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Abstract

Residue depth (RD) is a solvent exposure measure that complements the information provided by conventional accessible
surface area (ASA) and describes to what extent a residue is buried in the protein structure space. Previous studies have
established that RD is correlated with several protein properties, such as protein stability, residue conservation and amino
acid types. Accurate prediction of RD has many potentially important applications in the field of structural bioinformatics,
for example, facilitating the identification of functionally important residues, or residues in the folding nucleus, or enzyme
active sites from sequence information. In this work, we introduce an efficient approach that uses support vector regression
to quantify the relationship between RD and protein sequence. We systematically investigated eight different sequence
encoding schemes including both local and global sequence characteristics and examined their respective prediction
performances. For the objective evaluation of our approach, we used 5-fold cross-validation to assess the prediction
accuracies and showed that the overall best performance could be achieved with a correlation coefficient (CC) of 0.71
between the observed and predicted RD values and a root mean square error (RMSE) of 1.74, after incorporating the
relevant multiple sequence features. The results suggest that residue depth could be reliably predicted solely from protein
primary sequences: local sequence environments are the major determinants, while global sequence features could
influence the prediction performance marginally. We highlight two examples as a comparison in order to illustrate the
applicability of this approach. We also discuss the potential implications of this new structural parameter in the field of
protein structure prediction and homology modeling. This method might prove to be a powerful tool for sequence analysis.
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Introduction

In order to perform their biological function, most proteins

naturally fold into a defined native three-dimensional structure.

Given the globular nature of the majority of proteins, residues can

generally be classified as buried or solvent exposed. Solvent

exposed residues commonly perform key roles such as mediating

protein-protein interactions as well as influencing protein stability,

whereas buried residues are often thought of as important

determinants of protein folding [1]. Given a protein structure, it

is relatively straightforward to broadly identify a residue as buried

or exposed. However, a more precise recognition of the burial

status or the burial degree of a residue is often useful to more

closely understand its functional role [2,3,4,5,6], which is not only

necessary for our deep understanding of the sequence-structure-

function relationship and protein folding mechanism [7,8,9,10],

but also helpful for predicting protein structural and functional

properties [11], as well as protein engineering and de novo drug

design [8,11,12]. Further, these data are becoming increasingly

useful in understanding how proteins fold, and from a disease

perspective, misfold. Finally, predicted solvent accessibility infor-

mation has been proved useful in prediction of protein flexibility

[13], natively unstructured regions [14,15], DNA-binding site [16]

and protein interaction hot-spots from sequences [17].

Conventionally, residue burial is quantified by an exposure

measure called solvent accessible surface area (ASA), which is a

structural descriptor that has been widely used in the analysis of

protein structure and function in the last three decades [2–6].

Typically, ASA is calculated using the ‘rolling ball’ algorithm that

was developed by Shrake and Rupley [18], which uses a sphere

radius to probe the surface of the molecule. It is worthy to point

out that the chosen probe radius has an effect on the observed

ASA values: the smaller the sphere radius, the larger the calculated

ASA. A typical radius value of 1.4 Å is often adopted in the

literature, which approximates the radius of a water molecule. The

use of ASA is particularly effective for the analysis of exposed

surface residues. However, beneath the surface of a protein, ASA

fails to describe to what extent a residue is buried. Accordingly,
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ASA does not have the capacity to readily distinguish a

substantially buried residue that is nevertheless close to the surface

from a residue that is truly completely deep in the hydrophobic

core; for both cases the ASA value would be zero or near zero. For

this purpose a complementary descriptor, residue depth (RD), can

be calculated [7–10].

RD measures the distance between the residue of interest and its

nearest neighboring water molecule or protein surface [7–9,19,20],

providing important information about the extent to which the

residue is buried in the protein structure. Previous studies have

established that RD is correlated with several protein properties,

such as protein stability, residue conservation and amino acid types

[7]. Other RD-derived measures have also been proposed to help

analyze protein structure and function: one example is pocket depth

[21] and another is travel depth [22]. Due to its advantages, RD has

attracted increasing attention in recent years. RD has been shown to

correlate with other measures and has been applied recently to

effectively improve the accuracy of protein fold recognition

[23,24,25]. In addition, RD could also complement the information

provided by traditional measures such as ASA [2–5], solvent

accessibility [6,11], half-sphere exposure [26,27], recursive convex

hull (RCH) [28] and residue contact number (CN) [29,30]. Hence,

RD has several advantages relative to other traditional solvent

exposure measures, which would have potentially important

applications with respect to protein structure prediction and

homology-based modeling [31,32].

