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Since the discovery of Rift Valley Fever virus (RVFV) in Kenya in 1930, the virus

has become widespread throughout most of Africa and is characterized by sporadic

outbreaks. A mosquito-borne pathogen, RVFV is poised to move beyond the African

continent and the Middle East and emerge in Europe and Asia. There is a risk that

RVFV could also appear in the Americas, similar to the West Nile virus. In light of

this potential threat, multiple studies have been undertaken to establish international

surveillance programs and diagnostic tools, develop models of transmission dynamics

and risk factors for infection, and to develop a variety of vaccines as countermeasures.

Furthermore, considerable efforts to establish reliable challengemodels of Rift Valley fever

virus have been made and platforms for testing potential vaccines and therapeutics in

target species have been established. This review emphasizes the progress and insights

from a North American perspective to establish challenge models in target livestock such

as cattle, sheep, and goats in comparisons to other researchers’ reports. A brief summary

of the potential role of wildlife, such as buffalo and white-tailed deer as reservoir species

will also be discussed.

Keywords: Rift Valley Fever virus, RVFV, vaccine, cattle, sheep, goat, deer, ruminants

BACKGROUND AND INTRODUCTION

In the last 20 years there has been a re-emergence of various well-known arboviral diseases, many of
which are zoonotic in nature, such asWest Nile, Japanese encephalitis, Rift Valley fever, Venezuelan
equine encephalitis, and Eastern equine encephalitis (1). Among these, Rift Valley fever (RVF) is
considered a significant threat to animal and public health, economy, and food (2–4). Rift Valley
fever was first reported in Kenya in 1930 (5), and has since created sporadic outbreaks in cattle and
small ruminants with associated zoonotic spread to humans in sub-Saharan Africa. The disease
first came to global attention during an outbreak in Egypt in 1977–78, involving at least 200,000
human infections (6). It was during the Egyptian outbreak when ocular degeneration was first
associated with RVFV infections in humans (7). Global concerns were raised when RVF virus
(RVFV) spread to Saudi Arabia and Yemen in 2000 (8) as well as during an outbreak in East
Africa (Kenya, Tanzania, Somalia, and the Sudan) in 2006/7 (9–13). Since then there have been
outbreaks in Madagascar (3), Mauritania 2010 (14), Namibia 2010 (15), South Africa 2008–2011
(16),Mozambique 2014 (17), Republic of Niger 2016 (18), and Kenya 2018 (WHO). The presence of
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the disease, especially during outbreaks, has significant socio-
economic impact in endemic regions (19, 20). This along with
the potential risk of RVFV importation into Europe and the U.S.
(4) as well as its potential use as a biological weapon (21, 22), has
led to intensified research on developing mitigation strategies.
Developing such strategies requires a detailed understanding of
the mosquito-transmitted virus that causes RVF disease.

RVFV is endemic in Sub-Saharan Africa and continues to
cause sporadic outbreaks that are of veterinary and public health
concern. Although RVFV is primarily a disease of domestic and
wild animals, there can be spillover to humans during outbreaks
than can lead in rare cases to lethal hemorrhagic disease in
humans. RVFV outbreaks occur in 7–10 year cycles presumably
as the number of seropositive animals in the population decrease,
and/or ideal weather conditions for the mosquito vectors are
present. It has also been suggested that recently emerged strains
of RVFV might be more virulent to humans (23). Thus, RVF
is clearly a disease that requires a “One Health” approach to
mitigation strategies (24, 25) as it is a potential threat to animal
and public health, economy, and food security (4, 25–27).

Outbreaks of RVF occur when conditions are ideal for
mosquito expansion and virus transmission. Aedes mcintoshi
mosquito species are thought to initiate epizootic outbreaks
because of their transovarial transmission capability (28). Once
the outbreak has been established, it can then be maintained
by Aedes and other species (e.g., Culex and Mansonia) which
can both replicate and transmit the virus (29). Although
this is a well-accepted hypothesis for RVFV maintenance,
transovarial transmission has only been demonstrated in one
study. Alternatively, the mosquito to animal transmission
cycle could be continuous at low levels and only become
observed when ideal environmental conditions occur. The
importance of understanding the potential role of transovarial
transmission in mosquito-borne viruses has been reviewed (30).
An increasing number of studies have also identified other species
of mosquitoes that are either susceptible to RVFV and/or are
capable of transmitting RVFV in the Anopheles, Mansonia, and
other mosquito genera (13, 31). North American species such
as Aedes canadensis, Aedes taeniorhynchus, and Culex tarsalis
(32–34) and the stable fly species Stomoxys calcitrans (33)
have also been shown to be capable of transmitting RVFV.
The control of mosquitoes involved in RVFV transmission is
complex because there are numerous mosquito species present
in endemic and non-endemic areas that are capable of virus
infection and transmission [reviewed in Linthicum et al. (29)],
and continuous low-level transmission of RVFV to domestic and
wild animals in endemic areas may also help maintain the virus.
Other species that may play a role in RVFV ecology and have
been reported to be susceptible to RVFV are mice, rats, shrews,
dormice, and bats (35–40). Additional wild animal species that
have been investigated include the African buffalo, primates,
elephants, rhinoceros, deer, and coyotes (41–45). However, it
is difficult to determine the role of susceptible wild animals in
maintenance and transmission of RVFV. Based on a risk model,
transmission and seroprevalence rates in both domestic and wild
animals correlate positively with the risk of zoonotic infection of
people (46).

