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Background and Aims. There is no consensus on whether iodixanol is superior to iohexol. This study aimed to compare the effects
of iodixanol and iohexol on circulating endothelial microparticles (EMPs) in stable coronary artery disease (CAD) patients with
diabetes mellitus (DM), and also their cytotoxic effects on human umbilical vein endothelial cells (HUVECs) in vitro.Methods. 100
CADpatients withDMwere randomly assigned to receive iso-osmolar contrastmedium iodixanol (group I) or low-osmolar iohexol
(group II) during coronary angioplasty. An additional 49 CAD patients without DM receiving iohexol were recruited as group III.
Circulating CD31+/CD41a− EMPs, CD62E+ EMPs, and CD31+/CD41a+ platelet microparticles (PMPs) were determined by flow
cytometry. In vitro, the cytotoxic effects of iodixanol and iohexol onHUVECswere determined.Results. Circulating CD31+/CD41a−
EMPs and PMPs were significantly increased after angioplasty in all 3 groups, while CD62E+ EMPs significantly decreased in group
I. CD31+/CD41a− EMPs and PMPs were significantly higher in group II than group I or III. In vitro, both contrast media induced
EMP release and inhibited the viability and induced apoptosis of HUVECs, as well as increasing Bax and cleaved caspase-3 and
decreasing Bcl-2. The above effects were less evident in iodixanol than in iohexol. Conclusions. Compared with iohexol, iodixanol
induces less release of EMPs in both CAD patients with DM during angioplasty and in vitro HUVEC culture, which is associated
with less pronounced proapoptotic effects of iodixanol on HUVECs. Clinical Study Registration Number. This study is registered
with ChiCTR-TRC-14005183.

1. Introduction

Endothelial dysfunction, characterized by the loss or dysreg-
ulation of the endothelium’s normal hemostatic mechanisms
and its acquisition of proinflammatory and prothrombotic
phenotypes, plays a critical role in the initiation and develop-
ment of atherosclerosis [1–3]. Endothelial dysfunction is one
of the important complications of intravascular administra-
tion of contrast media (CMs) [4–6], in the process of diag-
nostic angiography and percutaneous coronary intervention
(PCI). Hyperosmolality, high viscosity, and chemotoxicity
of CMs lead to dehydration and shrinking of endothelial
cells. Endothelial damage due to exposure to CMs promotes
atherosclerosis and precedes acute ischemic events or throm-
boembolic events [7].

Accumulating evidence has demonstrated that endothe-
lialmicroparticles (EMPs) are emerging as a useful biomarker
of endothelial dysfunction and/or injury, which are released
from activated or apoptotic endothelial cells [8–10]. The
circulating EMPs are significantly elevated in many patho-
logical processes of vascular endothelial injury, such as
coronary artery disease (CAD), diabetes mellitus (DM),
stroke, and thrombosis [11–13], which suggests that EMPs
may be involved in multiple pathophysiological processes
in the body, such as hypoxia, hypoxia-related oxidative
stress, thrombosis, inflammation, and atherogenesis [14]. A
number of studies have also reported that EMPs are a robust
predictor of all-causes andmain cardiovascularmortality and
cardiovascular events [9, 15, 16].
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A lot of clinical evidence has shown that patients who
received nonionic low-osmolar contrast media (LOCM, but
still higher relative to plasma) or nonionic iso-osmolar con-
trast media (IOCM, iso-osmolar to plasma) have an advan-
tageous outcome profile over ionic high-osmolar contrast
media (HOCM) in diagnostic and interventional vascular
procedures [17–19], leading to the replacement of HOCM by
LOCM and IOCM in clinical practice. However, there is no
consensus on whether nonionic dimers isomolar iodixanol is
superior to nonionic monomer low-isomolar iohexol. Some
studies suggest that iodixanol is associated with a reduction
of adverse cardiac events and improved renal safety when
compared to iohexol [20, 21]. However, other studies report
conflicting results [22, 23] and raised doubts about the clinical
advantages of iodixanol over iohexol.