Currently, predictions in regards to whether a residue is exposed

or buried are used in a wide variety of protein structure prediction

engines [6,33]. Such prediction can provide valuable information

for protein fold recognition, functional residue prediction and

protein drug design. For example, experimental evidence shows

that some functionally important residues need to be specifically

exposed [34] or buried [35] in order to play their critical roles.

Thus the ability to accurately predict RD would be anticipated to

be of importance. Further, interesting questions in regards to the

extent of the relationship between RD and amino acid sequence

remain to be fully understood.

To date several approaches to predict RD have been published.

Notably, Yuan and Wang proposed a computational framework

that uses sequential evolutionary information contained in PSI-

BLAST profiles and the global protein size information to quantify

the relationship between RD and protein sequence [36]. As a

result, their method could predict the RD distribution with the

correlation coefficient of 0.65 between the observed and predicted

RD values [36]. More recently, Zhang et al. proposed the RDpred

method to predict RD values by applying several informative

features such as predicted secondary structure, residue position

and PSI-BLAST profile, which has achieved correlation coeffi-

cients of 0.67/0.67 between observed and predicted RD values,

when evaluated using 3-fold/10-fold cross-validations [37].

In this article, we describe a sequence-based method that also

uses support vector regression to quantify the RD-sequence

relationship. However, we not only exploit sequence information

previously used (position-specific scoring matrices in the form of

PSI-BLAST profiles, predicted secondary structure and protein

sequence length), but also take into account other sequence and

structural features that are not used in previous studies (predicted

solvent accessibility, natively unstructured regions, percentage of

exposed/buried residues, percentage of secondary structure classes

and percentage of ordered/disordered residues). More important-

ly, these additional features have been demonstrated to make a

substantial contribution to the prediction performance improve-

ment. To objectively evaluate the proposed approach, we used 5-

fold cross-validation to examine the prediction accuracies and

showed that the overall best performance could be achieved with a

correlation coefficient of 0.71 between the observed and predicted

RD values after incorporating all the relevant multiple sequence

and structural features, which has significantly outperformed the

previously described methods. The results suggest that RD can

indeed be accurately predicted from protein primary structure

only and particularly the predicted solvent accessibility informa-

tion has a significant effect on the prediction performance. As an

implementation of this methodology, we have developed a

prediction web server Prodepth, which is freely available at

http://sunflower.kuicr.kyoto-u.ac.jp/,sjn/Prodepth/.

Results

The skewed distribution of residue depth
We calculated RD for all residues in our dataset with the

detection sphere radius set up as 13 Å and showed their

distributions in Figure 1. The results indicate that RD shows a

skewed distribution. Nearly all the residues are located in the

depth range from 1.2 to 10 Å, which covers 96.8% of the total

residues. Furthermore, about 74.2% of the residues in the dataset

are found with residue depth less than 5 Å, which means that most

residues are actually located at the protein surfaces [36]. This is in

sharp contrast to deeply buried residues with larger depth values

(.5 Å), which only account for 25.8% in the current dataset. In

addition, the mean value and standard deviation for this skewed

RD distribution are 3.988 and 3.259 Å, respectively. As a contrast,

the mean and standard deviation for the ASA distribution are

42.89 and 45.93 Å, respectively. The skewed RD distribution is in

a similar trend as the ASA distribution (Figure 1).

