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Early brain injury and cognitive 
impairment after aneurysmal 
subarachnoid haemorrhage
Matthew J. Rowland  1,2*, Payashi Garry1,2, Martyn Ezra1,2, Rufus Corkill2, Ian Baker3, 
Peter Jezzard4, Jon Westbrook1,2, Gwenaëlle Douaud4,5 & Kyle T. S. Pattinson1,2,5

The first 72 h following aneurysm rupture play a key role in determining clinical and cognitive 
outcomes after subarachnoid haemorrhage (SAH). Yet, very little is known about the impact of so 
called “early brain injury” on patents with clinically good grade SAH (as defined as World Federation 
of Neurosurgeons Grade 1 and 2). 27 patients with good grade SAH underwent MRI scanning 
were prospectively recruited at three time-points after SAH: within the first 72 h (acute phase), at 
5–10 days and at 3 months. Patients underwent additional, comprehensive cognitive assessment 
3 months post-SAH. 27 paired healthy controls were also recruited for comparison. In the first 72 h 
post-SAH, patients had significantly higher global and regional brain volume than controls. This 
change was accompanied by restricted water diffusion in patients. Persisting abnormalities in the 
volume of the posterior cerebellum at 3 months post-SAH were present to those patients with 
worse cognitive outcome. When using this residual abnormal brain area as a region of interest in the 
acute-phase scans, we could predict with an accuracy of 84% (sensitivity 82%, specificity 86%) which 
patients would develop cognitive impairment 3 months later, despite initially appearing clinically 
indistinguishable from those making full recovery. In an exploratory sample of good clinical grade SAH 
patients compared to healthy controls, we identified a region of the posterior cerebellum for which 
acute changes on MRI were associated with cognitive impairment. Whilst further investigation will be 
required to confirm causality, use of this finding as a risk stratification biomarker is promising.

Aneurysmal subarachnoid haemorrhage (SAH) is a devastating disease with high mortality and morbidity in 
those patients who survive hospital treatment. Despite accounting for only 5% of all strokes, the socioeconomic 
cost of SAH has remained disproportionately high with a loss of functional years equivalent to ischaemic stroke. 
This is because despite reductions in the incidence of SAH1,2 and mortality3, the disease often affects young adults 
of working age and frequently results in poor neurocognitive outcome4.

Following successful aneurysm treatment, the management of patients with SAH is conventionally focused 
on the prevention, diagnosis and treatment of secondary brain injury caused by delayed cerebral ischaemia5. 
However, there is increasing evidence that damage caused in the first 72 h post-rupture—so called “early brain 
injury”—may play a key role not only in the development of such delayed cerebral ischaemia, but also in deter-
mining overall neurocognitive outcomes6. Early cerebral ischemia and infarction is common in the acute period 
after SAH and is associated with worse neurological and physiological admission status, as well as poor neurocog-
nitive outcomes7,8. Global cerebral oedema is also a significant feature of early brain injury and is an independent 
risk factor for mortality and poor outcome after SAH9,10.

Advances in MRI physics and analysis now offer a number of objective, reliable and non-invasive tools such 
as apparent diffusion coefficient (ADC) and voxel-based morphometry (VBM) to measure changes in cerebral 
structure at a tissue level. The ADC is a measure of the diffusivity of water molecules in tissue. In ischemic tis-
sue e.g. following SAH, cytotoxic edema leads to a reduction in the ADC suggesting that the ADC may be a 
good parameter for identification/quantification of cerebral edema11–13. Some of the main advantages to using 
a voxel-by-voxel approach such as VBM are that firstly, it is not biased to one particular structure, and gives a 
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comprehensive assessment of anatomical differences throughout the entire brain without a priori knowledge of 
which regions may be affected. Furthermore, it is a fully automated process, and therefore is fully reproducible 
intra- and inter-rater14,15. For this reason, it is highly suited to the investigation of early brain injury due to the 
unpredictable nature of the physiological insult that occurs following aneurysm rupture. Furthermore, as early 
brain injury is characterised by cerebral oedema, using imaging techniques such as ADC and VBM that are 
sensitive to regional changes in brain tissue is particularly of value.

