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Abstract

Sediment retention is a key ecosystem function provided by floodplains to filter sediments

and nutrients from the river water during floods. Floodplain vegetation is an important driver

of fine sediment retention. We aim to understand which structural properties of the vegeta-

tion are most important for capturing sediments. In a hydraulic flume experiment, we investi-

gated this by disentangling sedimentation on and underneath 96 vegetation patches (40 cm

x 60 cm). We planted two grass and two herb species in each patch and conducted a full-

factorial manipulation of 1) vegetation density, 2) vegetation height, 3) structural diversity

(small-tall vs tall-tall species combinations) and 4) leaf pubescence (based on trait informa-

tion). We inundated the vegetation patches for 21 h in a flume with silt- and clay-rich water

and subsequently measured the amount of accumulated sediment on the vegetation and on

a fleece as ground underneath it. We quantified the sediment by washing it off the biomass

and off the fleece, drying the sediment and weighting it. Our results showed that all manipu-

lated vegetation properties combined (vegetation density and height, and the interaction of

structural diversity and leaf pubescence) explained sedimentation on the vegetation (total

R2 = 0.34). The sedimentation underneath the vegetation was explained by the structural

diversity and the leaf pubescence (total R2 = 0.11). We further found that vegetation bio-

mass positively affected the sedimentation on and underneath the vegetation. These find-

ings are crucial for floodplain management strategies with the aim to increase sediment

retention. Based on our findings, we can identify management strategies and target plant

communities that are able to maximize a floodplain’s ability to capture sediments.

Introduction

Worldwide, intensification of agriculture leads to increasing sediment and nutrient loads in

rivers [1–4]. Severe soil erosion in monocultures and excessive fertilization are main drivers of
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these increased sediment and nutrient loads [5–9]. Furthermore, riparian deforestation and

urbanization (through increased surface water run-off on sealed surfaces) of floodplains

increase erosion, which then increases sediment and nutrient loads in the rivers [10–12]. In

more natural river systems, sediment and nutrients are transported into the floodplain during

flood events, where they are largely retained [13–16]. The floodplain thus acts as a sink for sed-

iment and nutrients. However, human activities degrade river systems by straightening and

embanking and thus reducing floodplain areas and their connectivity to the river [13,17].

Today, floodplains are among the most threatened ecosystems worldwide [17,18]. Conse-

quently, river water with a higher load of sediments and nutrients needs to be filtered by

strongly reduced floodplain areas [18]. The consequence is an unbalanced sediment and nutri-

ent transport along the river which causes overfertilization of the water and silting up of sedi-

ments in river branches, oxbows and river mouths [19–23]. To improve the capacity of

floodplains to retain fine sediment, and bound to it nutrients, it is crucial to obtain a holistic

picture of the mechanisms optimizing fine sediment retention on natural floodplains [24].

Sedimentation can be described as a complex mixture of different biogeomorphological pro-

cesses, where structural properties, such as the density or height of the floodplain vegetation,

are important for deposition of fine sedimentation and the morphology of the floodplain is

crucial for deposition of coarse sediment [24,25]. However, we still do not fully understand

which structural properties of the vegetation are responsible for the fine sediment retention

within a vegetation patch.

Different types of plant communities occurring in floodplains are known to differ in their

retention capacity of fine sediment. For example, herbaceous communities differ from shrubs

and tree communities [26,27], and agricultural grasslands differ from reed beds and wood-

lands [28]. In addition, broad-leaved and aquatic vegetation in tidal communities have a

higher sediment retention capacity compared with graminoids and shrubs [29]. However, stiff

grasses are known to increase sedimentation due to their high resistance to the flow [30],

which reduces the flow velocity and gives the sediment time to settle [31,32]. In general, vege-

tation influences fluvial processes and sediment transport [33] and has the potential to double

the sediment retention through its three dimensional structure [34,35]. However, while we do

understand that contrasting plant functional groups (e.g. herbs versus trees) [36,37] affect

overall sediment retention differently, we still have a very poor understanding of the main

structural properties underlying vegetation control of sedimentation. Even within more homo-

geneous vegetation types, such as floodplain meadows, there is a wide variation of structural

properties due to natural inter- and intraspecific variation, species sorting or grassland man-

agement. Here, we aim to understand how multiple and interacting structural properties of

herbaceous plant communities drive sediment retention within vegetation patches. For the

first time, we experimentally disentangle sedimentation on and underneath the vegetation,

since we expect different mechanisms and thus varying importance of drivers.