RVFV is in the order Bunyavirales (Phenuiviridae; genus
Phlebovirus), with a genome consisting of three negative-sense,
single stranded RNA segments; L (large), M (medium), and
S (small). The L segment encodes the RNA-dependent RNA
polymerase (47). The M segment encodes the precursor protein
of two structural glycoproteins, Gn and Gc, which are present
on the virus surface. Cleavage of the precursor protein leads to
two additional non-structural proteins of 78 kDa (P78 or LGp)
and 14 kDa (NSm) in molecular mass (48–51). The Gn and Gc
form heterodimers on the virus surface (52) and are involved
in attachment of the virus to the host cell (53, 54). The NSm
has been shown to inhibit apoptosis but is not essential for virus
replication (55). Although also not critical for RVFV virulence,
lack of NSm did reduce mortality and increase the number of
animals demonstrating neurological disease in subcutaneously
infected rats (56) and NSm mutated viruses were attenuated
in intraperitoneally infected mice (57). The LGp/P78 protein,
which is not associated with RVFV virulence in mice, is packaged
into viruses grown in C6/36 (Aedes albopictus) insect cells, but
not in mammalian cells, and is a major determinant of virus
dissemination in mosquitoes (57, 58). Interestingly, additional
studies showed that NSm is involved in virus replication and
dissemination in Aedes aegypti mosquitoes (59, 60). The S
segment utilizes an ambisense strategy encoding the nucleocapsid
(N) protein in the anti-sense direction and the NSs protein in
the sense direction (61). The N protein is the most abundant
protein in the virion and plays a key role in transcription
and replication and reconstitutes the ribonucleoprotein (RNP)
complex together with the vRNA and the L protein (62). The
N protein is immuno-dominant and is used as an antigen for
diagnostic assays (63). The NSs protein has immunomodulatory
functions and acts as interferon-antagonist via the inhibition of
host gene transcription (64–66). The NSs protein is produced
early during RVFV infection and has also a positive effect on viral
replication and RNA transcription (67). The above described
studies indicate that both, LGp/P78 and NSm seem important
for virus maintenance in mammalian and insect hosts, and that
NSs is an important virulence factor. This information led to the
development of a NSm and NSs double deleted virus that was
shown to be attenuated in rats (68). When used as a vaccine,
RVF virus containing NSm and NSs deletions were shown to be
safe and non-teratogenic in pregnant sheep as well as protective
against the development of viremia and RVF disease (69). These
findings are supportive of the mechanistic studies in but since
just rodent model systems; however, there have been only a few
studies directed at understanding of the molecular basis of RVFV
virulence and molecular pathogenesis in target livestock species.

RVFV research conducted in target livestock species has
been primarily focused on the development of diagnostics and
vaccines. As a result of the 2006/2007 RVF outbreak in Kenya
(12, 70), this disease garnered increased attention from global
scientific communities. This has led to an increased focus on
identifying North American mosquito species that are capable of
being infected and able to transmit RVFV, as well as improving
RVFV diagnostic tools (71–75), developing better risk models for
RVF (76–79) and evaluating these models using seroprevalence
data (46). Several studies have also published data demonstrating
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TABLE 1 | Rates of mortality in animals during recent RVFV outbreaks.

Cattle Sheep Goats Camels Buffaloes Wild species

Niger 2016 (18) X

Mozambique 2014 (17) x 8 abortions; 7

neonatal deaths

42 abortions; 5

neonatal deaths

x x X

Senegal 2013 (93) 0% mortality x 19–33%

mortality

x x 37.5% mortality

South Africa 2010–11* (94) 61% mortality 62% mortality 55% mortality 100% mortality 100% mortality 100% mortality

Kenya 2006–07 (12) 14% mortality X x X

Mauritania 2003 (9) x 70% abortions X x X

Mauritania 1998 (95) 4.6% abortions 9.7% abortions 47.4% abortions 20.6% abortions x X

*The field-study sites were selected for farms that had high numbers of deaths (96).

%mortality, deaths/confirmed cases; x, no data available.

that RVFV circulates in endemic countries during inter-epidemic
periods (43, 80, 81).

Currently, there are modified live virus (MLV) or attenuated
(82, 83) and inactivated/killed vaccines licensed for veterinary use
in RVFV endemic countries and one attenuated MLV vaccine
with a conditional license in the United States (USDA-APHIS,
CVBNotice 13-12). Since various RVFV vaccine approaches were
recently reviewed in several publications (25, 84–86), they will
be only discussed briefly here. Other recent reviews have focused
on the molecular biology, reassortment capacity, diagnostics, and
vaccines (86, 87). Thus, this review will focus on the development
of target livestock infection models.

DEVELOPING RVFV INFECTIONS IN
TARGET SPECIES

The animals most susceptible to RVFV consist of ruminants
such as sheep, goats and cattle, as well as camels, buffaloes, and
humans (88). These animals all produce viremia upon infection
with clinical signs that typically range from asymptomatic to
moderate and high severity to death; in addition, pregnant
animals suffer from high rates of abortion (17, 89–91). Although
the documentation of confirmed RVFV cases, deaths and
abortions in animals has been sparse, recent studies with
confirmed RVFV antibody status have provided estimates of
animal mortality rates during different outbreaks [(92); see
Table 1].