The primary aim of this study was therefore to characterise imaging biomarkers of early brain injury in 
patients with good clinical grade SAH (WFNS 1 and 2). We aimed to quantify global and regional grey matter 
volume and apparent diffusion coefficient (ADC) in patients at three time points: within the first 72 h post-
rupture, at 5–10 days and at 3 months post-SAH. We then investigated whether we could predict, within the 
acute period of the first 72 h post-SAH, the future incidence of cognitive impairment at 3 months post-SAH. 
Finally, we conducted an exploratory analysis relating our imaging findings with those from the UK Biobank to 
investigate possible genetic mechanisms underpinning any anatomical differences observed in those with poor 
cognitive outcome. Our study aimed to build a greater understanding of the pathophysiological changes incurred 
by aneurysm rupture, and to identify which patients—amongst those initially faring better—were most at risk 
of poor cognitive outcomes.

Results
Clinical demographics.  Between March 2011 and May 2015, 63 patients were screened for eligibility into 
the study. Of these, 29 matched inclusion criteria and were recruited (Table 1). Complete demographics and 
radiological data for each recruited patient are included in the Supplemental Material (Table S2). Figure 1 shows 
the CONSORT diagram outlining the recruitment and progress of the study. 27 healthy control subjects, paired 
by age (± 2 years) and gender to the recruited patients who underwent successful MRI scanning (n = 27) were 
also recruited.

Table.1.   Demographics of the scanned patients and controls (*2 patients did not undergo cognitive testing).

Overall demographics All patients Controls Impaired* Non-impaired*

n 27 27 11 14

Mean age (range) 55 (31–77) 55 (32–77) 53 (37–72) 55 (31–70)

Gender (M:F) 11:16 11:16 4:7 5:9

Premorbid IQ: mean NART (std) 104 (12) 99 (2) 106 (3)

WFNS  grade

Median 1 1 1.5

1 17 10 7

2 10 1 7

Modified Fisher grade

Median 4 4 4

1 0 0 0

2 0 0 0

3 6 3 4

4 21 8 10

Aneurysm location

Anterior circulation 12 5 6

Middle cerebral artery 6 0 2

Internal carotid artery 8 3 2

Posterior circulation 1 3 4

Left side 12 4 7

Right side 13 6 6

Midline 2 1 1

Complications

Hydrocephalus 13 4 8

Extra-ventricular drain 2 0 1

DCI/DCI-related cerebral infarction 8 3 5

Angiographic vasoconstriction (measured on CT angiogram) 1 0 1

Mean time post-SAH to assessment (range)

Assessment 1 52 h (29–65)

Assessment 2 6 days (5–10)

Assessment 3 84 days (74–108)
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Cognitive outcomes.  Of the 25 patients who attended and completed formal cognitive testing at Assess-
ment 3 (3 months post-SAH), 11 patients were diagnosed as being cognitively impaired based on their N-ISAT 
scores. Out of the 5 cognitive domains investigated, patients with impairment were specifically worse in their 
executive skills, processing speed and non-verbal skills (Supplementary Material—Fig. S1). Those cognitively 
impaired patients based on lower N-ISAT scores also had significantly lower ACE-R scores than those with no 
impairment (89 ± 5 vs. 93 ± 5, p = 0.03 Mann–Whitney test). There were no significant differences between the 
impaired and non-impaired groups in age (p = 0.84), gender (p = > 0.99) and Fisher score (p = 0.85) (Table 1).

Using the NART to estimate pre-morbid IQ, there were also no differences between impaired and non-
impaired patients (Table 1). However, post-SAH IQ at Assessment 3 using the WASI showed a significant decrease 
in IQ in those patients with cognitive impairment compared with those without.

MRI results.  Complete T1-weighted data was obtained for 27 patients (Fig. 1), while diffusion-weighted data 
was obtained in 14 patients due to constraints on length of time in the scanner for some patients.

