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1. Introduction
Adipose tissue, a dynamic endocrine organ, is composed 
of adipokines, which have a number of biologically active 
proteins [1]. Adipokines play a significant role in the 
regulation of appetite and satiety, energy expenditure, 
fat distribution, insulin sensitivity and secretion, 
inflammation and acute-phase responses, immunity, 
blood pressure, homeostasis, and endothelial functions 
[2]. Many adipokines have been identified, and leptin, 
adiponectin, resistin, glucagon–like peptide 1 (GLP–1), 
insulin–like growth factors 1 (IGF–1), and ghrelin are the 
most closely studied [3]. 

Adipose tissue might have an important role in the 
adaptation to critical illness, which is a multifactorial 
heterogeneous disease accompanied by inflammation 
and insulin resistance. It changes the secretory function 
and leads to major changes in adipokine levels [4]. 
Therefore, adipokines are suspected of affecting clinical 
outcomes in critical illness [3,5,6]. At present, the effect 
of some adipokines in critical illness is debated but many 
studies have shown that adipokines may cause metabolic 
alterations depending on changes in morphological, 
physiological, and metabolic functions in adipose tissue 
due to critical illness [7–12].

Background/aim: Adipokines play an important role in the regulation of metabolism. In critical illness, they alter serum levels and are 
suspected to worsen clinical outcomes.  But the effect of the route of nutrition on adipokines is not known. The purpose of this study 
was to evaluate the association between the route of nutrition and adipokine levels in critically ill patients.
Materials and methods: This prospective study was performed in an intensive care unit (ICU). Patients admitted to the ICU for least 
72 h and receiving either enteral nutrition (EN) via tube feeding or parenteral nutrition (PN) were enrolled. Serum was obtained at 
baseline, 24 h, and 72 h for concentrations of leptin, adiponectin, resistin, glucagon–like peptide 1 (GLP–1), insulin–like growth factors  
1 (IGF–1), and ghrelin.
Results: A total of 26 patients were included in the study. Thirteen patients received EN and 13 patients received PN. In the PN group, 
leptin level significantly increased (P = 0.037), adiponectin and ghrelin significantly decreased during follow up (P = 0.037, P = 0.008, 
respectively). There was no significant change between all adipokines in the EN group and resistin, IGF–1 and GLP–1 in the PN group 
during follow up. Resistin levels were markedly lower in the EN group at both 24 h (P = 0.015) and 72 h (P = 0.006) while GLP–1 levels 
were higher in the EN group at baseline, 24 h, and 72 h (P = 0.018, P = 0.005, and P = 0.003, respectively). There were no differences in 
leptin, adiponectin, IGF–1, and ghrelin levels over time.  
Conclusion: The delivery of EN in critical illness was associated with decreased resistin levels and increased GLP–1 levels. Thus, the 
route of nutrition may impact the clinical outcome in critical illness due to adipokines.
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When oral intake is not possible and the gastrointestinal 
system is functional in critically ill patients, EN should 
be preferred. If oral and EN are contraindicated, PN 
is performed in critically ill patients [13]. EN prevents 
intestinal villus atrophy, protects against ischemic 
reperfusion injury by stimulating intestinal perfusion, 
reduces bacterial permeability, and prevents the 
development of systemic infection and multi-organ failure 
by protecting intestinal barriers in critically ill patients 
[14]. EN affects direct intestinal adipose tissue especially 
related to the incretin effect, which is responsible for 
adipokines such as GLP–1 and glucose–dependent insulin 
tropic peptide (GIP) [15,16]. Hence, adipokines are 
thought to be a pathway for the therapeutic benefits of EN 
[17]. In a study conducted on patients undergoing ileum 
resection due to intestinal injury in Crohn’s disease, it 
was reported that EN contributed adipocyte morphology 
restoration and reduced inflammation in mesenteric fat 
tissue [18].