We further extracted the secondary structure annotations for all

residues in the current dataset using the DSSP program [38] and

calculated their distributions as displayed in Figure 2, according to

three secondary structures: a-helix (H), b-strand (E) and coil (C)

[39]. We used the common CK mapping proposed by Chandonia

and Karplus [39] to further classify the eight secondary structures

assigned by DSSP into three classes: a-helix (HRH), b-strand

(ERE) and other irregular or unstructured elements (all

othersRC). Note that in this classification all the irregular or

unstructured elements are classified as coils (C). Residues with

secondary structures of a-helix, b-strand and coil account for

33.2%, 21.1% and 45.7%, respectively. Their mean RD values

and standard deviations are 4.1663.40, 5.1063.30 and

3.3562.97 Å, respectively. It can be further observed that b-

strand residues (red-color) tend to have larger residue depth values,

implying that they are more deeply buried compared with other

secondary structure-annotated residues. On the other hand, coiled

residues are less deeply buried, as they are more frequently

observed to have smaller RD values. In the case of the ASA

distribution, coiled residues tend to have larger ASA values than

other two secondary structures, while b-strand residues are found

to have smaller ASA values (Figure 2).

To investigate the interdependencies of various solvent exposure

measures, we calculated the correlation coefficients between RD

and other measures such as ASA, rASA, CN and B-factor

(Table 1). Measure pairs that have low correlation coefficients are

likely to be unrelated and can potentially provide complementary

information for each other [28]. As a residue’s rASA value is

calculated as the normalization of its ASA using the maximum

ASA for its residue type, it is easy to understand that ASA and

rASA are strongly correlated with a CC of 0.92. On one hand, RD

is correlated with CN (0.77). On the other hand, RD is negatively

correlated with the ASA (20.62) and rASA measure (20.66),

respectively, which is understandable as residues with smaller ASA

Predicting Residue Depth
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values are inclined to be buried deeply and as a consequence they

would have larger RD values. This negative correlation between

RD and ASA is also clearly manifested in Figure 3. We also

calculated the CC between RD and B-factor, but did not find any

strong correlation between these two measures (Table 1).

In addition, the negative correlation between RD and ASA

indicates that they are virtually distinct characterizations of spatial

environments of residues and are complementary to each other. In

order to further explore the relationship between RD and ASA, we

obtained the ASA values for all the residues in our dataset and

computed their mean values and standard deviations. The results

are shown in Figure S1, which clearly suggests that there is a

negative correlation between RD and ASA measures.

Predicting residue depth based on evolutionary profiles
in the form of PSSMs

In this section, we employed the support vector regression

approach to quantify the sequence-RD relationship and predict the

RD values based on primary sequences information only. We

aligned each protein sequence in our dataset against the NCBI nr

database with three iterations to obtain the evolutionary profiles of

PSI-BLAST. Then we used the sliding windows to capture the local

sequence environment, that is, we included the PSSMs of w = 15

consecutive residues (upstream 7 and downstream 7 residues) as the

input features into the SVR. The prediction accuracies of the built

SVR models were examined using 5-fold cross-validation method to

avoid the biased evaluation. Aside from the R-square, three other

Figure 2. Distributions of RD and ASA according to three secondary structure classes: helix (H), strand (E) and coil (C).
doi:10.1371/journal.pone.0007072.g002

Figure 1. The skewed distributions of residue depth and accessible surface area for all residues based on the current dataset.
doi:10.1371/journal.pone.0007072.g001

Predicting Residue Depth
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measures CC, RMSE and MAE were used to evaluate the prediction

accuracy of the SVR approach, as adopted in other sequence-based

real-value prediction studies, such as residue contact number [40],

residue-wise contact order [41] and half-sphere exposure [27].

In our efforts to further improve the prediction performance, we

have developed the SVR models based on up to eight different

sequence encoding schemes. Unless otherwise stated, we refer to

the encoding schemes based on PSI-BLAST profile, PSIPRED-

predicted secondary structure, SCRATCH-predicted solvent

accessibility, DISOPRED-predicted natively disordered regions,

protein sequence weight and length, and all the combined

sequence features, as ‘PB’, ‘PP’, ‘SC’, ‘DISO’, ‘WL’ and ‘ALL’,

respectively. The prediction performance of these different

sequence encoding schemes is presented in Table 2.