In the present study, we aimed to compare levels of
circulating EMPs in stable CAD patients with DM receiving
iodixanol and in those receiving iohexol during selective PCI
and to compare the effects of iodixanol and iohexol on the
induction of endothelial cell apoptosis and the release EMPs
in vitro.

2. Patients and Methods

2.1. Patients and Control Subjects. In this prospective, ran-
domized controlled, double-blind trial, 100 stable CAD
patients with DM in our hospital from January 2015 to
June 2016 were enrolled and were randomly divided into
group I (𝑛 = 50) and group II (𝑛 = 50) by random
number table. An additional subgroup of 50 coronary heart
disease patients without diabetes (group III) was recruited
as control. One patient of group III refused the informed
consent and was excluded, so the final number of group
III was 49. All these patients underwent selective PCI, and
iodixanol (Visipaque� 320mg I/mL) was used in group
I, while iohexol (Omnipaque� 300mg I/mL) was used in
groups II and III. The study complied with the Declaration
of Helsinki and was registered (ChiCTR-TRC-14005183).The
research program was approved by Xinhua Hospital Ethics
Committee Affiliated to Shanghai Jiaotong University School
of Medicine (XHEC-C-2014-045-2). All patients provided
written informed consent.

Patients with stable CAD and with or without DM were
eligible for the study, if they underwent selective PCI. Exclu-
sion criteria included (1) age < 18 years or >80 years, (2) the
use of any CM in the previous 3 months, (3) cardiovascular
events or surgery in the past 3 months, (4) chronic kidney
disease at stage 2 or above, (5) acute coronary syndrome,
(6) acute or chronic infection, trauma, active rheumatism,
or elevated C-reactive protein, (7) ejection fraction < 50%,
or accompanied instable hemodynamics, (8) other diseases
that may affect circulating EMPs, for example, tumor, thyroid
disorders, tuberculosis, using hormones, or systemic lupus
erythematosus, and (9) unlikely cooperation in the study.

Baseline characteristics of study subjects were obtained,
including age, gender, body mass index, hypertension, DM,
smoking history, family history of coronary heart disease,
ejection fraction, laboratory parameters, and PCI-related
parameters.

2.2. Randomization and Blinding. A random number table
including 100 random numbers was generated by SPSS 23.0.
Stable CAD patients with DM (𝑛 = 100) were randomly
assigned to iodixanol group (group I) and iohexol group
(group II) by a researcher independent of this study, at 1 : 1
ratio by the random number table (simple randomization).
49 stable CAD patients without DM receiving iohexol served
as control (group III). Both researchers and participants were
blinded to research groups. Each participant was allocated
a code number relating to a CM, and no investigators had
access to the key. The first unblinding was performed when
all the data were obtained, and the second unblinding took
place after all the statistical analysis was complete.

2.3. Blood Sampling and Preparation. An arterial blood sam-
ple (5mL) was collected via radial artery sheath into 3.2%
trisodium citrate vacutainer (Becton Dickinson, San Jose,
CA) prior to CM injection and immediately following PCI.
Erythrocytes, leukocytes, and platelets in the blood samples
were removed by gradient centrifugation as mentioned pre-
viously [24]. Briefly, the blood was centrifuged at 160𝑔 for 10
minutes to prepare platelet-rich plasma and then centrifuged
for 6min at 1000𝑔 to prepare platelet-poor plasma. The
plasma was stored at −80∘C until further analysis [25].

2.4. Measurement of EMPs and PMPs by Flow Cytometry.
Before flow cytometry, the plasma was thawed and incubated
with fluorescent antibodies [25]. Briefly, a volume of 500𝜇Lof
thawed plasma was centrifuged for 5min at 16,000𝑔 at 4∘C to
remove residual platelet and debris.The top 450 𝜇L of plasma
was transferred to a new tube and centrifuged for 30min at
16,000𝑔 at 4∘C to concentrate microparticles. The top 250𝜇L
of plasma was removed and the remaining 200 𝜇L was used
for incubation with fluorescent antibodies for FCM.