Cross‑sectional group comparison analyses (patients vs. controls).  Assessment 1: < 72 h post‑SAH.  SIENA-X 
analysis showed significant apparent higher total brain volume, whole-brain GM and WM volumes in patients 
compared with healthy controls, while ventricular CSF volumes showed a trend towards higher values in patients 

Screened for eligibility
n=63

Recruited into study
n=29

Not assessed

• WFNS Grade 3/4/5
• Outside of age range
• Declined consent
• >72 hours post-SAH

MRI Scan 1
(<72 hours post SAH)

n=27

MRI Scan 2
(5-10 days post-SAH)

n=26

MRI Scan 3
(3 months post-SAH)

n=25

Subarachnoid haemorrhage admitted 
to neurosurgical unit

Excluded

• MRI contraindication
• Failed aneurysm treatment

Excluded
n=1 (re-bleed prior to scan)
n=1 (MRI artefact - dental 
          braces)

Declined MRI Scan 2
n=1 (nausea/headache)

Excluded
n=1 (non-MRI compatible shunt)

Figure 1.   CONSORT diagram of study recruitment.
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(Table 2, Fig. 2A). In line with the apparent higher whole-brain GM volume, we found a significantly lower mean 
GM ADC values for the patients compared with controls (Table 2, Fig. 2A).

Voxel-by-voxel regional analysis using VBM showed that this apparent higher GM volume in the patients 
was widespread, particularly in regions including the anterior cingulate/paracingulate gyrus, primary motor 
cortex, left supramarginal and angular gyrus, fusiform gyrus (especially on the right), basal ganglia (caudate and 
putamen bilaterally) and cerebellum (Fig. 2A).

Assessment 2: 5–10 days post‑SAH.  There were trends towards higher total brain volume, whole-brain GM 
or WM volume in patients compared with healthy controls, while ventricular CSF volume was this time signifi-
cantly higher in the patients (Table 2, Fig. 2B). There was a reduction in mean GM ADC in the patients com-
pared with healthy controls (Table 2, Fig. 2B).

VBM analysis revealed apparent higher GM volume that was less marked than at Assessment 1 but still 
widespread, and especially prominent in the angular gyrus, fusiform gyrus and most markedly in the cerebel-
lum (Fig. 2B).

Assessment 3: Three months post‑SAH.  At 3 months following SAH, there was no significant difference in 
total brain volume, whole-brain GM or WM volume between patients and controls. However, there remained a 
significant increase in ventricular CSF volume in patients when compared with controls (Table 2, Fig. 2C). There 
was also no longer any significant difference in whole-brain GM ADC (Table 2, Fig. 2C).

However, the regional VBM analysis highlighted a persistent and significantly higher GM volume in patients 
compared with controls in the cerebellum (Fig. 2C). These remaining GM abnormalities were, on closer inspec-
tion, mainly localised bilaterally in the cognitive cerebellar lobule VII: mainly in Crus II, but also Crus I and 
VIIb to a lesser extent.

Longitudinal analyses within the patient group.  These can be found in the Supplementary Material.

Cognitive outcome analyses.  We sought to test the hypothesis that the remaining differences found in the 
patients at 3 months post-SAH (scan 3) (Fig. 3B) might be imputable to the patients with worse cognitive out-
comes, as these differences were observed specifically in cognitive regions of the cerebellum, mainly Crus II, 
Crus I and VIIb16 (Fig. 3C).

In the cerebellar region of interest (ROI) defined by this significant, apparent increase in GM volume in the 
entire patient group compared with the healthy controls (“scan3-ROI”), those patients with cognitive impair-
ment had higher GM volumes indeed compared to those without, who seemed to have GM volumes similar to 

Table.2.   Global MRI brain measures at each assessment (volumetric: SIENA-X and water diffusion: diffusion-
weighted imaging—DWI). Significant values are in bold.

Patients (mean ± std) Controls (mean ± std) p

Assessment 1 (< 72 h post-SAH)

SIENA-X

 Total brain volume (mm3) 1521 ± 66 1461 ± 90 0.01

 Grey matter volume (mm3) 790 ± 44 746 ± 50 < 0.01

 White matter volume (mm3) 731 ± 28 706 ± 54 0.03

 Ventricular CSF volume (mm3) 45 ± 20 37 ± 8 0.06

DWI

 Mean grey matter ADC (× 10−6 mm2/s) 1004 ± 35 1054 ± 40 < 0.01

Assessment 2 (5–10 days post-SAH)