The density of vegetation influences sedimentation in two ways. On one hand, dense vege-

tation can reduce the flow velocity, thus increasing potential time for settlement [28,38]. Fur-

ther, a high density increases the standing biomass in grasslands [39] and more biomass is in

turn likely to increase sedimentation, due to stronger reduction in flow velocity. On the other

hand, increasing vegetation density can cause vertical mixing of the flow and increases turbu-

lence that may change sedimentation patterns [40–42], due to remobilization of previously

deposited sediment. In addition, very dense vegetation can decrease sedimentation by divert-

ing the water flow away from the interior canopy volume, which is known as the blockage fac-

tor from studies on in-stream vegetation [32,41]. Thus, there might be a threshold of

vegetation density below which sedimentation increases with density, while sedimentation

again decreases once the vegetation is too dense [24]. This might be a reason why the evidence
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for an effect of vegetation density on sedimentation is inconclusive so far. No density relation-

ship at all was observed so far for tidal vegetation [29] and grass stripes [43].

Vegetation height may also affect sedimentation, since tall species probably reduce the flow

velocity on a larger vertical axis than small species, which then cause sedimentation. From

grassland studies it is well established that higher vegetation also has more biomass [39,44,45]

and more biomass is known to capture more sediment [34,46]. However, no direct evidence

was found that higher vegetation increases sedimentation in riparian buffer stripes [47].

Structural diversity, here defined as a mixture of various structural parameters of the vege-

tation, in this case height (small and tall growing species), can also affect sedimentation. It is

typically brought forth by a high species richness [48]. Structural diversity has been found to

affect the flow around in-stream vegetation, which is likely to increase sedimentation

[31,49,50]. However, another experiment found that structurally more diverse vegetation

patches (e.g. mixtures of structurally different plant species) did not increase sedimentation

significantly compared to monocultures [51].

Sediment settles on the surface of the vegetation, thus specifically the structure of the leaf

surface is important for sedimentation [34]. In a recent study, it was found that leaf pubescence

explains much of the variance of sedimentation on leaf surfaces, species with hairy leaves col-

lect more sediment than leaves of species with few or no hairs [52]. However, we expect that

leaf surface structure has no strong effect on sedimentation on the soil surface underneath the

vegetation, since leaves only change the flow velocity and cause turbulence close to the leaf sur-

face [53].

The aim of this study was to understand the combined effects and relative importance of

structural characteristics of the vegetation on sediment retention on and underneath herba-

ceous vegetation. To be able to independently assess the effects of key characteristics and their

interactions, we manipulated vegetation (1) density, (2) height, (3) structural diversity, and (4)

leaf pubescence in a full factorial flume experiment. To our knowledge, this is the first experi-

ment aiming to unravel the causal relationships between sediment retention and key structural

characteristics of the vegetation. We tested the following hypotheses:

1. Sediment retention on and underneath the vegetation increases with vegetation density.

2. Sediment retention on and underneath the vegetation increases with vegetation height.

3. Sediment retention on and underneath the vegetation increases with structural diversity of

the vegetation.

4. Vegetation with high leaf pubescence traps more sediment on the vegetation, but not

underneath the vegetation.

Material and methods

Vegetation patches

Our experiment comprised four treatments: leaf pubescence, structural diversity, density, and

height (Fig 1). The first two treatments (leaf pubescence and structural diversity) were manip-

ulated via species combinations during seeding, the two other treatments (density and height)

were manipulated manually prior to the flume experiment. For the species selection we used

the criteria leaf pubescence (hairy vs not hairy) and maximal height (<70 cm = small vs�70

cm = tall), and selected 3 species per category (e.g. 3 tall hairy grasses, 3 tall hairy herbs, etc.)

resulting in 24 species from the German flora in order to maximize the gradient of the investi-

gated traits (S1 Table).
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For the experiment we grew 96 vegetation patches (40 x 60 cm2) with 1000 seeds per patch.