In particular, the SVR model based on the encoding scheme

‘‘PB’’ could predict the RD distributions with a CC of 0.64

between the predicted and observed RD values, a RMSE of 1.90,

and MAE (mean absolute error) of 1.41 respectively, when using

evolutionary information in the form of PSSMs as input features.

These results indicate that using only evolutionary information

contained in the PSSMs could provide rather good RD

predictions, consolidating the previous conclusions from other

studies that the PSSM profiles make more important contribution

to the prediction performance than the single sequences alone

[13–17,27,40,41,42,43,44,45].

Predicted secondary structure significantly improves the
prediction performance

However, the prediction performance can be further improved

by incorporating other informative features, such as the predicted

secondary structures. Prediction accuracy based on sequence

encoding scheme ‘PB+PP’ (CC = 0.66 and RMSE = 1.88) is better

than that based on ‘PB’ (CC = 0.64 and RMSE = 1.90), suggesting

that incorporating the predicted secondary structure by PSIPRED

could significantly boost the performance. This is also the case

when we compare the prediction accuracy based on encoding

schemes ‘PB+SC’ and ‘PB+PP+SC’: the accuracy of the latter is

better than the former, with the CC increasing from 0.69 to 0.70

and the RMSE decreasing from 1.77 to 1.76, respectively.

The significance of the inclusion of the local sequence information

in the form of predicted secondary structure on the prediction

performance has been demonstrated in previous studies, such as the

prediction of transmembrane protein topology [43], disulfide

connectivity pattern [42,46], half-sphere exposure [27], recursive

convex hull class assignments [28], protein fold classification [47],

and the twilight-zone protein structural class assignments [48,49].

Global sequence features improves the prediction
performance marginally

Moreover, prediction accuracy can be slightly improved by

taking account of protein size information, as measured by

Figure 3. The relationship between RD and ASA. Error bars
represent the standard deviations.
doi:10.1371/journal.pone.0007072.g003

Table 1. The correlation coefficients between residue depth
and other structure-based solvent exposure measures and B-
factor.

Measures RD ASA rASA CN B-factor

RD 1.00 20.62 20.66 0.77 20.44

ASA 20.62 1.00 0.92 20.70 0.43

rASA 20.66 0.92 1.00 20.75 0.46

CN 0.77 20.70 20.75 1.00 20.57

B-factor 20.44 0.43 0.46 20.57 1.00

doi:10.1371/journal.pone.0007072.t001

Table 2. Prediction accuracy of the SVR predictors based on eight different sequence encoding schemes that incorporate various
combinations of global and local sequence features.

Sequence encoding scheme Number of features Number of support vectors CC RMSE MAE R square

PB 300 100134 0.6460.02 1.9060.10 1.4160.08 0.45660.02

SC 30 99021 0.6560.03 1.8660.11 1.3460.10 0.47460.03

PB+PP 345 100045 0.6660.02 1.8860.11 1.3960.09 0.53760.03

PB+SC 330 99662 0.6960.03 1.7760.10 1.3160.08 0.53960.03

PB+PP+SC 375 99682 0.7060.03 1.7660.11 1.3060.09 0.54060.03

PB+PP+SC+DISO 405 99719 0.7060.03 1.7560.11 1.2960.09 0.53960.03

PB+PP+SC+DISO+WL 407 99319 0.7060.03 1.7560.11 1.2960.09 0.53960.03

ALL 435 103631 0.7160.03 1.7460.10 1.2860.08 0.54160.03

All results were evaluated using 5-fold cross-validation method and expressed as mean6standard deviation.
doi:10.1371/journal.pone.0007072.t002
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sequence length descriptor ‘L’ and molecular weight descriptor

‘W’. For the former, we calculated the mean sequence length and

standard deviation for all the proteins and normalized and

encoded them into SVR. For the latter, a protein’s weight was

simply calculated as the summation of all its amino acid residues’

weights and was further normalized using the corresponding mean

and SD values.

Furthermore, we included other global sequence information in

the form of twenty amino acid compositions, the percentage of

three predicted secondary structures, the percentage of predicted

exposed/buried residues, and the percentage of natively disor-

dered/ordered residues as well. These global sequence features, in

combination with the local sequence profiles generated by PSI-

BLAST, PSIPRED, SCRATCH and DISOPRED programs,

constitute the termed sequence encoding scheme ‘ALL’, leading to

the best prediction performance with the CC of 0.71, the RMSE

of 1.74 and the MAE of 1.28.