The effects of EN and PN on circulating adipokines 
have not been studied well in critically ill patients. The aim 
of this pilot study was to investigate the effects of EN and 
PN on these hormones in critically ill patients. 

2. Materials and methods
The present study was performed prospectively in the 
Medical and Surgical ICU. This study was approved by the 
local Ethics Committee and all patients provided informed 
consent. This study was a prospective, observational, and 
single–centered pilot study with secondary analysis of the 
association between refeeding hypophosphatemia and 
serum appetite-regulating hormone levels in critically ill 
patients.

Patients aged ≥ 18 years and admitted to the ICU 
for at least 72 h and who received nutrition support via 
EN or PN were included in this study. Patients with 
hypophosphatemia (serum phosphorus level ≤ 2.4 
mg/L), chronic renal failure, diabetic ketoacidosis, or 
hyperparathyroidism at the onset of nutrition, undergoing 
treatment for chronic liver disease or biliary tract diseases 
(except cholecystectomy), or gastric bypass surgery were 
excluded from the study.

Patient demographic characteristics, the reason for 
ICU admission, APACHE–II score, SOFA score, Charlson 
comorbidities score, and Nutrition Risk in the Critically 
İll Score (NUTRIC score) were recorded upon ICU 
admission. IR was evaluated by using the HOMA model 
[HOMA-IR = fasting insulin (µIU / mL) × fasting glucose 
(mmol/L)/  22.5] [19]. Additionally, the route of nutrition, 
daily calorie intake and content and time to feeding of 
patients were recorded. The PN group accepted patients 
who received PN and the EN group accepted patients who 
received EN.

Blood samples were collected in order to measure 
serum leptin, resistin, adiponectin, GLP–1, IGF–1 and 
ghrelin at baseline, 24 h, and 72 h. Blood samples were 
processed with Trasylol, an inhibitor of pancreatic trypsin 
in order to prevent degradation of peptide hormones by 
pancreatic trypsin. 

Nutrition initiation time and type, target calorie 
requirement, and, enteral/parenteral product selection 
were set according to ESPEN guidelines after ICU 
admission [20]. Patients were given 20–25 kcal/kg/d 
energy in acute phase of illness, and 25–30 kcal / kg/d 
energy in chronic phase of the illness. Each patient 
received only EN or only PN.

Patients with normal gastrointestinal function 
received EN. Nutrition therapy was started with 10 
mL/h. The nutritional goal was reached by increasing 
by 10 mL/4 h. Patients were routinely given standard 
enteral formula. Some patients were given a high–fat, 
low–carbohydrate enteral  formula, a low–volume, high–
energy enteral formula, and a diabetes specific formula for 
treatment.

PN was given if EN was contraindicated due to 
disturbed gastrointestinal function. For PN, standard 
commercial products were used. Compounder TPN was 
prepared to different content–carbohydrates (50–60%), 
protein (15–20%), fat (20–30%) of calories all in one bag 
in our hospital.

Serum adipokines were analyzed at 3 time 
points (baseline, 24 h, and 72 h) by enzyme–linked 
immunosorbent assay (ELISA) for leptin (DiaSource, 
Belgium), adiponectin (Biovendor, Czech Republic), 
resistin (Biovance Technologies, USA), GLP–1 (Ray 
Biotech, USA), and ghrelin (Phoenix, USA). IGF–1 was 
analyzed with the autoanalyzer in the hormone laboratory.
2.1. Statistical analysis 
Statistical analysis was conducted using IBM SPSS 
Statistics 22 (IBM Corp., Armonk, NY, USA). Categorical 
data are presented as n (%), continuous data as median 
(interquartile range [IQR]). Categorical data were 
compared between 2 groups using the chi-square exact 
test. Continuous data were compared between 2 groups 
using Mann Whitney U test. Friedman test was used to 
determine the serum adipokines levels period. Differences 
were considered statistically significant at P > 0.05.