Always four species (2 grasses, 2 herbs; 250 seed each) were selected out of the pool of 24 spe-

cies that potentially grow in Central European floodplain meadows. To manipulate leaf pubes-

cence, half of the patches were sown with species with low leaf pubescence, and the other half

with species with high leaf pubescence (Fig 1). To manipulate the structural diversity, half of

the patches were sown with two tall grasses and two tall herbs (low structural diversity), while

the other half were sown with one tall grass, one small grass, one tall herb, and one small herb

(high structural diversity). Each treatment combination of leaf pubescence and structural

diversity was replicated six times with different species combinations. Each individual species

combination had four identical replicates to be able to manipulate density and height with the

same species (dense/high, dense/low, sparse/high, and sparse/low, Fig 1).

Before we seeded the patches, each tray was filled with 3 cm sand mixed with fertilizer

(Osmocote Exact Standard (5-6M) Meyer) as the rooting zone. On top of the sand, we put a

fleece (Thermos-Fleece 85 g m-2, Meyer). On the fleece, we spread the seeds evenly but ran-

domly. We covered the seeds with a thin layer of a mixture of sand and turf to promote germi-

nation. The trays stood in the greenhouse of the Leipzig Botanical Garden to germinate and

grow under equal conditions (Fig 2A). We seeded in June 2018 in the greenhouse without tem-

perature regulation. We watered them once or twice per day depending on the temperature.

After nine weeks in the greenhouse, we placed the trays outside, shaded by a tree to grow

under natural conditions and develop higher stability and stiffness in the wind (Fig 2B). Here,

they were watered automatically every 12 h by a lawn sprinkler. In total, the patches grew 13–

14 weeks prior to the start of the flume experiment.

The manipulation for density and height took place in week 11, two weeks prior to the start

of the experiment. For the manipulation of density and height, individuals were counted on a

2 cm x 40 cm strip in the middle of each of the four identical patches. We then used the sparser

half of the patches for the sparse manipulation to keep overall density as high as possible. The

density was thinned out for the “sparse” patches to a third of stems compared with the mean of

the “dense” patches by manually cutting the defined number of randomly selected stems just

above the fleece (S1 Fig). For the height treatment, the “high” patches were cut to 40 cm and

the “low” patches to 20 cm height.

Experimental set-up

We ran the experiment in a flume (Stahl-Technik-Straub GmbH & Co KG) in the hydraulic

laboratory of the Leichtweiß-Institute for Hydraulic Engineering and Water Resources at the

TU Braunschweig. The flume was 30 m long, 2 m wide and 0.8 m deep. For the experiment,

Fig 1. Experimental design. Low structural diversity: 2 tall grass species and 2 tall herb species, high structural

diversity: 1 tall grass, 1 tall herb, 1 small grass and 1 small herb species.

https://doi.org/10.1371/journal.pone.0248320.g001
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we used a closed water cycle powered by a pump recirculating the water and the dissolved sedi-

ment with a constant discharge. Based on the results from pre-experiments, the technical limi-

tations of the flume and the expert knowledge of hydraulic engineers, we decided for a

constant discharge of 24–25 l s-1, to be able to keep the balance between a low discharge simu-

lating real floodplain inundation and a discharge high enough to keep the clay and silt floating

in the flume water. The flume was filled up to a water depth of 45 cm (limited by the experi-

mental set-up), so that all patches (20 cm and 40 cm manipulated height) were fully inundated.

The whole waterbody of 28 000 l was mixed with the sediment by adding 7.5 kg clay (Ø
<2 μm) and 7.5 kg silt (Ø 2–63 μm (90%)) before the experiment started. We decided for a

mixture of clay and silt, since the small grain sizes are important for associated nutrient reten-

tion and additionally we do not expect courser sediment to settle on the vegetation due to their

heavier weight. The first 5 m of the flume bed (inlet section) was covered with artificial lawn

and bricks to roughen the flow bed and ensure fully turbulent flow conditions and a uniform

flow field across the flume width upstream of the first line of vegetation patches (Fig 3). The

vegetated flume section was separated by two closing walls and drained by a mobile submerged

pump to enable removal of the patches without distorting the sediment by lifting the patches

through the whole water column. With the overall constant hydraulic conditions we were able

to focus on the relative differences in the structural characteristics of the vegetation during

inundation.