SIENA-X

 Total brain volume (mm3) 1502 ± 68 1455 ± 99 0.07

 Grey matter volume (mm3) 773 ± 54 748 ± 48 0.05

 White matter volume (mm3) 729 ± 29 707 ± 54 0.09

 Ventricular CSF volume (mm3) 46 ± 20 37 ± 8 0.03

DWI

 Mean grey matter ADC (× 10−6 mm2/s) 1010 ± 33 1054 ± 40 0.001

Assessment 3 (3 months post-SAH)

SIENA-X

 Total brain volume (mm3) 1480 ± 61 1461 ± 90 0.39

 Grey matter volume (mm3) 765 ± 45 748 ± 50 0.21

 White matter volume (mm3) 718 ± 23 708 ± 55 0.43

 Ventricular CSF volume (mm3) 55 ± 26 37 ± 8 0.009

DWI

 Mean grey matter ADC (× 10−6 mm2/s) 1025 ± 26 1053 ± 41 0.06
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those of healthy controls (Fig. 3A). Cohen’s d calculated between patients with and without impairment for the 
GM volume of the cerebellum scan 3-ROI was 0.72—suggesting a medium to large effect size difference between 
the two groups17.

Next, we investigated whether these cognitive outcomes at 3 months post-SAH could have actually been 
predicted from looking, in the acute phase, at this same region of the brain in the patients only. By extracting 
the normalised GM volume values at scan 1 using this cerebellum scan 3-ROI and using leave-one-out cross-
validation, we found that the GM cerebellar values yielded a maximum accuracy of 84% to discriminate patient 
with vs. without cognitive impairment, which could be achieved with a threshold of 0.1792. At this point on the 
ROC curve, the sensitivity was 82% and the specificity is 86% (and a balanced accuracy of 84%). The area under 
the curve (AUC) for the ROC was 0.805, with 95% confidence interval from 0.576 to 0.921 (Fig. 4A).

Figure 2.   Higher GM volume (global: SIENA-X, local: VBM) and lower GM DWI between SAH patients and 
healthy controls in acute phase subside at 3 months post-SAH, except in the cerebellum. Results are given for 
each timepoint (A acute phase, < 72 h post-SAH; B 5–10 days post-SAH; and C 3 months post-SAH). Left, plots 
showing results from the SIENA-X analyses looking at mean whole-brain GM volume. Middle, results from the 
voxel-by-voxel VBM analysis showing in red-yellow the GM areas where patients have apparent higher volume 
(p < 0.05-TFCE-corrected for multiple comparisons, overlaid onto the average of all 54 GM volume images). 
Right, plots showing the mean ADC values in a whole-brain GM mask. L is R.
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Figure 3.   Residual GM volume differences in the posterior cerebellum at 3 months post-SAH are related to 
patients with cognitive impairment. (A) GM volume values in the significant cerebellum residual abnormalities. 
While the values are on average similar between those patients without cognitive impairment and the healthy 
controls, they are clearly higher in those with cognitive impairment (calculations done using the weighted 
average in the supra-threshold cluster shown in B). For visualization only, we also present those same values 
for the first two timepoints (< 72 h post-SAH and 5–10 days post-SAH; in greyed areas). (B) Results from 
the regional GM analysis (VBM) at 3 months post-SAH. Patients have higher GM volumes in the posterior, 
cognitive cerebellum (red-yellow, p < 0.016 TFCE-corrected) encompassing regions of crus I, crus II and VIIb 
bilaterally (as shown in C, in yellow, green and pink, respectively from a probabilistic atlas). L is R.
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A direct VBM analysis at scan 1 comparing patients with and without future cognitive impairment confirmed 
that those who went on to develop impairment at 3 months post-SAH already showed a significant apparent 
higher GM volume in a cerebellar region which overlapped with the cerebellar ROI defined above, but which 
also extended more prominently into lobules VIIb and VIIIa (Fig. 4B).

Exploratory UK Biobank analyses.  Three genetic findings were related to the GM volume measured in the 
cerebellum of the ~ 10,000 UK Biobank participants: SLC39A8/ZIP8 which has been linked to higher risk of 
cardiovascular death18,19, SLC44A5 an important gene for metabolism of lipids and lipoproteins20, and PAPPA, 
which critically codes for a protein that acts in particular as a predictor of poor outcome in transient ischemic 
attack and ischemic stroke21.