The remaining 200 𝜇L of plasma was transferred to a
TruCount tube preloaded with fluorescent bead (served as
calculation reference) lyophilized pellets (Becton Dickinson
Biosciences, San Jose, CA, USA, Cat#340334) and 3𝜇L of
each of CD31-AF488, CD41a-APC, and CD62E-PE (Becton
Dickinson Biosciences, San Jose, CA, USA) was added to the
tube and then incubated at 4∘C for 30min in the dark. The
AF488-, APC- and PE-conjugated isotype control antibodies
were used as control. Calibration beads (size in 0.2 𝜇m and
1.0 𝜇m, Molecular Probes, Eugene, Oregon, USA) served as
size reference.

Acquisition of EMPs and PMPs was performed using a
CytoFLEX S Flow Cytometer (Beckman Coulter, S.Kraemer
Boulevard Brea, CA, USA). Analysis of EMPs and PMPs
was operated at low flow-rate setting, and the light scatter
and fluorescent was set at log model. Events between 0.1 𝜇m
and 1.0 𝜇m in size on FS-SS graph were gated as EMPs or
PMPs. EMPs were defined as CD31+/CD41a− or CD62E+,
while PMPs were defined as CD31+/CD41a+. Data of 10,000
events were obtained and analyzed using CytExpert (Version
2.0, Beckman Coulter).

The absolute number of EMP and PMP was calculated
by the formula (number of EMP or PMP region × total
number of beads per tube)/(number of beads collected ×
tested volume (200𝜇L)). The total number of beads per
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tube was provided by the manufacturer. The results were
expressed as number of CD31+/CD41a− EMP, CD62E+ EMP,
and CD31+/CD41a+ PMP per 𝜇L of plasma.

2.5. Cell Line and Cell Culture. The human umbilical vein
endothelial cells (HUVECs) were used in the study to
determinewhetherCMs induced apoptosis of EC in vitro.The
HUVEC was obtained from the American Type Culture Col-
lection (ATCC, Manassas, Virginia, USA) and was cultured
with RPMI 1640medium (Gibco, USA) with 10% fetal bovine
serum (Gibco, USA). The cells were incubated in a humid
incubator with 5% CO

2
at 37∘C.The subsequent experiments

were performed when the cell confluence reached 70% to
80%.

2.6. Cell Proliferation/Cytotoxicity Assay. The Cell Counting
Kit-8 (CCK-8) assay was performed to assess cell prolif-
eration/cytotoxicity and was carried out according to the
manufacturer’s instructions. Briefly, 8 × 103 cells/well were
seeded in a 96-well plate and incubated overnight. The drug
concentrations of 4 vol%, 10 vol% and 20 vol% of iodixanol
(Visipaque 320mg I/mL) and iohexol (Omnipaque 300mg
I/mL) were used, in an attempt to approximate the relative
concentrations of contrast media in blood that might occur
during the bolus-injection and circulation-diluted phases of
drug administration. Complete growth medium was used as
control in the study unless otherwise specified. At 0 h, 1 h, 2 h,
3 h, 4 h, 5 h, 6 h, 12 h, and 24 h after stimulation, 10𝜇L ofCCK-
8 (5mg/mL, Beyotime Biotechnology, China) was added to
each well and the absorbance at 450 nm was determined by
using a Quant microplate reader (BioTek), after incubating
for 2 h. Each treatment was set in triplicate and the assays
were repeated at least three times.

2.7. Flow Cytometry to Determine Apoptosis. Briefly, 1 × 106
HUVEC cells/well were seeded in a 6-well plate and incu-
bated overnight. After stimulation by 4 vol%, 10 vol%, 20 vol%
of iodixanol or iohexol for 4 h, the HUVECs were collected
carefully after digestion with trypsin enzyme without EDTA.
Then the cells were resuspended in 300 𝜇L of Annexin V
binding buffer and incubated with 4𝜇L each of Annexin V-
FITC and propidium (PI)-PE (Becton Dickinson, USA) for
15min at room temperature in the dark. Then the apoptosis
of HUVECs was determined by a BD FACSCanto II flow
cytometry (Becton Dickinson, USA).