3. Results
A total of 26 patients were included in this study. There 
were nine (35%) females and 17 (65%) males. The median 
age was 69 (53–75) years. Patient demographic data are 
presented in Table 1. The median APACHE-II score was 
24 (17–28) and the median SOFA score was 4.0 (0–13.0) at 
admission to ICU (Table 1).
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A total of 13 patients (50%) received EN via feeding 
tube and 13 patients (50%) received PN during the 3–day 
period of observation. In the EN group, nutrition was 
temporarily interrupted in 3 patients due to high gastric 
residual volumes and in 1 patient due to tracheostomy. 
The target calorie requirement, daily energy intake, and 
macronutrient content (the composition of carbohydrate, 
protein, and lipid in the EN group; the composition of 
glucose, amino acid, and lipid in the PN group) of the 
patients are shown in Table 2.

In the PN group, the leptin level significantly increased 
(P = 0.037); adiponectin and ghrelin significantly decreased 
during follow up (P = 0.037, P = 0.008, respectively). There 
was no significant change between all adipokines in the 
EN group and resistin, IGF–1 and GLP–1 in the PN group 
during follow up (Table 3).

Serial serum adipokine levels in the EN and PN groups 
are presented in Figure. There was no difference between 

the EN and PN groups for serum leptin, adiponectin, 
IGF–1, and ghrelin levels at baseline, 24 h, or 72 h.

Serum resistin levels at 24 h and 72 h were significantly 
lower in the EN group compared to the PN group (P = 
0.014, P = 0.005, respectively; Figure). However, there was 
no significant difference between the EN and PN groups 
in serum resistin levels at baseline. In contrast, serum 
GLP–1 levels in the EN group were significantly higher at 
baseline, 24 h, and 72 h compared to the PN group (P = 
0.016, P = 0.004, P = 0.002, respectively; Figure).

4. Discussion
This pilot study was conducted to investigate the 
relationship between serum adipokine levels and the 
route of nutrition in a mixed cohort of adult critically ill 
patients. We determined that the leptin level significantly 
increased, adiponectin and ghrelin significantly decreased 
during follow up in PN group, and there were decreased 

Table 1. Patient demographic and clinical characteristics.

Variables Total
(n = 26)

EN group
(n = 13)

PN group
(n = 13) P

Age (year), median (IQR) 69 (53–75) 69 (44–76) 68 (56–75) 0.685

Sex, n (%)
  Male
  Female

17 (65)
9 (35)

9 (64)
5 (36)

8 (67)
4 (33)

1

Body Mass Index (kg/m2), median (IQR) 27 (22–33) 26 (23–28) 27 (22–33) 0.153

ICU admission type, n (%)
  Medical
  Surgery

17 (65)
9 (35)

10 (71)
4 (29)

7 (58)
5 (42)

0.986

Reason for ICU admission, n (%)
  Malignancy
  Sepsis
  Neurological disorders
  Trauma
  Intoxication 
  Respiratory failure
  Gastrointestinal bleeding

9 (35)
5 (19)
5 (19)
3 (12)
2 (7)
1 (4)
1 (4)

2 (15)
2 (15)
5 (39)
2 (15)
1 (8)
1 (8)
0

7 (54)
3 (22)
0
1 (8)
1 (8)
0
1 (8)

0.043

Insulin resistance, n (%) 13 (50) 5 (39) 8 (62) 0.434
Charlson comorbidity index, median (IQR) 3 (0–8) 2 (0–8) 4 (0–8) 0.287
APACHE II score, median (IQR) 24 (17–28) 22 (17–28) 25 (18–28) 0.633
SOFA score, median (IQR) 4.0 (0–13.0) 3.0 (0–13.0) 4 (0–13.0) 0.880
NUTRIC score, median (IQR) 4 (3–5) 5 (3–5) 4 (3–5) 0.011
Length of hospital stay (day), median (IQR) 31 (8–150) 34 (8–125) 28 (9–150) 0.169
Length of ICU stay (day), median (IQR) 20 (2–125) 27 (2–125) 13 (2–45) 0.179
Mortality, n (%) 14 (54) 9 (69) 5 (38) 0.238

APACHE II, Acute Physiology and Chronic Health Evaluation; SOFA, Sequential Organ Failure Assessment, Nutrition Risk 
Screening–2002.
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resistin levels as described in catabolic hormones and 
increased GLP–1 levels as described in anabolic hormones 
in the EN group.

