polynomial time algorithm is used to construct a new partial coverage model, which
transforms the nonlinear programming problem into a linear programming problem, and the optimal
solution of partial coverage can be obtained within the computable complexity.

Suppose there is a partial coverage vector θ = {θ1,θ2, . . . ,θn} in the whole life cycle L, it makes
the target rk satisfy the mathematical relation f : There exists node sk which covers monitoring target rk
at least in L·θk time. If Boolean variable yi,k is true, it means that node sk meets coverage needs, and it
is responsible for the monitoring of target rk. So, the partial coverage problem can be described as
follows: ∑

f∈F

∑
si∈C

yi,k·tp ≥ L·θk (20)

where the objective function tp is the time segment of mathematical relation f , C represents the cluster
in working condition.

By optimizing Equation (5), we can summarize the analysis of partial coverage problem as follows:
The objective function of partial coverage model is Topt, the variable of the model is the total time bi,k of
node sk covering target rk. So partial coverage model can be defined as:

maxTopt (21)∑
si∈C

bi,k ≥ L·θk (22)

∑
rk∈C

bi,k·e0 ≤ E (23)

0 ≤ bi,k ≤ L, L ≥ 0 (24)

For target rk, node coverage condition is bi,k > 0. For sensor node sk, the time length when it
covers rk is bi,k.



Sensors 2020, 20, 482 15 of 20

3. Experiments and Results

In this section, the proposed optimization model based on clustering optimization for optimal
allocation of energy resources in railway wireless sensor networks is simulated and validated.
By comparing with the two representative algorithms (FAF-EBRP algorithm [23] and MOFCA
algorithm [24]) in terms of life cycle and the amount of data collected by sink nodes, the advantage of
the proposed optimization model in energy efficiency is verified.

In the experiment, a 600-m-long track and surrounding infrastructure were selected as monitoring
objects. The monitoring area can be approximated to a 600-m-long and 60-m-wide rectangular area.
All sensors used for monitoring were randomly distributed in the monitoring area.

Then the monitoring area was evenly divided into 10 monitoring sub-networks, each of which was
a square area of 60 m× 60 m. A sink node was located in the center of each sub-network monitoring
area. The sensor nodes in the sub-network transmit the monitoring data to the corresponding cluster
head and sink node, and then transmit the monitoring data to the base station by the sink node. One of
the sub-networks was selected as the simulation environment to verify the energy-saving effect of
routing protocols. In the simulation scenario, a total of 200 sensor nodes were randomly distributed in
the monitoring area by setting the track as X-axis and the endpoint far from the base station as the
coordinate origin.

The simulation parameters are shown in Table 1.

Table 1. Simulation parameters of routing protocol based on clustering optimization.

Parameter Description Value

Eel Circuit energy consumption parameter 45
ρ f Free space energy consumption parameters (d2) 8

ρm
Multipath fading energy consumption

parameter (d4) 0.0012

Ei Initial energy 0.02
T Number of sensor nodes 200
l Packet size 100

kopt Number of clusters 8
m Population size 100
pm Mutation rate 0.015
pc Crossover rate 0.8
t Maximum number of iterations 400
α Position adjustment factor of sink node 0.5

In this paper, the effective life cycle of the system, the total residual energy of all nodes, the
variance of the residual energy of each node, and the amount of data received by the sink node were
used as evaluation indexes to compare the energy efficiency of the proposed algorithm with that of the
other two algorithms. The simulation results are shown in Figures 7–10.

As shown in Figure 7, when using the proposed routing protocol to communicate, the nodes of the
special wireless sensor network for railway status monitoring begin to fail due to energy exhaustion
only after 200 rounds of communication. When using the other two routing protocols, the nodes of the
sub-network begin to fail after 190 rounds, and the trend of node failure is similar, but the effect of
MOFCA is slightly better.

In Figure 8, the total residual energy of all nodes represents the energy-saving effectiveness of
different routing protocols. When using these three protocols, the curve of total residual energy changes
smoothly, but based on the proposed protocol in this paper, the total residual energy of nodes is more,
and the rounds of communication are more.
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As shown in Figure 9, the variance of residual energy of each node is smaller than that of the other
two protocols when using our routing protocol. It means that the energy consumption of each node in
the sub-network is more balanced, and it is more conducive to improving the overall effective life cycle
of the system.

As shown in Figure 10, the proposed routing protocol can ensure that the sink node receives more
information about the service status of railway infrastructure and operating environment. Therefore,
the proposed routing protocol not only improves the life cycle of the sub-network, but also increases
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the amount of data received by the sink node, which would provide abundant data and information
support for the stable operation of the railway monitoring system.
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For partial coverage model, a total of 200 sensor nodes were randomly distributed in the monitoring
area, the initial energy of wireless sensor node was 100, the number of target was 40. The initial value
of coverage vector θwas 0.7, vector step was 0.05, the final value was 1. The simulation result is shown
in Figure 11.
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As shown in Figure 11, the lifetime of the network decreases linearly with the increase of partial
coverage vector in fixed step. It shows that the coverage vector is inversely proportional to the network
lifetime. In the process of node sk monitoring target rk, the increase of fixed step of coverage vector is
equivalent to the linear increase of coverage time, so the coverage time of node s increases, it leads to
the increase of energy consumption, so the lifetime of network decreases linearly.