2.8. Hoechst Staining. To further demonstrate the apopto-
sis of HUVECs, after treatment with 20 vol% of iodixanol
or iohexol for 4 h, the cells were stained with 0.5mL of
Hoechst-33258 (Beyotime Biotechnology, China) for 5min
at room temperature in the dark. The apoptotic cells were
observed using a fluorescence microscopy (Olympus BX51).
The nucleus of a normal cell was normal blue, but the nucleus
of an apoptotic cell was light blue, accompanied by chromatin
condensation and fragmentation.

2.9. Western Blotting. After treatment with 20 vol% of iodix-
anol or iohexol for 4 h, 5 × 106 HUVECs were harvested and
lysed for 20min on ice in 100 𝜇L of RIPA buffer (Beyotime

Biotechnology, China) supplemented with 1𝜇L of PMSF
(Beyotime Biotechnology, China). 10 𝜇L of total cellular
proteinwas separated by SDS-PAGEand transferred to PVDF
membranes. Membranes were probed with primary anti-
bodies: 𝛽-actin (1 : 1000, Beyotime Biotechnology, China),
Bcl-2, Bax, caspase-3, and cleaved caspase-3 (all in 1 : 1000,
from Cell Signaling Technology, USA) at 4∘C overnight
and then incubated with respective secondary antibodies
at room temperature for 1 h. The signals were detected via
Enhanced Chemiluminescence Reaction (ECL+, Millipore,
USA) and ChemiDocXRS+ (Bio-Rad). The density of each
blot was determined by Image Lab 3.0 software (Bio-Rad).
Each immunoblotting was repeated three times.

2.10. Flow Cytometry to Determine EMPs. 1 × 106 cells/well
were seeded in a 6-well plate and incubated overnight. The
cells were stimulated by 4 vol%, 10 vol%, and 20 vol% of
iodixanol or iohexol, and the same amount of complete
growth medium was used as control. After 4 h, 2mL of
supernatant was collected and centrifuged for 15min at 1500𝑔
at 4∘C to remove cell debris [26].The top 1800 𝜇L supernatant
was transferred to a new tube and centrifuged for 30min at
16,000𝑔 at 4∘C to concentratemicroparticles.The top 1500𝜇L
of supernatant was removed and the remaining 300 𝜇L was
used to be incubated with fluorescent antibodies for flow
cytometry. The processes of incubating antibodies and flow
cytometry were described as above.

2.11. Statistical Analysis. Data analysis was performed by
SPSS 23.0 (IBM for windows). Normal variates were repre-
sented by mean ± standard deviation (SD), and unpaired 𝑡-
test or one-way analysis of variance (ANOVA)was performed
to determine the differences. Since Kolmogorov-Smirnov test
showed that EMPs and PMPs were nonnormally distributed,
log-transformed data were used for analysis. Nonnormal
data were presented as median and interquartile range (IQR)
and analyzed by Kruskal-Wallis𝐻 test. Categorical variables
were expressed as number of cases and percentage, and the
differences were compared with the chi-square test. A two-
tailed 𝑃 < 0.05 indicates statistical significance.