Early work on RVFV livestock infections was done in South
Africa (89, 90, 97), and a few RVFV experimental infections
of livestock were conducted in the 1970/80s at the Plum
Island Animal Disease Center (USDA) (98). These early studies
included safety and efficacy trials for both inactivated (98) and a
mutagen-attenuated MLV vaccine (99, 100). No RVFV infection
studies using livestock had been conducted on the mainland
of North America since these earlier studies. In 2006, the
Canadian Food Inspection Agency (CFIA) and the United States
Department of Agriculture (USDA) were tasked with developing
target animal infectionmodels to develop and evaluate diagnostic
and control strategies. The procedures and models developed
through this cooperative research were then transferred to the

Biosecurity Research Institute (BRI) at Kansas State University
(KSU) through collaboration with the Center of Excellence for
Emerging and Zoonotic Animal Diseases (CEEZAD) at KSU. The
results of this ongoing three-way collaboration are reviewed here
and discussed within context of the literature.

There are several traits desirable in a veterinary RVFV
vaccine, but at a minimum the vaccine should protect against
abortions in pregnant animals and should prevent viremia to
avoid transmission. In addition, the vaccine should be safe and
efficacious in the most vulnerable target species and groups,
that is, in fetal and newborn animals. For example, RVFV
can be transmitted vertically from pregnant ewes to their fetus
(101). Newborn lambs also remain highly susceptible to RVFV
after they have been weaned as they lose any protection from
maternally-derived antibodies. As weaning can occur any time
between 3 weeks and 4 months, the earlier a vaccine can be given,
the better. Therefore, in developing challenge models, these are
important aspects of the disease that should be considered. For
example, previous studies have utilized pregnant ewe models
to evaluate whether experimental attenuated or MLV vaccines
cross the placenta (102) and are safe to administer during
pregnancy. Although this model is highly susceptible to RVFV
and is useful for evaluating vaccine safety, using pregnant
animals in high containment animal rooms (i.e., BSL-3Ag) is
logistically challenging. Therefore, alternative models have also
been developed and will be discussed.

SHEEP MODEL DEVELOPMENT

Several challenge models have been developed in 2–3 month old
lambs that display significant pathology that is typical of RVFV.
For example, Kortekaas et al. has utilized intravenous (103–105)
and intraperitoneal inoculation (106) of the recombinant 35/74
RVFV isolate grown in mammalian cells in Texel, Romane, and
other European breeds at 105 TCID50. The challenge controls in
these studies developed peracute clinical signs and fever, viremia
for 4–6 days with peak titers of 105-106 TCID50, and virus was
detected in the liver. Clinical markers also indicated elevated
levels of plasma alkaline phosphatase and alanine transferase
(hepatic dysfunction) as well as blood urea nitrogen and
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TABLE 2 | Summary of included sheep studies involving RVFV challenge.

Breed Age Virus

isolate

Route Infection

dose

Cells* Viremia

length

Viremia

peak

Organs

infected**

Clinical

chemistry***

Shedding Deaths References

Dorper-Katahdin X 4–5m SA01 SC 106 pfu I 2d 104 pfu/ml B, L, S, H BUN No N (113)

Dorper-Katahdin X 4–5m Ken06 SC 106 pfu I 5d 107 pfu/ml B, L, S, H AST, BUN Nasal VI No

Polypay 4–5m Ken06 SC 2 × 106 pfu I 4d 107 pfu/ml L, S AST, BUN n.a. 3/5

Rideau-Arcott 4–6m ZH501 SC 105 pfu M 3d 105 pfu/ml n.a. n.a. n.a. No (112)

Rideau-Arcott 4–6m ZH501 SC 105 pfu I 2d 105 pfu/ml n.a. n.a. n.a. No

Rideau-Arcott 4–6m ZH501 SC 107 pfu M 1d 103 pfu/ml n.a. n.a. n.a. No

Rideau-Arcott 4–6m ZH501 SC 107 pfu I 4d 105 pfu/ml n.a. n.a. n.a. No

Dorper 4–6m 56/74 SC 106 pfu n.a. n.a. n.a. n.a. n.a. n.a. No (115)

Texel-X 2–3m rec35/74 IV 105 TCID50 M n.a. n.a. L,S n.a. n.a. 3/7 (105)

Romane 2–3m rec35/74 IV 105 TCID50 M n.a. 106 TCID50 L, S, K, A,

Lu, LN

n.a. n.a. 3/8 (103)

Texel 2–3m rec35/74 IV 105 TCID50 M n.a. n.a. L, B n.a. n.a. 1/8 (104)

European 6 wks rec35/74 IP 105 TCID50 M 9d 105 TCID50 L ALP, CK,

BUN

n.a. 1/6 (106)

n.a. 2m 56/74 SC 106 TCID50 I 5d 106 TCID50 n.a. n.a. n.a. 2/8 (111)

Colmenarena 3m 56/74 SC 105 TCID50 I 4d 106 TCID50 n.a. BUN, ALB n.a. 1/5 (110)

Ripollesa 2–3m 56/74 SC 105 TCID50 M 4d 106 TCID50 n.d. n.a. Nasal and oral VI No (109)

Ripollesa 2–3m 56/74 SC 105 TCID50 M n.a. n.a. K n.a. Nasal and oral RNA No (107)

Ripollesa 2–3m 252/75 SC 105 TCID50 M n.a. n.a. K n.a. Nasal and oral RNA No

Ripollesa 2–3m AN1830 SC 105 TCID50 M n.a. n.a. K n.a. Nasal and oral RNA No

Ripollesa 2–3m AR20368 SC 105 TCID50 M n.a. n.a. K n.a. Nasal and oral RNA No

*M, mammalian cell culture; I, insect cells culture.