4. Discussion and Conclusions

The special wireless sensor network for railway status monitoring is dedicated to real-time
acquisition of service status information of railway infrastructure and its operating environment, and
it can rapidly transmit monitoring data to remote data centers for the diagnosis and prediction of the
service status of the system. However, due to the limited energy storage of each node in the special
wireless sensor network, improving the energy efficiency of the nodes in the network and prolonging
the lifetime of the network are the focus of the research.

Many researchers begin with the design and optimization of routing protocols in wireless sensor
networks for status monitoring [25–27]. In this paper, we designed a double-layer communication
network based on wireless sensor network for intelligent railway systems firstly. In the sub-network,
routing protocol optimization strategy are adopted to optimize the allocation of energy resources, so as
to improve the efficiency of energy resources utilization of the system and maximize the lifecycle of
special wireless sensor networks.

Compared with other existing methods, we proposed cluster head selection and initialization
method based on improved K-medoids algorithm, which greatly improves the speed and effect of
cluster optimization. At the same time, the proposed clustering optimization model is dynamic, it can
make the sub-network maintain the optimal energy consumption for monitoring data transmission,
so as to ensure that each cluster head node always works in the optimal energy consumption state.

Although we had done some related work in energy optimization of railway wireless monitoring
system, there are also limitations. First, the research in this paper is based on local information
acquisition. However, railway systems are complex and huge systems. Single local information is far
from enough for evaluating the overall performance of the system and predicting the overall security
situation of the system. Second, the results of optimization in this paper are mainly validated based on
laboratory data and simulation data. In order to meet the needs of field application, the next step is
to collect actual monitoring data. Third, multi-objective optimization model is established to solve
the optimization of energy resources utilization in this paper. In the future we will make full use
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of the historical data of railway systems and synthesize the machine learning method to solve the
optimization problem for satisfying the real-time demand.

Author Contributions: Conceptualization, S.B., G.S.; methodology, S.B., G.S.; software, G.S.; writing—original
draft preparation, S.B.; writing—review and editing, S.B., G.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by Shandong Provincial Natural Science Foundation, grant
number ZR2017MG011.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cui, S.; Cao, Y.; Sun, G. A new energy-aware wireless sensor network evolution model based on complex
network. EURASIP J. Wirel. Commun. Netw. 2018, 1, 218–227. [CrossRef]

2. Xu, H.; Huang, L.; Qiao, C. Bandwidth-Power Aware Cooperative Multipath Routing for Wireless Multimedia
Sensor Networks. IEEE Trans. Wirel. Commun. 2012, 4, 1532–1543. [CrossRef]

3. Huang, H.; Hu, G.; Yu, F. Energy-aware multipath geographic routing for detouring mode in wireless sensor
networks. Eur. Trans. Telecommun. 2011, 7, 375–387. [CrossRef]

4. Laitrakun, S.; Coyle, E.J. Reliability-Based Splitting Algorithms for Time-Constrained Distributed Detection
in Random-Access WSNs. IEEE Trans. Signal Process. 2014, 21, 5536–5551. [CrossRef]

5. Kaur, G.; Sran, S.S.; Kaur, N. Minimum Latency Data Aggregation in Wireless Sensor Network. Burlingt.
Mag. 2016, 4, 2589–2606. [CrossRef]

6. Zhao, S.; Liu, H.; Xianming, L. Intelligent monitoring system for embankment deformation of high-speed
railway in cold regions: Design and implementation. J. Glaciol. Geocryol. 2014, 4, 944–952.

7. Zhuo, Y.; Wang, X.; Zhang, J. Development and application of automatic monitoring system SMAIS for
settlement of high-speed railway. J. Railw. Eng. Soc. 2015, 4, 10–15.

8. Grebowski, K.; Zielinska, M. Dynamic Analysis of Historic Railway Bridges in Poland in the Context of
Adjusting Them to Pendolino Trains. Int. J. Appl. Mech. Eng. 2015, 2, 283–297. [CrossRef]

9. Thorvaldsen, S. Formal modeling, performance estimation, and model checking of wireless sensor network
algorithms in Real-Time Maude. Theor. Comput. Sci. 2009, 2, 254–280.

10. Li, Y.; Vu, C.; Ai, C. Transforming Complete Coverage Algorithms to Partial Coverage Algorithms for
Wireless Sensor Networks. IEEE Trans. Parallel Distrib. Syst. 2011, 4, 695–703.

11. Mostafaei, H.; Montieri, A.; Persico, V. An efficient partial coverage algorithm for wireless sensor networks.
In Proceedings of the Symposium on Computers and Communication, Messina, Italy, 27–30 June 2016;
pp. 501–506.

12. Mostafaei, H.; Obaidat, M.S. A Greedy Overlap-Based Algorithm for Partial Coverage of Heterogeneous
WSNs. In Proceedings of the Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–6.