When specifically investigating the volume of cerebellar regions strongly linked to cognitive impairment in 
the SAH patients (lobule VII: Crus I, Crus II and lobule VIIb), we once again uncovered significant associations 
in the UK Biobank participants with PAPPA (Crus I), but also with EXOC5 and TSHZ1 (Crus II). In turn, the 
most strongly associated locus in an intron of PAPPA (rs72754248, p = 1.4 × 10−17) correlated significantly with 
two primary causes of death (ICD10 J43.9: Emphysema, p = 2 × 10−5; ICD10 X59.5: Accidental exposure to other 
and unspecified factors, p = 3.6 × 10−6). The strongest locus in proximity to EXOC5 (rs76684157, p = 9.1 × 10−10) 
was associated at a trend level with the medication nicorandil, a vasodilatory drug and anti-anginal agent, being 
taken by the UK Biobank participants (p = 1.8 × 10−4), while the locus close to TSHZ1 (rs4891262, p = 7.4 × 10−10) 
was associated at a trend level with the medication spironolactone, given to treat high blood pressure and heart 
failure (p = 2 × 10−4).

Furthermore, we uncovered from our latest, extended genetic-imaging UK Biobank study22, further associa-
tions of lobule VII with many additional variants principally related to cardiovascular disease and risk factors, 
including rs56300220, a locus in an exon of LRP8, rs2199936, in an exon of ABCG2, as well as two introns in 
MFHAS1.

Discussion
This study is the first to use MRI to quantify the acute pathophysiological consequences of SAH in specifically 
good grade patients. We demonstrate that MRI brain scanning in the acute stage accurately predicts the future 
cognitive impairment in patients who, crucially, appeared clinically indistinguishable on presentation from 
those making full recovery.

Figure 4.   Posterior cerebellum volume in the acute phase post-SAH predicts future neurocognitive outcomes. 
(A) Receiver operator characteristic (ROC) curve for neurocognitive impairment (weighted average GM volume 
values from the acute-phase scans < 72 h using the supra-threshold cluster shown in Fig. 3B as a region of 
interest). Maximum accuracy of 84% is achieved using leave-one-out cross-validation with a threshold of 0.1792, 
and at this point on the ROC curve, the sensitivity is 82% and the specificity is 86%. (B) Direct comparison 
at < 72 h post-SAH reveal apparent higher cerebellar volume in patients with cognitive impairment compared 
to those without (blue, p < 0.001 TFCE-corrected). These regions broadly correspond to those showing residual 
abnormalities at 3 months.
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Good grade SAH leads to global brain changes quantifiable with acute MRI.  The incidence of 
global cerebral oedema specifically in good grade SAH patients (WFNS I and II) is unknown. Results of recent 
studies suggest that the incidence may be in the region of 57–81% of all clinical grade of SAH patient13,23. How-
ever, it remains currently difficult to objectively quantify oedema with routine clinical neuroimaging such as 
CT9,24. We identified a significant apparent increase in GM volume within the first 72 h post-SAH compared 
with gender- and age-paired healthy controls (Fig. 2A). Median values for the patients were 80% higher in GM 
volume and 100% lower in ADC value compared with those seen in the control group. Both these proxy in vivo 
measures are highly indicative of cytotoxic cerebral oedema, with cellular swelling causing an increase in volume 
and decrease in water diffusion. Global cerebral oedema after SAH is known to be associated with worse initial 
clinical condition23 and early brain metabolic distress25.

Persistent abnormalities in cerebellar volume after 3  months relate to cognitive impair-
ment.  Despite having the most potential for neurological recovery, few studies have specifically focused on 
cognitive outcomes in patients with good clinical grade SAH (i.e. WFNS 1 and 2)26,27. As a result, subtle cognitive 
deficits that exert a disproportionately significant impact on quality of life can go undiagnosed. Our results high-
light that the incidence of cognitive impairment at 3 months post-SAH remains high in patients with good grade 
SAH. Almost 50% of patients were defined as being cognitively impaired with significant deficits in the domains 
of executive functioning, processing speed and memory (Fig. S1). This is in agreement with other studies that 
have suggested that the incidence of these deficits ranges from 7 to 62% of patients28.