**B, brain; L, liver; S, spleen; H, heart; Lu, lung; LN, lymph node; K, kidney; A, adrenal gland.

***ALP, alkaline phosphatase; CK, creatinine kinase; BUN, blood urea nitrogen.
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creatinine (renal dysfunction) (106). Pathology varied between
different individual animals as is typically seen in studies with
ruminants, but heavily affected the liver, and could also include
abdominal hemorrhage, pulmonary edema and petechiae in the
spleen, heart and lungs (104). Notably, these studies indicated
an overall rate of 20% mortality with up to 70% mortality in
some studies. Other pathological findings have been found in a
study where 2–3 month-old lambs were infected with various
field isolates (56/74, 252/75, AN1830, AR20368) and included
the development of corneal opacity (107). A study with the
Zinga isolate also induced severe clinical signs characterized by
hyperactivity, watery and mucoid nasal discharges, projectiles
and bloody diarrhea, external hemorrhage and neurological
signs (108).

Other groups have developed 2–3 month old challenge
models with the 56/74 RVFV isolate in Ripolessa (107,
109), Colmenarena (110) and other (111) sheep breeds using
subcutaneous inoculation at 105-106 TCID50. Similarly, these
animals also developed clinical signs and fever and viremia
for 4–5 days with peak titers of 105-106 TCID50. Interestingly,
two of these studies detected oral and nasal shedding of viral
RNA between one and 7 days post infection (107, 109) with
a few samples also leading to viral isolation (109); one of the
uninfected sentinel animals even became seropositive suggesting
that horizontal transmission may have occurred. The only other
study to report horizontal transmission in sheep is after challenge
with the Zagazig strain (98). While the studies by Busquets
utilized passage 12 virus stocks grown in mammalian cells and
had no deaths, the two studies by Chrun and Lorenzo had∼20%
mortality and both used passage 5 mosquito-cell derived viral
stocks. Since these three studies were performed independently
in different breeds of sheep, it is not possible to directly compare
these results; however, it is interesting to note that the age,
viral strain, route, and dose were all similar in these studies,
leaving breed, source of virus, and virus passage history as the
main differences.

Challenge models have also been developed in older lambs
at 4–6 months of age. For example, Suffolk and Arcott-Rideau
breeds were challenged subcutaneously with 105 or 107 pfu of
the ZH-501 RVFV isolate and compared virus stocks that had
been grown in either mammalian Vero or mosquito C6/36 cells
(112). While the mosquito-cell grown virus produced a robust
and consistent infection, the mammalian-cell produced virus had
reduced efficacy with viremia only present on day 1 and lower
titers (102 pfu/ml serum) (112). In contrast to the acute illness
seen in the 2–3 month old lambs, 4–6 month old sheep only
produced a mild, self-resolving disease with transient pyrexia
during the first week after infection and had no obvious gross
pathology at 7 days post infection.

At KSU, 4–6 month-old Dorper-Katahdin and Polypay
sheep were inoculated subcutaneously with 106 pfu passage-2
mosquito-derived virus stock using either RVFV isolate Kenya-
128B-15 (Ken06) or SA01-1322 (SA01) (113). SA01 originated
from the Saudi Arabian outbreak in 2001 (8) and Ken06 from the
Kenyan outbreak in 2006 (114) which had affected an unusually
large number of people and was speculated to possibly be more
pathogenic. Both RVFV strains produced detectable viremia

between days 1 and 5, and both strains produced gross pathology
and histopathology consistent with RVFV virus infection at
between days 3–5 (113). However, the Ken06 group tended to
have higher viremia and serum aspartate aminotransferase (AST)
levels indicating that liver damage was significantly higher in
Ken06 infected lambs as compared to SA1 infected animals.
Virus isolation from nasal swabs detected infectious virus in a
three out of six animals infected with the Ken06 strain while no
shedding was seen in SA01-infected lambs. Histopathology and
viral antigen was detectable in a wide variety of organs including
the spleen, liver, adrenal gland, and kidney during the first week
after infection, although no specific differences were attributed to
one isolate compared to the other. In addition, histopathology
without antigen staining was detected in the brain, intestine,
and the eye at later time points, and infectious virus could also
be isolated from several tissues including the spleen and the
liver between 3–5 days post challenge (25, 113). Three of five
animals inoculated with Ken06 had large necrotic foci in the liver,
hemorrhage in the liver and spleen, and pulmonary edema.

A summary of the discussed sheep models can be found in
Table 2.