Predicted solvent accessibility information considerably
improves the prediction performance

Noticeably, we found that the prediction accuracy could be

considerably improved after incorporating the predicted solvent

accessibility information generated by the SCRATCH program

[50]. It is worth mentioning that using the simple encoding

scheme ‘SC’ solely can lead to a prediction performance of

CC = 0.65 and RMSE = 1.86, respectively, which is competi-

tively comparable to that of ‘PB’. The improvement of prediction

performance using ‘SC’ only is remarkable, considering that the

SVR model based on the predicted ASA only used 30 features,

compared to the PSSM profile (‘PB’) which requires 300 features

(Table 2).

In comparison with the sequence encoding scheme ‘PB’ with

evolutionary profiles, the SVR model based on the encoding

scheme ‘PB+SC’ can achieve a prediction accuracy of CC = 0.69

and RMSE = 1.77, with the CC increased by 0.05 and RMSE

decreased by 0.13, respectively, which is a considerable perfor-

mance improvement. The value of MAE lowers by 0.10 and the R

square value also increases from 0.456 to 0.539 accordingly.

Moreover, we can draw the same conclusion by comparing the

prediction accuracy of ‘PB+PP’ and ‘PB+PP+SC’ (Table 2). This

finding indicates that the predicted solvent accessibility is a very

important sequence feature that contributes significantly to the

performance improvement when combined with other features.

We also found that incorporating natively disordered regions

predicted by DISOPRED improves the prediction performance

further even further.

The distributions of CC and RMSE based on eight different

sequence encoding schemes are given in Figure 4. In particular,

the peak values of CC and RMSE for all these encoding schemes

are around 0.8 and 1.5, respectively, which can be regarded as the

upper limits of the prediction performance. In the case of the CC

distribution, we observed that five encoding schemes ‘PB_SC’,

‘PB_PP_SC’, ‘PB_PP_SC_DISO’, ‘PB_PP_SC_DISO_WL’, and

‘ALL’ are located very closely, implying that they have similar

performances when evaluated by the CC measure. In the case of

RMSE distribution, the leftmost curve (encoding scheme ‘ALL’) in

the plot represents the best prediction method. In contrast to CC,

RMSE is a more sensitive measure that clearly reflects the

prediction performance improvement.

In solvent accessibility prediction, it has been a common

practice to divide accessibility levels into bins and assess the

prediction performance using classification measurements. As

suggested by a reviewer, we classified the depth profiles of all

residues in the dataset into depth bins with a separation of 3 Å

and calculated the corresponding prediction accuracies of

different sequence encoding schemes according to the depth

bins. The results are shown in Table 3. For all the sequence

encoding schemes, the prediction accuracies decrease with the

increasing depth levels. For example, for the depth level 0–3.0 Å,

the prediction accuracies of different encoding schemes vary

from 70.2% to 74.4%, while for the depth level 9.0–12.0 Å, the

accuracies fall within the range of 0–10.4%. These results

indicate that the predicted depth values for deeply buried

residues are less accurate and therefore they are much more

difficult to predict. Use of the best encoding scheme ‘ALL’

Figure 4. The distributions of correlation coefficients and root mean square errors based on eight different sequence encoding
schemes.
doi:10.1371/journal.pone.0007072.g004
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significantly improves the prediction performance for the deeply

buried residues.

Analyzing the mean absolute errors
To measure the prediction performance of residues with

different depth values, we calculated the absolute errors for

residues with depth values from 0–20, whose MAE distributions

based on eight encoding schemes are depicted in Figure 5. For the

majority of residues with varying RD values, the sequence

encoding scheme ‘ALL’ (denoted by red-colored curve, which is

beneath all the other seven curves in Figure 5) provides the least

absolute errors, representing the best prediction method. In

addition, residues with RD values ranging from 1.0 and 5.0 are

predicted with lesser mean absolute errors, indicating that these

data points are more adequately represented in the current dataset

and hence are better predicted by the SVR approach. On the

other hand, predictions for residues with larger depth values are

comparatively poor. It is possible that this is due to the inadequate

or under representation of deeper residues in our data.