Leptin levels are usually increased due to the rise 
in endotoxins, certain cytokines, and glucocorticoids 
in critical illness, although studies of leptin levels are 
conflicting [4,21]. Leptin is also described as an indicator 
of fasting or malnutrition [22]. The level of leptin in 
critical illness is contradictory in the literature, leptin 
levels were increasing during follow-up in both groups. 
In a study, critical patients who were received continuous 
enteral nutrition were followed for 14 days. Similarly to 
our findings, the level of leptin increased during follow 
up, but was higher than our patients [23]. In our study, 

the PN group had higher malnutrition risk than the EN 
group according to the NUTRIC score. Consequently, we 
observed that leptin levels in the EN group were higher 
than the PN group for the three-time points even if 
statistically nonsignificant. 

In critical illness, glucose homeostasis is often impaired 
and insulin resistance is a common condition due to the 
presence of hyperglycemia and hyperinsulinemia. Lower 
adiponectin and leptin levels may contribute to insulin 
resistance [24]. While it was contradictory in the EN group, 
it decreased significantly during the follow-up in the PN 
group (P < 0.05) in our study. Also, insulin resistance was 
higher in the PN group. As expected, serum adiponectin 
and leptin levels in the PN group were relatively lower 

Table 2. Time to feeding, target calorie requirement, daily calorie intake, percentage energy intake/ requirement, daily carbohydrate/
glucose, total protein/amino acid, and lipid delivered for the EN and PN groups.

Variables Total
(n = 26)

EN group
(n = 13)

PN group
(n = 13) P

Time to feeding (h), median (IQR) 24 (20–48) 24 (17–35) 26 (23–62) 0.155
Target calorie requirement (kcal), median (IQR) 1600 (1400–1856) 1750 (1365–1937) 1600 (1400–1800) 0.515

EN product, n (%)
Standard enteral formula
High–fat, low–carbohydrate enteral formula
Low–volume, high–energy enteral formula
Diabetes specific formula
PN product
TPN (with compounder)
TPN (commercial PN products)

6 (46.2)

4 (30.8)
1 (11.0)
1 (11.0)
1 (11.0)

11 (84.6)
2 (14.4)

Daily calorie intake (kcal), median (IQR) 
Day 1
Day 2
Day 3

1188 (1053–1375)
1592 (1272–1856)
1474 (1200–1811)

1105 (946– 1323)
1750 (1296–1911)
1474 (1061–1885)

1275 (1122–1386)
1584 (1200–1700)
1600 (1200–1700)

0.219
0.799
0.676

Percentage energy intake / requirement
Day 1
Day 2
Day 3

74.8 (67.6–86.6)
100.0 (98.0–100.0)
100.0 (90.0–100.0)

74.6 (54.4–81.6)
99.4 (96.8–100)
98.2 (77.4–100)

83.9 (68.4–100)
99.5 (99.0–100)
100 (100–100)

0.173
0.190
0.058

Daily carbohydrate/glucose delivered (g/d), median (IQR)
Day 1
Day 2
Day 3

137.5 (96.8–163.6)
162.4 (133.6–200.0)
142.2 (81.6–200.0)

106.5 (77.7–130.5)
142.2 (106.6–198.0)
90.7 (56.6–140.4)

159.7 (138.9–170.6)
186.5 (152.5–200.0)
187.5 (152.5–200.0)