Fig 2. Experiment preparation. (A) seeded patches in the greenhouse, (B) patches growing outside, (C) fleeces and

vegetation before the experiment, (D) patches in the flume while the water level goes down (numbers indicate patch

position and c the controls), (E) image of a patch from the front.

https://doi.org/10.1371/journal.pone.0248320.g002

Fig 3. Top view of flume. Sketch of flume with the pump, the inlet section to roughen the bed (artificial lawn and

bricks), the closable walls to drain the vegetated section, and the positions of the patches in lines (capital Roman

numerals) and rows (lowercase Roman numerals).

https://doi.org/10.1371/journal.pone.0248320.g003
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Experimental procedure

We prepared the patches for the experiment by removing the fleece with plants from the trays

and washing off the sand between the roots with water. Each fleece with the aboveground parts

above the fleece and the roots below was fixed on a metal plate (40 x 60 cm2) with magnets

(Fig 2C). The magnets were further used to keep the metal plates at their position in the flume

(Fig 3). Within one run 16 metal plates were processed, where four were control patches with

just blank fleeces to measure sedimentation in the absence of vegetation, and the other twelve

carried vegetation patches. Each line and each row had a control patch, but the positions

shifted for each run (Fig 2D). The patches per run and the position in the flume were randomly

selected. In total, we conducted 9 runs, 8 of them with each 12 vegetation patches and 4 control

patches and one additional run with 16 control patches.

Prior to every run we took lateral images of every patch from all four directions. The camera

settings and distances were kept constant against a standard blue screen (Fig 2E). We used

these images as additional variables to describe the density and the height structure of the sin-

gle patches. Two to three hours after starting a run, we measured the flow velocity (except for

the first run, due to technical problems) 10 cm upstream of each patch at a depth of 10 cm

above the metal plate with a hydrometrical current meter (OTT C2, OTT HydroMet) twice for

30 s. We took reference water samples 2–3 h prior to the end of a run, 100 ml each on four dif-

ferent positions in the flume (two upstream of the plant patches and two downstream, all were

taken at the water surface). At the end of a run (20–22 h) we closed the walls upstream of and

downstream of the patches and slowly pumped the water out of the vegetated flume area (Figs

2 and 3). Thus, we ensured that we did not distort the samples or lose sediment during the

removal of the patches from the flume. After removing the patches, we opened the walls again

and the sediment settled on the ground was remobilized using a scrubber. As a last run, we did

an additional control run with just 16 control fleeces as reference for sedimentation and flow

measurements.

Sample processing

The patches were processed immediately after removing them from the flume. On each patch

the plants were carefully harvested (cut with a scissor just above the fleece), and washed to col-

lect the accumulated sediment (‘sediment on the vegetation’ hereafter). After washing, the

aboveground plant biomass was dried for at least 18 h at 100˚C and weighted. All fleeces, vege-

tated as well as control, were washed to collect the sediment accumulated on the ground

underneath the vegetation (‘sediment underneath the vegetation’ hereafter). The washing

water of both vegetation and fleeces was collected and stored for later processing.

The water samples were kept cool in the lab for a maximum of 5 days and later in a fridge at

4˚C for up to 3 months until all samples were processed. We filtered the sediment rich water

(2 mm) to remove coarse sediment, turf and organic material, filled it into glass beakers, dried

those at 110˚C and weighted the absolute amount of sediment (g) per fleece (patch of 0.24 m2)

and per biomass (g) per patch (patch of 0.24 m2).

Statistics

All statistical analyses were done with the statistical software R [54]. We ran two separate mod-

els to investigate which factors drove sedimentation on the vegetation and on the fleeces

underneath the vegetation. In a simple linear model the flow velocity did not correlate with the

position within the flume; however, the first patch line (Fig 3) had significantly higher flow

velocity. For the missing flow velocity measurements of the first run the means per position

lines were used to correct for flow velocity per patch. We observed a significant constant loss
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of sediment over time on the control fleece and in the daily sediment sample, when we tested

with a linear model including run identity, position identity and flow velocity as predictor var-

iables (R2 = 0.31). This is likely due to sedimentation within the tube that transported the

water from the end of the flume to its start. To correct for this background sediment loss over

time we ran two mixed effect models (lmer function, lme4 library [55]) with sedimentation on

or underneath the vegetation as the response variable, the run identity (day) as fixed factor and

the position in the flume as random factor. In a next set of linear models, we used the residuals

of the first mixed effect models as the response variables, to explain the remaining variance in

sedimentation that was not explained by the run identity or the position within the flume. As

explanatory variables we used the experimental treatments (leaf pubescence, structural diver-

sity, density, and height) and the flow velocity. We also included interaction effects that we