3. Results

3.1. Patients’ Baseline Characteristics. The baseline charac-
teristics of these participants were reported in Table 1. The
demographic data were comparable among three groups.
Fasting blood glucose, blood urea nitrogen, and creatine were
different among 3 group, and post hoc analysis showed that
blood glucose was lower in group III compared to groups
I and II. Pairwise comparisons showed that the differences
in both urea and creatinine between group I and group II
were not significant (urea: 5.3 (4.6, 6.5) versus 6.0 (5.0, 7.6),
𝑃 = 0.333; creatine: 66.5 (59.8, 76.3) versus 72.9 (62.5, 89.4),
𝑃 = 0.066). The levels of urea and creatine in these three
groups were in the normal range. There were no significant
correlations between kidney function and microparticles
(data not shown). The volume of CM was determined
by the complexity of PCI procedures, age, and renal and
heart function of patients. And the volume was recorded
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Figure 1: Effects of iodixanol and iohexol on circulating levels of CD31+/CD41a− EMPs, CD62E+ EMPs, and PMPs. Gating of microparticles
(a). The flow cytometry was referenced by calibration beads (size in 0.2 𝜇m and 1.0 𝜇m) (A). Acquisition of PBS, which was filtered by a filter
in 0.22 𝜇m (B). Events between 0.1 𝜇m and 1.0𝜇m in size on FS-SS graph were gated as microparticles (C). Measurement of plasma EMPs
and PMPs at baseline and after injection of iodixanol or iohexol during PCI in patients with stable coronary artery disease (b–d). Staining
of microparticles with CD31-FITC and CD41a-APC (b) and CD62E-PE (c), and results of CD31+CD41a− EMP, CD62E+ EMP, and PMPs in 3
groups (d).The datawere expressed asmean± SD.DM: diabetesmellitus; NDM: non-diabetesmellitus; NS: nonsignificant; PCI: percutaneous
coronary intervention. ∗𝑃 < 0.05, ∗∗𝑃 < 0.01, and ∗∗∗𝑃 < 0.001.

by a nurse after a PCI procedure was finished. 150mL of
contrast media was used in the majority of patients who
underwent PCI procedures, while the minimum volume and
the maximum volume were 50mL and 250mL, respectively.
Since the volume of CM was nonnormally distributed and

was expressed asmedian and quartiles, so themedian volume
of CM was 150mL in all three groups.

3.2. The Release of EMPs and PMPs after Exposure to CMs.
The counts of EMPs and PMPs were shown in Figure 1. At
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Figure 2:The effects of iodixanol and iohexol on viability and apoptosis of HUVECs. (a) HUVECs were stimulated with iodixanol or iohexol
at different concentrations and time points and then cell proliferation/cytotoxicity assay was performed using CCK-8 assay. (b) HUVECs
were treated with iodixanol or iohexol at different concentrations for 4 h and cell apoptosis was determined by Annexin V and PI staining. (c)
HUVECswere treated with 20 vol% of iodixanol or iohexol for 4 h and stainedwithHoechst. Reference bar size in 20𝜇m.Magnification× 400
folds. The data were expressed as mean ± SD (𝑛 = 9). Complete growth medium served as control. ∗𝑃 < 0.05, ∗∗𝑃 < 0.01, and ∗∗∗𝑃 < 0.001
versus control; #𝑃 < 0.05, ##𝑃 < 0.01, and ###

𝑃 < 0.001 versus iodixanol.

baseline, CD31+/CD41a− EMPs and CD31+/CD41a+ PMPs in
group III (patients withoutDM)were significantly lower than
those in group I and group II, but there were no significant
differences in CD31+/CD41a− EMPs and PMPs between
group I and group II. After exposure to CMs, CD31+/CD41a−
EMPs and PMPs were significantly increased in all of these
three groups. Post hoc multiple comparisons indicated that
the levels of CD31+/CD41a− EMPs and PMPs were lower in
iodixanol (group I) compared to iohexol (group II). When
exposed to iohexol, stable CAD patients with DM (group II)
were more likely to release more CD31+/CD41a− EMPs and
PMPs than patients without DM (group III) (Figures 1(b) and
1(d)).

The baseline levels of CD62E+ EMPs were comparable
among three groups; however CD62E+ EMPs were decreased
after exposure to iodixanol (Figures 1(c) and 1(d)). After expo-
sure to CMs, the ratio of CD62E+/CD31+ EMP populations
was <1.0, suggesting that EMPs are released from EC apopto-
sis instead of EC activation [27].