It is highly likely that damage to the cerebellum influence the degree of cognitive impairment exhibited by 
patients at 3 months post-SAH. Our voxel-by-voxel analysis highlighted a persisting higher GM volume mainly 
localized to an ROI of lobule VII (Crus I, II and lobule VIIb) bilaterally (Fig. 2C). This difference was driven by 
those patients who had developed cognitive impairment post-SAH (Fig. 3A). There is increasing convergent and 
multi-modal evidence from both basic science and clinical studies that the cerebellum, and especially lobule VII, 
has a key role in higher cognitive functions16,29,30. In particular, functional imaging studies have highlighted the 
role of Crus I in executive functions31, while lesions to Crus II result in impaired verbal fluency32.

One plausible hypothesis for the increased GM volume is that this represents residual cerebral oedema. The 
exact time course of oedema resolution after SAH remains unknown. Studies in animals suggest that cerebral 
oedema following traumatic brain injury resorbs over a period of weeks33. An alternative explanation may be 
that the study population of good grade SAH patients included a large number with high blood load (modified 
Fisher grade 4 and 5). The recumbent nature of many patients during the acute admission post-SAH might have 
also led the cerebellum, especially its most posterior part (precisely lobule VII), to sustain increased injury due 
to a gravity effect and subsequent haemotoxicity of this higher blood load.

Genetic findings from UK Biobank related to the cerebellum.  It is worth noting that, using the 
same voxel-by-voxel measure in ~ 40,000 UK Biobank participants, the cerebellar GM volume, and especially 
that of lobule VII, is repeatedly associated with multiple genes involved in cardiovascular events. In particular, a 
genetic variant in ZIP8, which is associated with the GM volume of most of Crus II (described in Elliott et al.19 
Extended Data Fig. 1), has been linked to higher risk of cardiovascular death18. Similarly, PAPPA, which is in 
particular related to Crus I, Crus II and lobule VIIb, has been shown increasingly to have a consistent role in car-
diovascular disease34,35. Serum PAPP‐A concentration notably emerges as a predictor of risk for poor outcome in 
transient ischemic attack and ischemic stroke21. We further uncovered associations between the regions of lobule 
VII and exonic variants of LRP8 and ABCG2, both genes being implicated in familial and premature coronary 
artery disease and myocardial infarction, and cardiovascular disease risk factors, respectively36,37. Finally, two 
intronic variants of MFHAS1 that we found associated with lobule VII have been shown, in previous GWAS, to 
be significantly involved in the use of medication acting on the renin-angiotensin system, as well as with Type 
II diabetes38,39. Persisting higher cerebellar volume thus appears to be a meaningful marker of the deleterious 
influence of proteins relevant to cardiovascular disease, and a potential factor in the cognitive impairment sub-
sequently developed by those who had higher volumes in the acute phase. The question remains whether such 
specific vulnerability of the posterior cerebellum predates the SAH event.

Cerebellum GM volume during acute phase predicts cognitive outcomes 3  months 
post‑SAH.  There was no significant difference between patients with and without future cognitive impair-
ment in age, gender, hydrocephalus and angiographic vasospasm, clinical features such as Fisher score, or, 
importantly, in the location of the aneurysm (Table 1). Interestingly, the only demographic or clinical difference 
was that patients with future impairment actually demonstrated lower WFNS scores (i.e. better clinical condi-
tion upon admission, Table 1). However, when using an ROI of those remaining cerebellar abnormalities seen 
at scan 3 across all patients, it was actually possible to predict within the first 72 h post-rupture which patients 
went on to poor cognitive outcomes with 84% accuracy and 86% specificity (Fig.  4A). A direct comparison 
between patients with and without future impairment based on their brain scans in the acute phase confirmed 
higher GM volume in the cerebellum (mainly lobule VII and VIIIa) in the patients with future poorer outcome 
(Fig. 4B). This demonstrates the promise of measuring brain tissue alterations in the posterior cerebellum to 
stratify patients very early in their clinical pathway.