hypothesized to be important: an interaction between density and height as well as the interac-

tion between structural diversity and leaf pubescence. We compared our ‘full model’ (includ-

ing all initial predictors) with simplified models, and selected the most parsimonious model

based on the lowest AIC value, using the stepAIC function of the MASS library, [56]. The

model residuals were checked for normality. We ran two additional linear models with the

residuals of the sediment on and underneath the vegetation as response variable. But this time,

instead of using the factor levels, we used continuous variables of the vegetation structure that

have been measured (instead of the manipulated factors) as explanatory variables, in order to

find out which structural properties of the vegetation were most influential in driving sedi-

mentation, and to understand how these support our main results. The values for the actual

structural parameters for the patches was calculated from the lateral images. We calculated

four structural parameters of the vegetation: vertical density, mean height, median height, and

standard deviation of the height (S2 Table). The images were colour normalised and resampled

from a resolution of 4000 by 6000 pixels to a resolution of 400 by 600 pixels and afterwards

transformed into grey-scale images. In order to perform a binary classification of the image

into vegetation and background, we used the otsu-tresholding method [57], as implemented

in the package EBImage [58]. We used the mean of all four images (front, left, back, and right)

as variable in the models; additionally, we included the total plant biomass and the flow veloc-

ity in the model. The model selection procedure was the same as for the first two models. We

scaled and centred all continuous variables, and removed mean height and median height as

variables due to multicollinearity (variation inflation factor above 5.0, vif function, car library,

[59]) and selected the best model fit.

Results

Overall, our results showed that sediment underneath the vegetation had a mean mass of 4.83

±1.68 g patch-1 (ranging from 2.03 g patch-1 to 10.62 g patch-1) and the sediment on the vegeta-

tion had a mean mass of 4.38±2.84 g patch-1 (ranging from 0.74 g patch-1 to 17.37 g patch-1).

Mean flow velocity was 0.45±0.44 m s-1 (ranging from 0.09 m s-1 to 2.33 m s-1).

Sedimentation on the vegetation

The sedimentation on the vegetation was explained by the vegetation density, the vegetation

height and the interaction between structural diversity and leaf pubescence (R2 = 0.34,

Table 1). Patches that had a high structural diversity in combination with high leaf pubescence

collected more sediment on the vegetation than all other patches (p = 0.01, Fig 4A). Further,

sediment on the vegetation was higher in patches with a high vegetation density (p<0.01, Fig

4B), and also in patches with a high vegetation height (p = 0.01, Fig 4C).
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Sedimentation underneath the vegetation

Sedimentation on the fleeces underneath the vegetation was less well explained by the leaf

pubescence of the species and the structural diversity (R2 = 0.11, Table 1). Sedimentation was

higher in patches with higher structural diversity (p = 0.04, Fig 5A), and in patches with pubes-

cent species (p<0.01, Fig 5B).

Table 1. Statistical model results.

Residuals of sediment on the vegetation

Estimate Std. Error t value Pr(>|t|) Sig.

(Intercept) -2.300 0.539 -4.270 4.84E-05 ���

Density 1.944 0.440 4.420 2.75E-05 ���

Height 1.156 0.440 2.629 0.010 �

Leaf pubescence 0.416 0.622 0.668 0.506

Structure diversity -0.128 0.622 -0.205 0.838

Structure diversity x Leaf pubescence 2.423 0.880 2.755 0.007 ��

Residuals of sediment underneath the vegetation

Estimate Std. Error t value Pr(>|t|) Sig.

(Intercept) 0.452 0.155 2.919 4.40E-03 ��

Leaf pubescence 0.539 0.179 -3.015 0.003 ��

Structure diversity 0.365 0.179 -2.041 0.044 �

Sig. indicates the significance (�p<0.05, ��p<0.01, ���p<0.001).

https://doi.org/10.1371/journal.pone.0248320.t001

Fig 4. Sediment on vegetation. Residuals of sediment on vegetation explained by (A) the interaction between

structural diversity and pubescence (p = 0.007, lower case letter (a and b) indicating the significant different groups),

(B) density (p<0.001) and (C) height (p = 0.013).

https://doi.org/10.1371/journal.pone.0248320.g004
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Effect of measured vegetation characteristics

From the additional analysis of the measured vegetation characteristics per patch, we found

that the log biomass and the height variation explained sedimentation on the vegetation (R2 =

0.30, S3 Table). With an increasing amount of biomass, sediment on the vegetation increased

(p<0.01, Fig 6A), while it decreased with increasing height variation (p = 0.03, Fig 6B). Sedi-

mentation underneath the vegetation was explained by the biomass and the vertical density

(R2 = 0.07, S3 Table). Sedimentation increased with increasing biomass (p = 0.01, Fig 7A) and

decreased with increasing vertical density (p = 0.01, Fig 7B).