3.3. The Influence of CMs on Cell Proliferation/Cytotoxicity.
Next, in in vitro HUVEC culture, we first examined the
effects of different concentrations of iodixanol and iohexol
on HUVEC proliferation/cytotoxicity after stimulation for
1 h, 2 h, 3 h, 4 h, 5 h, 6 h, 12 h, and 24 h (Figure 2(a)). At
the concentration of 4 vol%, the viable cell number at 5 h
was significantly decreased in both iohexol and iodixanol
group compared with the control group and cell viability
was significantly decreased in iohexol compared to iodixanol
at 5 h, 6 h, and 24 h (Figure 2(a)). At the concentration of
10 vol%, both CMs significantly decreased cell viability at all
time points, while the differences in cell viability between
iohexol and iodixanol reached significance starting from 4 h.
When the concentration of CMs increased to 20 vol%, the
reduction of cell viability was significant at all time points
compared to the control, with the greatest reduction at 4 h.
Iohexol more significantly reduced viable cell number at all
time points compared to iodixanol. Based on these results, the
time point of 4 h was chosen in the subsequent experiments.
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Figure 3:The effects of contrast media on apoptosis-related proteins in HUVECs. HUVECs were treated with 20 vol% of iodixanol or iohexol
for 4 h and expression of Bcl-2 (a), Bax (b), caspase 3, and cleaved caspase-3 (c) was measured by Western blotting. These experiments were
repeated at least 3 times. Data represents mean ± SD. Complete growth medium served as control. ∗𝑃 < 0.05, ∗∗𝑃 < 0.01, and ∗∗∗𝑃 < 0.001
versus control; #𝑃 < 0.05, ##𝑃 < 0.01 and ###

𝑃 < 0.001 versus iodixanol.

3.4. The Apoptosis of HUVECs Detected by Annexin V Stain-
ing. To investigate whether CMs induced the apoptosis of
HUVECs, the cells were stimulated by 4 vol%, 10 vol%, and
20 vol% of iodixanol or iohexol for 4 h and apoptosis was
detected by Annexin V-FITC and PI-PE staining. Both iodix-
anol and iohexol induced apoptosis of HUVECs in a dose-
dependent manner (Figure 2(b)). All of three concentrations
of iodixanol induced significantly less apoptosis compared to
the same concentration of iohexol (Figure 2(b)).

3.5. The Apoptosis Cells Detected by Hoechst 33258 Staining.
The apoptosis of HUVECs was also measured by the nucleus
dye Hoechst 33258 staining. After exposure to 20 vol% of
iodixanol or iohexol for 4 h, the HUVECs were stained with
Hoechst 33258 and the apoptotic cells were counted using
a fluorescence microscopy. Both groups had significantly
higher apoptosis rates than the control group (21.6% ± 2.1%
and 31.2% ± 4.8% versus 7.9% ± 2.8%, respectively, both 𝑃 <
0.001), but iodixanol group had significantly fewer apoptosis
cells compared with iohexol group (Figure 2(c)).

3.6. The CMs Induced Apoptosis through Bcl-2/Bax-Caspase-3
Pathway. We further measured apoptosis-related proteins of
HUVECs in response to CMs. After stimulation by 20 vol%
of iodixanol or iohexol for 4 h, the expression of Bcl-2, Bax,
caspase-3, and cleaved caspase-3 was determined byWestern
blotting. Compared to the control, the level of antiapoptotic
Bcl-2 significantly decreased, while the levels of Bax and
cleaved caspase-3 significantly increased after exposure to
CMs (Figure 3). Compared to the iohexol group, the level of
antiapoptotic Bcl-2 was significantly higher, while the levels
of Bax and cleaved caspase-3 were significantly lower in the
iodixanol group (Figure 3).