The predicted RD distribution according to three
secondary structures

To understand the relationship between the prediction errors

and secondary structures, we calculated the mean absolute errors

and percentage distributions according to three secondary

structures (a-helix, b-strand and coil) based on four ranges of the

observed RD values, as shown in Table 4. The results revealed

three points: First, the mean absolute errors will increase with the

increasingly buried extent of residues. This applies to all the three

secondary structures. Second, irregular coiled residues tend to be

exposed, compared with other regular secondary structures. For

the latter, they are more frequently observed in the protein core

regions. Third, coiled residues tend to have larger MAE values,

indicating that they are less accurately predicted. It might be that

the under-representation of these coiled residues makes them less

adequately represented when building the training SVR models.

We also examined the prediction accuracy by making two-state

solvent accessibility assignments, i.e. predicting whether a residue

is buried or exposed based on its predicted RD values. As both the

ASA and RD measures can be used to assign the buried or

exposed residues, we adopted the strategy proposed by Yuan and

Wang [36] and set up the RD threshold at 3.03 Å to maximize the

consistency percentage (CP) to reach the best agreement between

ASA and RD (See Figure S2, RD = 3.03 and ASA = 29.34 Å at

the crossing point of two curves, respectively). After applying the

RD threshold of 3.03 Å to discriminate the exposed (, = 3.03 Å)

and buried (.3.03 Å) residues in the current dataset, we achieved

prediction accuracies of 74.1% and 82.9% for exposed and buried

residues, respectively, with the overall prediction accuracy of

78.2%. The prediction performance of the two-state solvent

accessibility assignment can be evaluated by comparing the areas

under the receiver operating characteristic (ROC) curves. As can

Table 3. Prediction accuracy of different sequence encoding schemes according to the depth bins.

Model Sequence encoding scheme 0–3.0 3.0–6.0 6.0–9.0 9.0–12.0 12.0–15.0

1 PB 70.2 63.4 26.4 5.8 0.18

2 SC 73.7 64.1 38.2 0 0

3 PB+PP 74.4 64.9 39.1 6.9 0.12

4 PB+SC 71.1 62.8 29.5 7.2 0.12

5 PB+PP+SC 74.2 64.7 39.8 8.8 0.06

6 PB+PP+SC+DISO 73.9 64.7 39.8 8.8 0.06

7 PB+PP+SC+DISO+WL 73.5 64.2 40.2 9.9 0.29

8 ALL 73.4 64.9 41.2 10.4 0.26

doi:10.1371/journal.pone.0007072.t003

Figure 5. The mean absolute errors (MAEs) for residues with
different RD values using eight different sequence encoding
schemes.
doi:10.1371/journal.pone.0007072.g005

Table 4. The mean absolute errors (Å) and percentage (%)
distributions of three secondary structures based on four
ranges of residue depth values.

RD values (Å) a-helix (Å, %) b-strand (Å, %) coil (Å, %)

0–2.0 0.56, 31.7 0.73, 9.1 0.52, 59.2

2.0–2.5 0.71, 41.6 0.86, 19.1 0.64, 39.3

2.5–3.0 0.88, 42.4 1.00, 26.4 0.79, 31.2

.3.0 1.85, 42.0 1.84, 37.2 2.14, 20.8

doi:10.1371/journal.pone.0007072.t004
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be seen from Figure 6, the SVR model based on sequence

encoding scheme ‘ALL’ surpasses all the other models, which

means that this encoding scheme has better sensitivity values given

any choice of specificity in contrast to other encoding schemes.

Comparison to previous methods
The prediction performance of our approach was compared to

two previous prediction schemes [36,37], as shown in Table 5. As

the prediction comparison is meaningful only provided that it is

performed based on the same datasets and evaluated using the

same performance evaluation measures, we implemented these

two methods previously proposed and applied three measures to

evaluate the prediction performance based on the current dataset.