GOAT MODEL DEVELOPMENT

Initial experimental goat infection studies were performed with
RVFV strain ZH501 (112) and were intended to establish the
dose required for the induction of viremia, the timing of viremia
and a comparison of inoculation virus grown in mammalian and
insect cells. In this study, viremia occurred very quickly in goats,
appearing on the first day post infection after SQ inoculation and
lasted 2–5 days. By comparing an inoculation dose of 105 pfu
and 107 pfu of the ZH-501 strain (112) we determined that the
higher dose achieved more robust and reliable titers. A second
study in Boer goats focused on the characterization of innate and
adaptive immune responses in the blood after RVFV infection
(116). Flow cytometry indicated that after RVFV infection there
was a decline in CD5+ (T cells), CD172+ cells (monocytes and
dendritic cells), and CD8+ T cells (cytotoxic T lymphocytes) and
an increase in CD21+ cells (B cells). Interestingly, these effects
were more pronounced in goats infected with mosquito cell-
grown virus compared to goats infected with mammalian cell-
grown virus (116). In addition, cytokine profiling in the blood
demonstrated an increase of interleukin-12 at 1 dpi, an increase
of IFN-γ at 2 dpi, and a steady increase of TNF-α, IL-6 and IL-
1β up until the end of the observation period at 21 dpi (116).
A Kenyan RVFV isolate (“Ken-UAP,” Genbank #MH175203.1,
MH175204.1, MH175205.1) that had been proposed to be more
pathogenic than ZH501 has also been tested in goats (117).
Although the Ken-UAP and ZH501 RVFV isolates were not
compared directly in the same goat breed, viremia titers after
subcutaneous inoculations of each were comparable (112, 117).

Several novel alternative routes of infection have also
been explored. For example, numerous manuscripts describing
arbovirus infections have demonstrated that mosquito saliva
can modulate the pathogenicity of the virus upon infection
(118–123). To test the effect of saliva on RVFV infection in
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TABLE 3 | Summary of included goat studies involving RVFV challenge.

Breed Age Virus

isolate

Route Infection

dose

Cells* Viremia

length

Viremia

peak

Organs

infected**

Clinical

chemistry

Shedding Deaths References

BoerX ZH501 SC 107 pfu M n.a. n.a. n.a. n.a. n.a. No (116)

BoerX ZH501 SC 107 pfu M 2d 103 pfu/ml n.a. n.a. n.a. No (112)

Galla 4–6m 56/74 SC 107 pfu I n.a. 104 pfu/ml n.a. n.a. n.a. No (115)

Nubian 4–6m KenUAP SC 107 pfu I 3d 103 pfu/ml M, P, R, Olf,

Tri, CB, MB

n.a. Nasal RNA No (117)

Nubian 4–6m KenUAP mosSC 107 pfu I 3d 103 pfu/ml M, P, R, S, L,

Olf, Tri, BS, CB,

MB, Cer

n.a. Nasal RNA No

Nubian 4–6m KenUAP IN 107 pfu I 3d 105 pfu/ml M, P, R, S, Olf,

Tri, MB, CB, MB

n.a. Nasal RNA No

LaMancha 4–6m KenUAP SC 107 pfu I 2d 103 pfu/ml No n.a. No No

LaMancha 4–6m KenUAP IN 107 pfu I 2d 103 pfu/ml No n.a. No No

LaMancha 4–6m KenUAP IN 107 pfu M 2d 103 pfu/ml No n.a. No No

*M, mammalian cell culture; I, insect cells culture.

**L, liver; S, spleen; H, heart; Lu, lung; M/P/R, mesenteric/prescapular/retropharyngeal lymph node; Olf, olfactory bulb; Tri, trigeminal ganglion; CB, cerebellum; Cer, cerebrum; MB, midbrain; BS, brainstem.

TABLE 4 | Summary of included cattle studies involving RVFV challenge.

Breed Age Virus

isolate

Route Infection

dose

Cells* Viremia

length

Viremia

peak

Organs

infected**

Clinical

chemistry***

Shedding Deaths References

Holstein 4–6m 56/74 SC 107 pfu I n.a. 105 pfu/ml n.a. n.a. n.a. No (115)

Hereford-Angus 4–5m SA01 SC 2 × 106 pfu I 2d 103 pfu/ml B, K, S, L ALP No (125)

Hereford-Angus 4–5m Ken06 SC 2 × 106 pfu I 4d 103 pfu/ml B, K, S, L ALP No

Holstein 3–6m KenUAP ID 107 pfu I 2d 103 pfu/ml S, P, R, Tu ALP, ALB No No (126)

Holstein 3–6m KenUAP IN 107 pfu I 4d 106 pfu/ml M, R, S, L, K, Lu,

Tu, Tr, I, H, BS,

MB, CB, CSF

ALP, ALB, BUN No No

Holstein 3–6m KenUAP SC-ID-

IN

v I 1d 102 pfu/ml L, Tu, Olf, Tri ALP, ALB Nasal RNA No

*M, mammalian cell culture; I, insect cells culture.

**B, brain; L, liver; S, spleen; H, heart; Lu, lung; R/P/M, retropharyngeal/prescapular/mesenteric lymph node; K, kidney; Tu, turbinate; Tr, trachea; BS, brainstem; MB, midbrain; CB, cerebellum; CSF, cerebral spinal fluid; Olf, olfactory

bulb; Tri, trigeminal ganglion; I, ileum.