13. Sun, G.X.; Bin, S. Router-Level Internet Topology Evolution Model based on Multi-Subnet Composited
Complex Network Model. J. Internet Technol. 2017, 18, 1275–1283.

14. Jawhar, I.; Mohamed, N.; Agrawal, D.P. Linear wireless sensor networks: Classification and applications.
J. Netw. Comput. Appl. 2011, 5, 1671–1682. [CrossRef]

15. Karim, L.; Nasser, N.; Sheltami, T. A fault-tolerant energy-efficient clustering protocol of a wireless sensor
network. Wirel. Commun. Mob. Comput. 2014, 2, 175–185. [CrossRef]

16. Neogi, S.G.; Bhaskar, A.A.; Chakrabarti, P. Energy Efficient Hierarchy-based Clustering Routing Protocol for
Wireless Sensor Networks. Int. J. Comput. Appl. 2014, 13, 1–8.

17. Zhang, W.; Yang, X.Q. Energy dissipation in the deterministic and nondeterministic Nagel–Schreckenberg
models. Phys. A Stat. Mech. Appl. 2008, 18, 4657–4664. [CrossRef]

18. Lombardo, S.; Wu, E.Y.; Stathis, J.H. Electron energy dissipation model of gate dielectric progressive
breakdown in n- and p-channel field effect transistors. J. Appl. Phys. 2017, 8, 085701. [CrossRef]

19. Lei, S. A novel WSNs routing algorithm based on game theory and energy consumption balance. Clust. Comput.
2018, 7, 4271–4276. [CrossRef]

20. Laouid, A.; Dahmani, A.; Bounceur, A. A distributed multi-path routing algorithm to balance energy
consumption in wireless sensor networks. Ad Hoc Netw. 2017, 64, 53–64. [CrossRef]

http://dx.doi.org/10.1186/s13638-018-1240-0
http://dx.doi.org/10.1109/TWC.2012.020812.111265
http://dx.doi.org/10.1002/ett.1490
http://dx.doi.org/10.1109/TSP.2014.2352606
http://dx.doi.org/10.5120/ijca2016908056
http://dx.doi.org/10.1515/ijame-2015-0019
http://dx.doi.org/10.1016/j.jnca.2011.05.006
http://dx.doi.org/10.1002/wcm.1240
http://dx.doi.org/10.1016/j.physa.2008.04.004
http://dx.doi.org/10.1063/1.4985794
http://dx.doi.org/10.1007/s10586-018-1860-5
http://dx.doi.org/10.1016/j.adhoc.2017.06.006


Sensors 2020, 20, 482 20 of 20

21. Pradhan, P.M.; Panda, G. Information Combining Schemes for Cooperative Spectrum Sensing: A Survey and
Comparative Performance Analysis. Wirel. Pers. Commun. 2017, 3, 685–711. [CrossRef]

22. Mishra, B.S.P.; Dehuri, S.; Mall, R. Parallel Single and Multiple Objectives Genetic Algorithms: A Survey. Int.
J. Appl. Evol. Comput. 2011, 2, 21–57. [CrossRef]

23. Ren, F.; Zhang, J.; He, T. EBRP: Energy-Balanced Routing Protocol for Data Gathering in Wireless Sensor
Networks. IEEE Trans. Parallel Distrib. Syst. 2011, 12, 2108–2125. [CrossRef]

24. Sert, S.A.; Bagci, H.; Yazici, A. MOFCA: Multi-objective fuzzy clustering algorithm for wireless sensor
networks. Appl. Soft Comput. J. 2015, 30, 151–165. [CrossRef]

25. Mehmood, A.; Lloret, J.; Sendra, S. MOFCA: A secure and low-energy zone-based wireless sensor networks
routing protocol for pollution monitoring. Wirel. Commun. Mob. Comput. 2016, 17, 2869–2883. [CrossRef]

26. Mohamed, M.; Cherif, S.; Besbes, H. MOFCA: QoS and Energy Aware Cooperative Routing Protocol for
Wildfire Monitoring Wireless Sensor Networks. Sci. World J. 2013, 12, 1–11. [CrossRef]

27. Wang, X.N.; Dong, H.; Yang, Y. Research on 6LoWPAN Wireless Sensor Network Routing. J. China Railw. Soc.
2014, 2, 49–54.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11277-016-3645-6
http://dx.doi.org/10.4018/jaec.2011040102
http://dx.doi.org/10.1109/TPDS.2011.40
http://dx.doi.org/10.1016/j.asoc.2014.11.063
http://dx.doi.org/10.1002/wcm.2734
http://dx.doi.org/10.1155/2013/948940
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	Construction Method of Special Wireless Sensor Network for Railway Status Monitoring 
	An Optimal Energy Resources Allocation Method Based on Clustering Optimization 
	Clustering and Cluster Head Initialization Based on Improved K-Medoids 
	Cluster Head Selection and Rotating Probability Model 
	Clustering Generation and Optimization Model 

	Partial Coverage Model of Wireless Sensor Network Based on Polynomial Time Algorithm 

	Experiments and Results 
	Discussion and Conclusions 
	References