The CC of the Prodepth (CC = 0.71) is higher than that of the

Yuan-Wang method (CC = 0.64) and that of the RDpred method

(CC = 0.68) proposed by Zhang et al. One the other hand,

Prodepth achieved a RMSE of 1.74 and a MAE of 1.28,

respectively. The RDpred approach based on all sequence features

achieved a RMSE of 1.84 and a MAE of 1.36, receptively, while

for Yuan and Wang’s approach a RMSE of 1.91 and a MAE of

1.41 were respectively observed. The RMSE and MAE values of

Prodepth are also lower than those of the Yuan-Wang method and

the Rdpred method, decreased by 0.17 and 0.13, 0.10 and 0.07,

respectively.

These results indicate that Prodepth provides better prediction

performance in comparison with the other two methods. Yuan

and Wang’ method utilized the PSI-BLAST scoring matrix and

protein size information as the only input into the SVR predictors

[36], while the RDpred method was based on the combination of

PSI-BLAST profile and the predicted secondary structure

information [37]. In contrast to the two methods, Prodepth not

only utilized the PSI-BLAST profile and predicted secondary

structure information, but also took into account other important

local sequence and structural features and global features,

particularly predicted solvent accessibility, natively unstructured

region, percentage of exposed/buried residues, secondary struc-

tures and ordered/disordered residues, which might be the main

reason that accounts for the improved prediction performance of

using the Prodepth approach.

Case study
We illustrated the performance of the Prodepth predictor by

presenting two examples and showed their predicted RD profiles

with the structural mapping of the MAE values on the three-

dimensional structures in Figure 7 and 8. The first example is the

Escherichia coli peptidyl-tRNA hydrolase (PDB code: 2pth, chain A)

[51], which is well predicted with a CC of 0.89 and RMSE of 0.93.

For the majority regions of this protein, there is a good agreement

between the predicted and observed RD values despite that several

separate residue positions such as 6, 61, 91, 132 and 134 are

poorly predicted (blue), as can be seen from Figure 7A.

Interestingly, many of these residues map to the hydrophobic

core (Figure S3), however, it is unclear from sequence or structural

perspective why these regions are poorly predicted.

The second protein is the anti-fungal chitosanase (PDB code:

1chk, chain A) [52,53], for which RD is predicted with a CC of

0.71 and RMSE of 1.23. As can be seen from Figure 8, most of the

RD values are well predicted. Interestingly, exceptions mainly

map to the active site cleft. We argue this may be because the

active site of an enzyme requires unusual properties with respect to

the rest of the protein, for example, many active sites (including

the current example provided here) comprise deeply protected

clefts which may be required for interaction with substrates that

include substantial hydrophobic patches. Regions from residue

position 46 to 51 and from 156 to 161 were strongly over-

predicted, while regions from position 138 to 142 are under-

predicted. We can also see that a fragment of coiled residues are

colored by blue, from their 3D structural mapping of the predicted

RD profiles. It might be that these coiled residues are

characterized by a variety of sequence features, which makes

them less effectively represented in the available data and makes it

more difficult for the trained models to grasp their specific roles.

The Prodepth Webserver
The Prodepth webserver can be accessed at http://sunflower.

kuicr.kyoto-u.ac.jp/,sjn/Prodepth/ for online prediction of RD

from protein sequences only. It is developed to facilitate RD

prediction analysis for sequences submitted by interested users.

Moreover, aside from RD prediction, Prodepth can be used to

predict the accessible surface area (ASA) value for each residue

given the primary sequence only. Based on the predicted ASA and

RD values, it will further output the two-state solvent accessibility

prediction by classifying a residue as being exposed or buried.

The web interface is fairly straightforward to use: only the one-

letter FASTA format of the sequence and the user’s Email address

need to be submitted. Then after the completion of the prediction

Figure 6. Receiver Operating Characteristics for the two-state
solvent accessibility prediction based on the predicted residue
depth values using eight different sequence encoding
schemes. The ROC curves can be used to discriminate the classification
performances of different encoding schemes. The diagonal line
represents a completely random guess.
doi:10.1371/journal.pone.0007072.g006

Table 5. Prediction performance comparison of prediction
methods based on the current dataset.