0.002
0.057
0.001

Daily protein/amino acid delivered (g/d), median (IQR) 
Day 1
Day 2
Day 3

55.0 (45.8–67.6)
72.5 (55.1–87.4)
72.4 (51.8–81.0)

48.7 (44.3–65.1)
72.5 (53.9–89.6)
72.4 (47.2–85.3)

61.9 (53.4–68.2)
74.6 (57.1–80.0)
75.0 (52.5–80.0)

0.175
0.977
0.552

Daily lipid delivered (g/d), median (IQR)
Day 1
Day 2
Day 3

44.5 (37.6–47.5)
53.3 (45.7–71.5)
53.3 (40.0–68.0)

45.1 (38.3–62.6)
70.6 (52.0–93.4)
56.4 (41.4–93.4)

41.3 (37.0–45.5)
49.7 (40.0–53.3)
50.0 (40.0–53.3)

0.269
0.038
0.177
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than in the EN group. Resistin is related to inflammation 
induced insulin resistance and is increased in critical 
illness. But, serum resistin levels was relatively decreasing 
in EN group, it was increasing in PN group and EN 
group were significantly lower than in the PN group (P < 
0.05). We believe that these are due to the incretin effect 
associated with EN. McKenzie et al. evaluated adipokine 
levels in patients with acute pancreatitis and received EN 
during the first 72 h after hospital admission. Similar to 
our study, leptin and adiponectin levels increased, while 
the level of resistin decreased [17].

GLP–1, 1 of the 2 known incretins, is known to have 
increased release with EN. Its levels increased in both 
group during the follow-up and were determined higher 
in the EN group (P < 0.05). Similar to our study, several 
previous studies have also reported elevated GLP–1 in 
patients who received EN in critical illness [16,25]. This 
data may provide evidence based on nonnutritional effects 
of EN and superiority to PN with the incretin effect.

IGF–1 is a sensitive indicator of nutritional condition 
and inflammation and is decreased in cases of insufficient 
nutrition and presence of critical illness. In the present 
study, serum IGF–1 levels decreased in both groups 
and were lower in the EN group than in the PN group, 
significantly. We considered that this was associated 
with the daily calorie intake. The percentage energy 
intake requirement in the PN group was higher than in 
the EN group in our study because EN was frequently 
interrupted for various reasons (nutrition intolerance, 
diagnosis, treatment interventions). Therefore, it is easier 
to reach the target calorie requirement with PN [16,26]. 
Similarly, Isley et al. observed in a study of 15 patients that 
IGF–1 levels increased with sufficient energy and protein 
support. They reported a temporary decrease followed 

by an increase in IGF–1 levels after administering low 
protein content nutrition with normal caloric levels. They 
observed a decrease in IGF–1 levels in cases of insufficient 
nutrition [27]. 

There was an increase in ghrelin levels in the EN group 
and, significantly, a decrease in the PN group with an 
extended duration of nutrition. Both groups had similar 
serum ghrelin levels at baseline. Similar to our study, in 
a study conducted in critical patients fed enterally, the 
level of ghrelin increased in a similar follow up period. 
However, the level of ghrelin was lower in our patients [23]. 
Because the increase in the EN group might be associated 
with the release of ghrelin by gastric oxyntic cells. Enteral 
nutrition might therefore, trigger ghrelin secretion more 
effectively than PN. Similar to our study, Hagiwara et al. 
conducted a study with 4 groups of 15 rodents each, who 
received total enteral nutrition conventional (TEN - C), 
total enteral nutrition immunonutrition (TEN-I), total 
parenteral nutrition (TPN), and saline. The daily calorie 
intake of all groups was approximately similar. The study 
observed that ghrelin levels were lower in PN compared 
to EN [28].