In summary, in an exploratory sample of good grade SAH patients compared to healthy controls, we identified 
a region of the posterior cerebellum for which acute changes on MRI were associated with cognitive impair-
ment. The high sensitivity of our voxel-by-voxel approach to both global and regional, localised changes in GM 
volume also demonstrates that significant cerebral oedema occurs acutely even in good grade SAH as a result of 
early brain injury. Acute damage to the posterior cerebellum is potentially a pathophysiological mechanism that 
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contributes towards subsequent cognitive impairment and requires further prospective study. Whilst further 
investigation will be required to confirm causality, use of this finding as a risk stratification biomarker in SAH 
is promising.

Methods
The study was designed as a longitudinal, prospective cohort study. Approval for the study was granted by the 
local National Research Ethics Service committee (NRES Committee South Central—Berkshire: 11/SC/0519). 
All methods were performed in accordance with the relevant guidelines and regulations and in accordance with 
the Declaration of Helsinki. Patients, and age/gender-paired healthy controls, were recruited from a tertiary 
neurosurgical centre. Informed written consent was obtained from all participants or a nominated consultee.

Patients were eligible for recruitment to the study according to the following inclusion criteria:

(1)	 male or female, aged between 18–80,
(2)	 WFNS Grade I and II SAH and.
(3)	 presentation to emergency medical services and successful aneurysm occlusion within 72 h of index head-

ache.

Patients were assessed on three occasions post-SAH: Assessment 1 was at an acute stage within 72 h post-rup-
ture, Assessment 2 was between 5–10 days post-rupture and Assessment 3 was performed 3 months post-rupture. 
Healthy controls attended a session during which MRI scanning, cognitive and clinical measures were obtained.

Imaging data, acquired using a 3 T Verio MR, included:

1.	 Whole-brain structural T1-weighted sequence to measure grey matter (GM) volume:

–	 Globally: whole-brain GM, white matter (WM) and ventricular cerebrospinal fluid volumes were esti-
mated in each scan using the FSL tool SIENAX40.

–	 Regionally: an optimized voxel-based morphometry (VBM) analysis was then undertaken to identify 
regional, localised differences in GM volume using FSL-VBM14.

2.	 Diffusion-weighted imaging (DWI) to measure magnitude of water diffusion: using the same VBM standard 
space, mean GM ADC values were extracted for each scan.

All voxel-wise statistical analyses were carried out using permutation testing in FSL41.
Following discharge, patients were invited to return for a follow-up appointment at 3 months post-SAH. This 

involved a comprehensive set of cognitive assessments carried out by trained assistant psychologists, under the 
supervision of a consultant clinical neuropsychologist.

Individuals’ cognitive test scores that fell at or below the 5th percentile (equivalent to a z-score ≤ 1.65) were 
identified and classified as impaired scores (or “deficits”)42. Neurocognitive impairment was then defined as 
presence of two or more impaired test scores of the five cognitive domains (see Supplementary Material)42. The 
complete assessment battery is outlined in Table S1.

MRI data were analysed according to four main analyses:

1.	 Cross-sectional group comparison: we compared patients and controls at each time-point of the three assess-
ments.

2.	 Longitudinal comparison within the patient group: we compared scans at Assessment 1 with scans at Assess-
ments 2 and 3.

3.	 Cognitive outcome analysis: we assessed whether the poor cognitive outcome observed a posteriori in certain 
patients at 3 month (cognitive impairment as defined above) could be predicted from their scans in the acute 
phase.

4.	 UK Biobank analysis: we related our brain imaging results from 3. with those imaging findings from the UK 
Biobank (n = ~ 10,000), to investigate the possible genetic mechanisms underpinning the anatomical differ-
ences observed in those with poor cognitive outcome.

Full details of the “Materials and methods”, including Statistical Analyses, are available in the Supplementary 
Material.

Data availability
http://​big.​stats.​ox.​ac.​uk/. http://​www.​neale​lab.​is/​blog/​2017/7/​19/​rapid-​gwas-​of-​thous​ands-​of-​pheno​types-​for-​
337000-​sampl​es-​in-​the-​uk-​bioba​nk.
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