3.7. The Release of EMPs from HUVECs in Response to CMs
In Vitro. To confirm that EMPs are released from apoptotic

cells induced by CMs in vitro, we measured CD31+CD41a−
EMPs and CD62E+ EMPs in the supernatant by flow cytom-
etry. After exposure to either iodixanol or iohexol for 4 h,
the release of CD31+CD41a− EMPs increased significantly
in a dose-dependent manner (Figure 4(a)). The counts of
CD31+CD41a− EMPs were significantly lower in iodixanol
group than those of iohexol group, at all 3 concentrations.
Interestingly, the level of CD62E+ EMPs tended to decrease
in response to either iodixanol or iohexol, and its reduction
reached statistical significance for the comparison between
20 vol% of iodixanol group and the control group (Fig-
ure 4(b)). CD62E+ EMPs were significantly lower in 20 vol%
iodixanol group, compared to 20 vol% iohexol group.

4. Discussion

Conflicting data are generated with regard to whether iodix-
anol is superior to iohexol when used in diagnostic and
interventional procedures. In the present study, we compared
the effects of these two CMs on endothelial dysfunction
in vivo and in vitro. First, we demonstrated that circu-
lating EMPs levels significantly increased in patients with
stable CAD after receiving iodixanol or iohexol during PCI
procedure, and iodixanol induced less EMPs release than
iohexol in patients with stable CAD. In in vitro HUVEC
culture, we demonstrated that both iohexol and iodixanol
significantly induced EMP release from HUVECs, inhibited
proliferation, and increased apoptosis of HUVECs through
Bcl-2/Bax-caspase-3 signal pathway, but iodixanol is less cell
toxic than iohexol. In addition, iohexol causes more marked
increase in CD31+/CD41a− EMPs and PMPs in stable CAD
patients with DM than in those without DM, indicating
that diabetic patients are more sensitive to iohexol. Taken
together, iodixanol causes less damage to endothelial cells
compared to iohexol in CAD patients with DM.
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Figure 4: The induction of EMP release from HUVECs by iodixanol or iohexol. HUVECs were treated with different concentrations of
iodixanol or iohexol for 4 h and CD31+/CD41a− EMPs (a) and CD62E+ EMPs (b) were measured by flow cytometry. The data were expressed
as mean ± SD (𝑛 = 9). Complete growth medium served as control. ∗∗∗𝑃 < 0.001 versus control; ###𝑃 < 0.001 versus iodixanol.

First, we confirmed the effects of both iodixanol and
iohexol on endothelial dysfunction. After exposure to iodix-
anol or iohexol, circulating CD31+/CD41a− EMPs and PMPs
increased significantly in patients with stable CAD compared
to the baseline.The endothelial damage and thrombogenicity
are considered to be risks of CM use. Previous studies
reveal that water deprivation [28], oxidative stress [29],
vasoconstriction [30], and ischemic damage [31] are the most
prominent predisposing factors of the toxic effect of CMs on
renal tubules in vivo andmay be the underling mechanism of
contrast-induced acute kidney injury. Moreover, both iodix-
anol and iohexol induced release of EMPs from HUVECs
and inhibited proliferation/viability and induced apoptosis of
HUVECs in vitro not only in a time-dependent manner but
also in a dose-dependent manner.

IOCM iodixanol is a nonionic dimer, which is an emerg-
ing category of CMs. Documented literatures have reported
that iodixanol has less cardiovascular events in the process of
cardioangiography, compared to ionic low-osmolar ioxaglate
[17] and nonionic low-osmolar iohexol [20]. In the present
study, we found that the counts of plasma EMPs and PMPs
after PCI were significantly lower in stable CAD patients

with DM receiving iodixanol than those receiving iohexol,
indicating that iodixanol has less impact on endothelial dam-
age and platelet activation. Consistently, in vitro, iodixanol
induced less release of EMPs by HUVECs than iohexol,
which is associated with less pronounced effects of iodixanol
on inducing cell apoptosis and reducing cell viability. The
dysfunction of endothelium potentiates the procoagulant
status [32]. Moreover, elevated EMPs and PMPs per se not
only are associated with thrombosis and inflammatory state
predisposed to atherosclerosis and CAD development, but
also increase blood viscosity, which exacerbates the state
of hypercoagulability and increases cardiovascular events
following the endothelium damage and platelet activation
[9, 33]. Hence, iodixanol may be a better choice than iohexol
in the procedure of coronary angioplasty, especially for CAD
patients with DM as demonstrated in this study, because it
induces less endothelial damage and platelet activation, and
less microparticles release.