Discussion

With our experiment, we investigated the effect of mutually independent structural character-

istics of the vegetation on sediment retention within vegetation patches. Our results showed

that all experimentally manipulated structural characteristics (vegetation density, height, struc-

tural diversity and leaf pubescence) explained sedimentation on and underneath the vegeta-

tion. For the sedimentation on the vegetation, our data corroborates our hypotheses 1 to 4 that

with a higher density, height, and the interaction of structural diversity and leaf pubescence

the vegetation patches trap more sediment. Sedimentation underneath the vegetation was, as

expected, significantly explained by structural diversity (hypothesis 3) and, contrary to our

expectation, significantly explained by leaf pubescence (hypothesis 4). The results of the struc-

tural characteristics that we measured per patch were also mostly in line with our hypotheses.

Fig 5. Sediment underneath vegetation. Residuals of sediment underneath vegetation explained by (A) structural

diversity (p = 0.044) and (B) leaf pubescence (p = 0.003).

https://doi.org/10.1371/journal.pone.0248320.g005

Fig 6. Measured variables on vegetation. Residuals of sediment on vegetation explained by (A) log biomass

(p<0.001) and (B) height variation (p = 0.034).

https://doi.org/10.1371/journal.pone.0248320.g006
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Increasing biomass increased sedimentation, which supports hypotheses 1 (density) and 2

(height). The results that more evenly tall vegetation increased sedimentation on the vegetation

may support the expectation that denser patches accumulate more sediment (hypothesis 1),

while underneath the vegetation the vertical density decreased sedimentation.

Structural diversity and leaf pubescence

The structural diversity and the leaf pubescence had a significant positive effect on sedimenta-

tion. A mixture of species with tall and small stature increased sedimentation compared to just

tall growing species, while species with hairy leaf surfaces additionally increased it.

Sedimentation on the vegetation was highest on patches with high structural diversity and

leaf pubescence (Fig 4A). It might be that the tall (and hairy) plants reduce the flow velocity

and thus enable higher sedimentation on the smaller, hairy plants below the canopy. In this

case, it would be interesting to further investigate if patches with tall, non- hairy species, com-

bined with small hairy species would have the same effect. It has been found for in-stream veg-

etation that structurally diverse patches increase the flow resistance [32,49], consequently

reduce the flow velocity within the vegetation patch, and sediment deposits [31,32]. The proba-

bility to capture sediment is higher for species with hairy leaves, which was recently confirmed

in another study [52]. It was also found in studies on airborne particles that high pubescent

plant leaves collect more particles on the leaf surface [60,61].

For sedimentation underneath the vegetation, we found that more structurally diverse

patches accumulate more sediment and contrary to our expectations, also leaf pubescence

increased sedimentation underneath the vegetation. The combination of tall and small plants

seems to reduce flow velocity more strongly close to the ground resulting in higher sedimenta-

tion rates. However, also contrasting results have been found for erosion buffer stripes, where

morphologically diverse vegetation (mixture of grasses, shrubs and young trees) reduced sedi-

ment retention compared to morphologically homogeneous vegetation [62]. Surprisingly, also

the leaf pubescence increased sedimentation underneath the vegetation. We speculate that this

is caused by sediment that first settles on the leaf surfaces and afterwards falls down from the

leaves onto the fleece underneath the vegetation. This might have happened during the time

when the water level was lowered at the end of the experiment and leaf surfaces started to dry

before the harvest. Alternatively, species with pubescent leaves reduce the flow velocity more

strongly within the vegetation patch where the flow resistance is higher, which may again give

the sediment more time to settle [28,38].

Fig 7. Measured variables underneath vegetation. Residuals of sediment underneath vegetation explained by (A)

biomass (p = 0.007) and (B) vertical density (p = 0.010).

https://doi.org/10.1371/journal.pone.0248320.g007
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In our experiment, we manipulated the structural diversity by species selection based on

their natural growth height, but we kept the number of species and individuals per patch con-

stant and manipulated the total density and height. In a natural grassland system however,

structural diversity can be caused by species diversity [48], not species identity alone. This

might imply that more species rich meadows are able to capture more sediment due to their

higher structural diversity.