***ALP, alkaline phosphatase; ALB, albumin; BUN, blood urea nitrogen.
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goats, we mimicked a methodology developed by Le Coupanec
et al. (119) in mice; first, we allowed naïve mosquitoes to
feed at a shaved site on the goats’ skin and second, we then
injected a known amount of virus subcutaneously (SQ) into
the same area. Although the “mosquito-SQ” infection did not
result in significant differences in viremia or antibody titers
when compared to the “only SQ” infection, we noted that the
“mosquito SQ” group retained higher levels of viral RNA in
tissues at 28 days post challenge (117). Interestingly, viremia
is delayed by 1 day when the virus is inoculated intranasally,
suggesting that it has a longer transition (i.e., 48 h) route to travel
to the bloodstream (117). Seroconversion kinetics are similar to
that in sheep and cattle, occurring at 4–5 days post infection, and
producing robust antibody titers at 21–28 days post infection.
The tissues that are infected by RVFV may differ with breed,
route of inoculation, and RVFV strain. However, spleen, liver,
and lymph nodes are consistently positive and reliable targets
for RVF diagnosis (112, 117). Other tissues that may be infected
by RVFV include a variety of CNS regions such as the olfactory
bulb, the trigeminal nerve, the cerebellum, the midbrain and
the brainstem. The development of clinical signs varied from
asymptomatic to mild and most commonly consisted of fever
and diarrhea. To assist in identifying and quantifying other
more subtle signs of disease, a RVFV clinical scoring sheet was
developed for ruminants (see Supplementary Table 1). Using
the clinical scoring sheet, subcutaneous infection of Nubian
goats demonstrated slightly higher clinical scores than intranasal
infection (Supplementary Figures 2A,C). In contrast, LaMancha
goats had a higher clinical score after intranasal infection when
compared to a subcutaneous infection, and a higher clinical
score when infected with mosquito cell grown virus compared
to mammalian cell grown virus (Supplementary Figures 2E,F).
Different clinical outcomes after RVFV infection are also
seen amongst different experimental groups with Boer goats
remaining almost asymptomatic with mild clinical signs with
ZH501, whereas Nubian and LaMancha goats exhibited clear
clinical signs with Ken06 (Supplementary Figures 2A–I).

A few other goat breeds have been successfully used for RVFV
model development or RVFV vaccine testing including the Galla
(115) and Saanen (124) goat breed. Both experiments produced
viremia but no clinical signs.

A summary of the discussed goat models can be found in
Table 3.

CATTLE MODEL DEVELOPMENT

At KSU, an initial cattle model was established using an Angus
or Hereford cross (125), which are commonly bred in North
America or Europe for beef production and could be sourced
from local farms. Similar in design to our study with sheep, a
subcutaneous injection of mosquito-cell grown Kenya-128B-15
(Ken06) or SA01-1322 (SA01) at a titer of 106 pfu was inoculated
(125). There was variation in the responses to RVFV infection.
Most of the infected animals had detectable viremia at least 1 day
post infection (4 of 5), but some were asymptomatic, some were
febrile and one animal died of infection. There was detectable

virus in nasal swabs during the peak of viremia but no evidence
of contact transmission to the contact control animals (125).

In an effort to increase the reliability of the infection in cattle,
a second study was undertaken in Holstein calves in which we
used three different routes of infections, including intradermal,
intranasal and a combination of subcutaneous, intradermal,
and intranasal. Despite an adherence to subcutaneous RVFV
infections in a majority of manuscripts, we tested whether an
intradermal challenge model could result in an enhanced clinical
course of RVFV infection. Our results indicated that the degree
of viremia was similar to that of a subcutaneous infection,
although far fewer tissues tested positive for virus presence in
the intradermal model. After intradermal inoculation, infectious
virus was only found in turbinates, prescapular lymph nodes,
and retropharyngeal lymph nodes (126). Although ruminants
are not known to become infected intranasally in the wild,
they are quite susceptible to intranasal infection. Intranasal
inoculation of cattle led to high titers of viremia with peak titers
of 6 × 105 pfu/ml blood and produced infectious virus in a
variety of tissues including spleen, liver, kidney, lymph nodes,
heart, thyroid, turbinates, and cerebellum (126). We speculated
that during intranasal and subcutaneous/intradermal RVFV
inoculations, the virus may follow different pathways to reach
the bloodstream (117). This led us to hypothesize that combining
these three routes could produce an additive effect and increase
viremia. However, when cattle were infected using the intranasal,
intradermal, and subcutaneous inoculation routes at the same
time, this method produced less viremia than using each route
individually. All three routes of infection all produced viremia
in all animals as well as mild but observable clinical signs such
as fever, a depressed disposition, and a lessened appetite in some
animals (Supplementary Figure 1). Viral RNA was detected in
nasal swabs but no infectious virus was present (126).

In a third study, Warimwe et al. challenged 4–6 month-
old Holstein-Friesian cattle with 107 pfu RVFV 56/74IN
subcutaneously. Similar to the experiments performed at NCFAD
and KSU, control cattle developed fever and viremia, with peak
viremia levels of 105 relative pfu (115).

A summary of the discussed cattle models can be found in
Table 4.