Endothelial dysfunction [34] and platelet activation [35]
are the common characteristics of diabetes. We found
that stable CAD patients with DM had higher levels of
CD31+/CD41a− EMPs and PMPs than patients without DM
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at baseline, which is in agreement with previous studies [25].
Diabetes is a risk factor for higher subsequent revascular-
ization rates, lower one-year survival [36], and more major
adverse cardiac events (MACEs) after PCI [37]. In the present
study, we found that the increment of CD31+/CD41a− EMPs
and PMPs after injection of iohexol wasmore in patients with
DM than in those without DM, which indicates that diabetes
patients are more sensitive to iohexol. This further supports
that iohexol may be not a good choice for diabetes patients in
the procedure of angiography and PCI.

The levels of CD62E+ EMPs at baseline are not sig-
nificantly different between patients with DM and those
without DM, which is in consistent with previous studies
reporting that CD62E+ EMPs are normal in patients with the
metabolic syndrome [38] and patients with type 2 DM [39]
compared to healthy subjects. Interestingly, after exposure
to CMs, a downward trend of CD62E+ EMPs was observed
but the decrement reached statistical significance only in
iodixanol group. As stated in the previous literature, the
ratio of CD62E+/CD31+ EMPs ≤ 1.0 suggests endothelial
apoptosis, while ≥10 suggests endothelial activation [27].The
ratio of CD62E+ EMPs/CD31+ EMPs was <1 after injection
of CMs in our study, indicating that EMPs are released
by apoptotic endothelial cells, which was confirmed by our
further experiments in vitro.

Previous studies have shown that caspase-3 and Bcl2/Bax
are involved in CMs induced apoptosis [40–42]. In the
present study, we showed that proapoptotic Bax and cleaved
caspase-3 increased while antiapoptotic Bcl-2 and the ratio
of Bcl-2/Bax decreased after exposure to CMs, implying
that CMs induced apoptosis of HUVECs at least partly via
Bcl-2/Bax-caspase-3 signal pathway. The expression of Bax
and cleaved caspase-3 was significantly decreased while the
expression of Bcl-2 was higher in iodixanol group than in
iohexol group, which explains the less proapoptotic effect of
iodixanol than iohexol on HUVECs.

There are some limitations in the study. First, due to
some difficulties, we were unable to measure microparticles
immediately in freshly collected blood samples. It is known
that microparticles may be affected by freezing and thawing
process. However, our plasma samples were subjected to a
single freeze-thaw cycle. Second, we did not collect follow
up data on clinical end-points in this study. It would be
interesting to correlate clinical end-point data with circu-
lating levels of EMPs in patients receiving either iodixanol
or iohexol. Therefore, although we conclude that iodixanol
induces less release of EMPs than iohexol in this study,
selection of iodixanol over iohexol in CAD patients with DM
needs to be validated in future clinical studies.

5. Conclusion

IOCM iodixanol induces less of an increase in circulating
EMPs and PMPs in stable CAD patients with diabetes
compared with LOCM iohexol, when used in PCI procedure.
In vitro, Iodixanol has less impact on the release of EMPs from
HUVECs, which is associated with less pronounced cytotoxic
and proapoptotic effects of iodixanol onHUVECs, compared
with iohexol. In addition, injection of iohexol causes more

marked increase in CD31+/CD41a− EMPs and PMPs in
patients with DM than in those without DM, indicating that
diabetic patients are more sensitive to iohexol. Therefore,
iodixanol may have advantage over iohexol in CAD patients
with diabetes in the procedures of cardioangiography and
coronary angioplasty.
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