Vegetation structural characteristics

We found evidence that vegetation density and vegetation height significantly increased sedi-

mentation on the vegetation, but not underneath it. We further found that some of the mea-

sured structural characteristics of the vegetation, the biomass, the vertical density and height

variation were relevant for sedimentation on and underneath the vegetation.

The fact that sedimentation on the vegetation was higher on denser and taller vegetation

can partly be explained by the positive effect of plant biomass on sedimentation. For grasslands

it has been found that biomass correlates with height and density of the vegetation up to a spe-

cific point beyond which biomass saturates [39]. More biomass provides more surface where

the sediment can settle. Denser and higher vegetation with more biomass creates stronger

resistance to the water, which reduces the flow velocity within the vegetation patch [30,38,63].

This creates conditions, where sediment settles on the vegetation surface. Similar results were

found for in-stream vegetation [32]. However, this study measured sediment retention down-

stream of a vegetation patch, and can only estimate the overall sedimentation. Our study, for

the first time, distinguished the effects of sedimentation on and underneath the vegetation

under experimental conditions. We additionally found that sediment on the vegetation signifi-

cantly decreased with vegetation height variation, where more even canopy accumulated more

sediment on the vegetation, even though the patches were cut to specific heights. We can only

speculate about the mechanism causing this effect, but one reason can be that patches strongly

varying in height, may experience stronger turbulences within the height depressions. Stronger

turbulences then probably reduce sedimentation due to moments of high flow velocity [24].

Interestingly, the same effect was found in an observational field study (unpublished work),

using the same image technique on floodplain vegetation after a flood event. For grasslands it

was found that the inequality of the height distribution is positively correlated with species

diversity, and negatively with productivity [64]. This suggests that species diversity decreases

sedimentation via height inequality (high height variation), while at the same time increases

sedimentation via a higher biomass production.

Sedimentation underneath the vegetation also increased with plant biomass and decreased

with increasing vertical density of the vegetation, even though the manipulated density did not

show any significant effect. There are two possible explanations: First, an interception effect of

the vegetation can cause that very dense vegetation itself captures the sediment. However, that

contradicts our finding that higher biomass, which also had higher density, increased sedimen-

tation. Second, very dense vegetation may hinder or block the water to flow through the patch

(blockage factor for in-stream vegetation [32]) which probably reduces sedimentation within

the patch. The vertical density is an indicator for the flow resistance of the patch. More flow

resistant vegetation has been found to increase sedimentation around vegetation in streams

and on floodplains [32,49]. However, this may reduce the sedimentation within the patch

itself, which is still contrary to our findings regarding density and biomass.

It is important to note that we manipulated vegetation height, thus the height variation and

also the vertical density deviate from natural communities. However, our experiment gives

important insights into causal relationships between structural vegetation characteristics and
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sedimentation. Our results hint towards the potential importance of species diversity to

increase sedimentation in floodplain vegetation as diversity is known to increase vegetation

biomass [65], height [66], and density [67], all of which positively affect sedimentation. How-

ever, too dense patches may also reduce sedimentation by the blockage effect and increased

turbulences in micro-depressions [24,32].

Abiotic conditions

The focus of our study was on the effect of the vegetation structure on fine sediment retention

during inundation. However, the abiotic conditions of the flood and the floodplain are also

crucial for sedimentation on floodplains. Floods differ in their characteristics (discharge,

velocity, duration, and sediment load) and floodplains differ in their topography (elevation,

slope, and connectivity). The flow velocity determines, on one hand, the transport capacity of

the flow and affects, on the other hand, structural parameters of the vegetation due to bending

and streamlining of the plants and, thus, is a key parameter for sedimentation [49,68,69].

Moreover, the inundation depth on floodplains is an important parameter for how much sedi-

ment the vegetation is able to capture [70]. In nature, sediment load and grain size distribution

of a flood water depend on the geology, the topography and the land use of the river catchment

[71,72].