DEER

The role of wildlife as maintenance hosts has been and continues
to be a concern in endemic regions in Africa and the Arabian
Peninsula (43, 46), and is also of critical significance if the
RVFV emerges in other, previously non-endemic regions. To
predict the potential of North American wildlife to act as RVFV
maintenance hosts, a panel of available wildlife-based cell lines
were assessed for RVFV susceptibility (42). Cells derived from
white-tailed deer (WTD, Odocoileus virginianus), an important
wildlife species in North America, were found to be susceptible
to RVFV infection. The abundance and wide distribution of
WTD in North America and their known susceptibility to other
vector-borne diseases is a serious concern (127–129). Riskmodels
for RVFV have also addressed the issue of the potential role that
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WTD could play if RVFV were introduced to North America
(130–133). To address this concern, a group of young, farm-
reared WTD were experimentally infected with 106 pfu of the
Ken06 RVFV strain at the KSU BSL-3Ag facility using specially
designed and constructed pens. Surprisingly, WTD were found
to be highly susceptible to RVFV infection with lethality in two
of the four animals after subcutaneous inoculation. A sentinel
contact control animal, which was co-housed with the principally
infected deer also became RVFV infected and had to be humanely
euthanized due to severe clinical signs. All dead/euthanized
animals had severe clinical signs including bloody diarrhea,
which most likely caused the transmission of the virus via the
oronasal route to the uninfected contact control animal (134).

OVERVIEW ON FACTORS INFLUENCING
RVFV INFECTION IN RUMINANTS

(a) Age: The age of the animal is arguably one of the most
important parameters to consider in a RVFV challenge model.
All young ruminants (<3 months) are highly susceptible to
RVFV infection and typically succumb to acute liver failure
(89, 135–137). Recent studies at KSU and NCFAD have opted
to develop challenge models in animals old enough to be
weaned (4–6 months) due to the logistics of working in high
containment (112, 113, 117, 125, 126). However, numerous
vaccine studies have also successfully used younger animals at
2–3 months of age (104) as well as pregnant ewes to induce
protective immunity (138).

(b) Isolate and passage history: Experiments at CFIA used a
low passage ZH-501 strain kindly provided by Stuart Nichol,
Centers for Disease Control, Atlanta, GA as well as a human
isolate from the Kenya 2006/7 outbreak provided by Health
Canada. At KSU, a mosquito isolate (SA01-1322) from the
Saudi Arabia outbreak in 2001 was provided by Barry Miller
CDC Fort Collins, CO through Richard Bowen Colorado state
university and the Kenya 2006 strain was also a mosquito
isolate (13); both isolates were propagated twice in Vero cells
and twice in on mosquito C6/36 cells (8).

South African researchers have used two other strains
of RVFV in a vaccine efficacy trial (82). The first RVFV
strain was Buffalo/99/MB/CER, isolated from an aborted
fetus from an outbreak in 1998, and the second strain
was the reference strain RVF 35-74, isolated from a sick
sheep from an outbreak in 1974. Both virus strains were
isolated using intra-cranial inoculation of mice plus one
passage in BHK cells. Subcutaneous infection of sheep
with 106 pfu of the Zimbabwean strain of RVF produced
viremia by 4 days post-infection (dpi) and caused transient
fever, viraemia, leucopaenia, relative thrombocytopaenia,
haemoconcentration and raised serum enzyme levels
that indicated the development of necrotic hepatitis and
virulence (139).

In another study evaluating an adenovirus-based vaccine in
Kenya, researchers used the RVF 56/74IN strain propagated
in C6/36 cells and purified before challenge. This virus strain
caused clinical disease and viremia following subcutaneous

inoculation of a rather high dose of 107 pfu per animal (115).
In addition, a variety of field isolates have been compared in
sheep including RVFV strains 56/74, 252/75, AN-1830 and
AR-20368 (107), 1678/78 and Lunyo (139) and Zinga (108).

Overall, there are very few studies that directly compare
different RVFV isolates to each other and the question has
been raised of whether RVFV virulence is increasing (23).
Although the genetic variation among strains of RVFV is very
small (≤%5), there are still clear genetic lineages and distinct
clades from outbreaks (140–143). Because RVFV appears
to circulate between vectors and naïve animals during the
inter-epidemic periods (81), which could affect virus genetic
population variation, it would also be beneficial to understand
what effect this has on the virus’ virulence. Faburay’s study
demonstrated distinct virulence between two outbreak isolates
in livestock that suggest that Ken06 has increased virulence
over SA01. Egyptian RVFV strains were shown to be almost
ten-foldmore virulent than sub-SaharanAfrican strains in rats
(144). Differences ranging between 50 and 90%mortality were
also demonstrated in a mouse model (143). Studies are needed
to confirm that these phenotypic differences are also observed
in target livestock species and if genetic characteristics could
be correlated.

(c) Cell line: Perhaps one of the most intriguing aspects of
arbovirus infections is that the virus’s pathogenicity can be
changed depending on whether the inoculum is produced in
a mammalian or insect host cell. This phenomenon was first
characterized in vitro for alphaviruses (145) and then also
for RVFV (146); importantly, we were able to demonstrate
that these source effects also apply to RVFV infections in vivo
(112). In addition, we could show that RVFV which is grown
in mosquito cells incorporates the viral P78 protein into
its virions, i.e., P78 is a structural protein of RFV viruses
produced in insect cells. In contrast, P78 is not found in the
virion when the virus is grown in mammalian cells (58). We
proposed that the p78 present in virions of mosquito-grown
viruses may function as a type I interferon antagonist, which
may allow for a productive infection of initial target cells (58),
as was shown earlier for alphaviruses (145).