Although the role of adipokines in critical illness is not 
understood clearly, significant alterations of circulating 
adipokines may be associated with poor clinical outcomes 
in critically ill patients. Even though conclusive evidence 
that leptin and adiponectin lead to poor clinical outcomes 
(increased mortality, inflammation, and development of 
multiple organ dysfunction syndromes) is not provided, 
some studies present the existence of this relationship 
[29,30]. In all studies of resistin, increased levels of blood 
resistin are powerfully associated with severe inflammation 
and increased risks of organ failure and mortality [31–33]. 
High ghrelin levels are accepted as a positive predictor 

Table 3. Serum adipokines levels at baseline, 24 h, and 72 h to EN group and PN group.

EN group
(n = 13)

PN group
(n = 13)

Baseline 24 h 72 h P Baseline 24 h 72 h P

Leptin (ng / mL), median (IQR) 2.0
(1.3–6.7)

2.5
(1.8–5.6)

3.8
(2.1–8.9) 0.092 1.3

(0.7–2.4)
2.3
(0.6–4.1)

2.3
(1.3–3.9) 0.037

Adiponectin (ng / mL), median (IQR) 25.2
(15.0–37.9)

20.2
(16.6–33.2)

28.6
(19.9–53.2) 0.368 32.9

(23.2–44.4)
25.9
(15.1–31.1)

21.7
(15.4–33.1) 0.037

Resistin (ng /mL), median (IQR) 905.6
(589.8–1393.3)

594.9
(354.7–861.8)

693.6
(464.5–931.7) 0.063 1373.3

(973.0–3332.3)
1615.2
(808.5–2532.9)

1543.4
(882.5–2183.6) 0.794

IGF–1 (ng/ mL), median (IQR) 85.6
(65.2–96.7)

43.9
(28.2–73.5)

55.3
(28.0–78.5) 0.098 52.7

(29.3– 88.1)
40.7
(27.3–74.0)

32.2
(25.0–66.6) 0.913

GLP–1 (pg/ mL), median (IQR) 3.1
(2.3–5.5)

5.0
(2.5–13.1)

4.8
(2.3–39.1) 0.232 0.6

(0.4–2.8)
0.9
(0.5–3.5)

0.7
(0.5–3.2) 0.662

Ghrelin (ng /mL), median (IQR) 1.1
(0.9–1.3)

1.0
(0.9–1.3)

1.2
(1.0–1.6) 0.500 1.2

(1.0–1.4)
1.2
(1.1–1.4)

1.0
(0.9–1.2) 0.008
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of ICU survival and decreased ghrelin levels can lead to 
inflammation and length of mechanical ventilation stay 
[4]. Clinical outcomes due to adipokine levels may differ 
in artificial nutrition (EN or PN). Although most of our 
data were not statistically significant, it was shown that 
EN increases anabolic hormones and reduces catabolic 
hormones in critical illness. In addition, the delivery of EN 
was associated with a lower level of hormones that cause 
insulin resistance.

This study had several limitations, including the 
single–center design, a relatively small number of 
patients, heterogeneous study groups, and a lack of 
follow up of clinical outcome (mechanical ventilation 

stay, inflammation, etc.). However, its strengths were the 
comprehensive panel of adipokines and the first look, to 
our knowledge, at the route of nutrition in these hormonal 
responses in ICU patients.

In conclusion, this study indicates that EN may help 
to correct abnormal processes in critically ill patients by 
decreasing resistin levels and increasing GLP–1 levels. 
Adipokines may be associated with poor clinical outcomes 
of critically ill patients, including higher inflammation, 
greater risk of organ dysfunction, and mortality. The 
importance of nutrition for normal adipokine levels in 
critically ill patients is an indisputable fact. At this point, 
the route of nutrition can be an important key. We 
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conclude that the nonnutritional effects of EN and its 
relationship with the incretin effect should not be ignored. 
Therefore, the relationship between adipokines and 
nutrition should be clarified. Further studies with a larger 
number of patients are necessary to choose the nutrition 
type that can lead to the least complications.
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