In our experiment, we simulated simplified a flood with constant abiotic and hydraulic con-

ditions in order to focus on the effects of the plants characteristics. Therefore, we selected a

fixed discharge, water depth and, thus, approach velocity. The variation of the flow velocity

within the experiment section was measured and considered in the statistical analysis. We fur-

ther focused on small grain sizes (silt and clay), which are highly relevant for nutrient retention

and are likely to get trapped by the structure of the vegetation. Future studies should assess

whether our main conclusions regarding the importance of different structural properties of

the vegetation are also valid for differing abiotic or hydraulic conditions.

Conclusion

With our study, we could prove that the vegetation structure plays an important role for sedi-

ment retention on floodplains. Our study is the first experiment to look inside the vegetation

patch to understand sedimentation on the vegetation and directly underneath it. Our experi-

mental design with constructed species communities gave the unique chance to unravel sedi-

ment retention caused by different, non-correlated structural characteristics of the vegetation.

The relatively low values for R2, however, suggest that there must be other factors not manipu-

lated or measured in this experiment which may explain sediment retention. Other vegetation

characteristics that have been identified to change the flow resistance and flow velocity around

vegetation, and thus potentially sedimentation, are bendiness of the species, elasticity and

rigidity of the single individuals and the stem/leaf ratio [73–75]. From our results, we can

derive some management strategies for sediment retention on floodplain meadows. First, pro-

motion of structural diversity would increase sedimentation, thus supporting species rich

plant communities is likely to also increase sediment retention, with additional benefits for

other ecosystem functions on floodplains. Second, higher and denser vegetation and more

standing biomass, increases sedimentation. Therefore, reduced mowing in late summer would

increase standing biomass during wintertime, when floods most often occur. Third, the abun-

dance of pubescent species increases sedimentation, which could guide species selection for

floodplain restoration. Overall, we can state that meadows with higher vegetation density and

height, higher structural diversity and leaf pubescence increase sedimentation and with that

the capacity of floodplains to fulfil the ecosystem service of sediment and nutrient retention.
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Agnolette Capelini V. Segmentation of Rgb Images Using Different Vegetation Indices and Threshold-

ing Methods. Nativa. 2018; 6(4):389.

58. Pau G, Fuchs F, Sklyar O. EBImage—an R package for image processing with applications to cellular

phenotypes. Bioinformatics. 2010; 26(7):979–81. https://doi.org/10.1093/bioinformatics/btq046 PMID:

20338898

59. Fox J, Weisberg S. An {R} companion to applied regression. Third. Sage: Thousand Oaks CA; 2019.

60. Wedding JB, Carlson RW, Stukel JJ, Bazzaz FA. Aerosol deposition on plant leaves. Environ Sci Tech-

nol. 1975; 9(2):151–3.

61. Sæbø A, Popek R, Nawrot B, Hanslin HM, Gawronska H, Gawronski SW. Plant species differences in

particulate matter accumulation on leaf surfaces. Sci Total Environ. 2012; 427–428:347–54. https://doi.

org/10.1016/j.scitotenv.2012.03.084 PMID: 22554531

62. Erktan A, Cécillon L, Roose E, Frascaria-Lacoste N, Rey F. Morphological diversity of plant barriers

does not increase sediment retention in eroded marly gullies under ecological restoration. Plant Soil.

2013; 370(1–2):653–69.

63. Sukhodolova TA, Sukhodolov AN. Vegetated mixing layer around a finite-size patch of submerged

plants: 1. Theory and field experiments. Water Resour Res. 2012; 48(10):1–16.

64. Brown C, Cahill JF. Vertical size structure is associated with productivity and species diversity in a

short-stature grassland: Evidence for the importance of height variability within herbaceous communi-

ties. J Veg Sci. 2019; 30(5):789–98.

65. Cardinale BJ, Wright JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS, et al. Impacts of plant diver-

sity on biomass production increase through time because of species complementarity. Proc Natl Acad

Sci U S A. 2007; 104(46):18123–8. https://doi.org/10.1073/pnas.0709069104 PMID: 17991772

66. Lorentzen S, Roscher C, Schumacher J, Schulze ED, Schmid B. Species richness and identity affect

the use of aboveground space in experimental grasslands. Perspect Plant Ecol Evol Syst. 2008; 10

(2):73–87.

67. Marquard E, Weigelt A, Roscher C, Gubsch M, Lipowsky A, Schmid B. Positive biodiversity-productivity

relationship due to increased plant density. J Ecol. 2009; 97(4):696–704.
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