(d) Route of inoculation: In addition to the experimental
infections performed at NCFAD and KSU, other studies have
shown that viremia can be induced by a wide variety of
different routes including intramuscular (IM), intravenous
(IV), intraperitoneal (IP), intracerebral (IC), subcutaneous
(SQ), conjunctival, and oral inoculations (112, 137, 147–
149). Subcutaneous injection consistently produced clinical
responses and is easy to administer under BSL-3Ag conditions
thus is a common method of administration (113, 125).

FUTURE DIRECTIONS AND UNANSWERED
QUESTIONS

In the field, the infecting dose of RVFV is widely variable
ranging from a single mosquito bite which may contain a low
level of infectious virions to animals being fed on repeatedly
by numerous RVFV-infected mosquitoes, potentially resulting in
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inoculation with high levels of infectious virions. Understanding
the minimal infectious dose required for infection in ruminants
and humans is currently an area requiring further investigation.
In addition, it is not well-understood what the effect of
mosquito saliva has on in vivo RVFV infection or pathogenesis,
especially in ruminants. In containment and field studies,
inoculations such as subcutaneous injections are used to mimic
a mosquito bite; however, the differences between a natural
infection and a subcutaneous (or intradermal) injection are
not well-characterized.

Moreover, it has recently been shown that goats (117)
and cattle (126) produce robust viremia when experimentally
inoculated through the intranasal route. This is not necessarily
unexpected since humans can be infected by inhaling aerosols
produced during animal slaughtering of infected livestock (91),
but the differences between an intranasal and subcutaneous
infection are not well-understood. While intranasal RVFV
infection can produce severe encephalitis in rodents (102), NHPs
(150) and people, it did not create any neurological disease
in goats (117). However, the neurological effects of intranasal
infection in cattle are still unknown, as the study was terminated
at peak infection at 4 dpi. Therefore, it would be interesting to
also characterize the intranasal infection in cattle over a longer
period of time.

The transmission of RVFV in livestock in the absence of
mosquitoes is also not fully understood and there have been
conflicting reports. Although it was demonstrated in sheep that
transmission could occur through contact exposure (98, 109),
more recent studies have not demonstrated transmission from
subcutaneously infected lambs to naïve or immunosuppressed
lambs (105). One possible explanation for these conflicting
results is that transmission between animals requires a minimum
virus dose which likely varies between different virus strains.
Alternatively, upper respiratory infections with parainfluenza 3
virus, adenoviruses, reoviruses, infectious bovine rhinotreacheitis
virus, maedi-visna virus, sheeppox virus, goatpox virus, peste
des petits ruminants virus or Mycoplasma spp. could cause
perturbations in the nasal mucosa which could possibly enhance
transmission efficiency in the field but are usually absent
in laboratory experiments. The potential role of urine in
transmission or RVFV has recently been highlighted by a
study that isolated RVFV from the urine of an infected
person (151), and it is possible that milk may serve as
a source of RVFV transmission (152) to animal offspring
and human consumers; both of these areas require further
investigation. Mosquito transmission has been considered the
primary route of exposure for livestock and wildlife, but not
for humans. Additional investigations of alternative routes of
exposure will provide further insights into the infectability of
different RVFV strains and might allow correlation of phenotype
with genotype.

The selection of mosquito cell line propagated virus for
livestock inoculation studies at KSUwas based on the observation
of more consistent viremia in our early studies. The importance
of the p78 protein in the insect vs mammalian hosts has
been reported (57, 58, 60) but mechanistic understanding of
how this might affect virulence in the vertebrate host has

not been determined yet. Studies are also needed to examine
whether the individual host animal or cell selects for specific
genotypes, and how that might affect viral maintenance and
virulence in both the vertebrate and invertebrate host. For
example, the basis of the increased virulence of RVFV in
recent outbreaks is yet unknown. So far, Sanger sequencing
of many RVFV isolates has demonstrated a surprisingly high
stability of RVFV (140, 142) however, there are no studies
on the quasi-species variation of RVFV within a specific virus
population either over a period of several days in a target
animal or during and after several passages in the same or
different animals. Such information would be important to
understand the relative fitness and overall replication ability of
RVF viruses.

It was recently determined that there is low level transmission
during the inter-epidemic period (81); whether this is the
only mechanism of viral maintenance is not clear yet. Also,
how low level transmission restricts viral evolution is not
known. Similarly, there is empirical evidence that various
animal breeds have different susceptibilities to RVFV infection.
However, well-designed controlled studies are needed to
substantiate this observation. If confirmed, this could change
husbandry techniques in RVFV endemic areas, and not only
improve animal health but also have a significant effect on
public health.

CONCLUSION

The renewed interest in RVFV since the 2006/7 outbreak in
Kenya has resulted in many advances in our basic knowledge
about RVFV replication strategies and molecular pathogenesis in
small animal and livestock models. It also has resulted in novel
vaccine candidates and novel experimental challenge models as
discussed in this review. In addition, novel tools for the detection
of viral nucleic acids and antibodies, both for laboratory and
point-of need use have been developed. These recent advances in
RVFV mitigation strategies will allow a more rapid and effective
control of the disease; unfortunately, the availability of these
tools in endemic areas is rather limited (84). There are still
many questions about the mechanisms and factors affecting viral
maintenance and virulence. The models described here provide
a good basis for developing studies to investigate these factors.
There are still many questions to be addressed in RVF biology
and epidemiology as discussed above in this review.We hope that
the RVFV livestock models described here in detail will provide
a sound basis for the design of studies to investigate these yet
unknown questions.
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