Methods
Dimensions of
feature vectors CC RMSE MAE

Yuan-Wang method 316 0.64 1.91 1.41

RDpred 368 0.68 1.84 1.36

Prodepth (this work) 435 0.71 1.74 1.28

doi:10.1371/journal.pone.0007072.t005
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task, user will receive an Email containing a link pointing to a

temporary webpage that contains the detailed prediction results.

Discussion

With the growth of sequenced data generated by the large-scale

genomics projects, efficient and accurate structural determination

and annotation has been the major focus of current structural

genomics initiatives [54].This has created great demand for

efficient computational approaches that help to narrow the

sequence-structure gap. Machine learning techniques that cater

for this demand are becoming attractive and have been

successfully applied in many bioinformatics studies. However,

due to the delicate sequence-structure relationship, predicting

residue depth from protein primary sequences is an ongoing

challenging task in structural bioinformatics [8,36,37]. In this

paper, we presented a novel computational framework to

accurately predict residue depth values from protein sequences

only. We hope that this approach will add to the current efforts of

sequence-based RD prediction.

Several factors can contribute to the improved prediction

performance of our approach in predicting RD values from

sequences alone. Firstly, since evolutionary information in the

form of PSI-BLAST profiles has been demonstrated to have

Figure 7. The predicted and observed residue depth profiles for the Escherichia coli peptidyl-tRNA hydrolase (PDB code: 2pth, chain
A), as well as the structural mapping of the predicted RD profiles. In Figure 7A, the blue solid line represents the observed RD values, while
the red dashed line represents the predicted RD values. In Figure 7B, the sequence regions predicted with different mean absolute errors are colored
with a color scale going from red to blue, where red corresponds to the best predicted regions and blue to worst predicted regions. The active site
residues (N10, H20 and D93) are highlighted by the orange sticks [51]. The structural images are prepared using the program PyMOL [81]. For the sake
of visualization, structural figures are shown in stereo.
doi:10.1371/journal.pone.0007072.g007

Predicting Residue Depth

PLoS ONE | www.plosone.org 8 September 2009 | Volume 4 | Issue 9 | e7072



important influence on prediction accuracy, we incorporated this

information into SVR in this study. Secondly, we added the

important solvent accessibility predicted by SCRATCH and

natively disordered region information by DISOPRED along

with other global sequence features. Remarkably, we found that

the use of predicted solvent accessibility information considerably

improves the prediction accuracy, implying the important role

solvent accessibility plays in predicting residue depth profiles.

Thirdly, we systematically investigated several sequence encod-

ing schemes to assess their respective prediction performance and

the impacts of different sequence features on the prediction

accuracy. Our predictions were evaluated by a 5-fold cross-

validation approach based on a well-defined high-quality three-

dimensional structure dataset. Among eight different sequence

encoding schemes, the encoding scheme ‘ALL’ that incorporates

all the relevant local and global sequence features, in conjunction

with the predicted solvent accessibility and natively disordered

regions outperforms other encoding schemes, with a CC of 0.71,

a RMSE of 1.74 and a MAE of 1.28, respectively. The

comparison indicates that our method could provide better

prediction performance when compared with the other two

methods.

Figure 8. The predicted and observed residue depth profiles for the anti-fungal chitosanase (PDB code:1chk, chain A), as well as the
structural mapping of the predicted RD profiles. In Figure 8A, the blue solid line represents the observed RD values, while the red dashed line
represents the predicted RD values. In Figure 8B, the sequence regions predicted with different mean absolute errors are colored with a color scale
going from red to blue, where red corresponds to the best predicted regions and blue to worst predicted regions. In addition, the active site residues
(E22, D40 and T45) are highlighted by the orange sticks, while the functionally important residues involved in chitosan substrate binding (D57, E197
and E201) are represented by dark green sticks [52,53]. The structural images are prepared using the program PyMOL [82]. For the sake of
visualization, structural figures are shown in stereo.
doi:10.1371/journal.pone.0007072.g008
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Another important finding is that different secondary structures

have different residue burial preferences in the protein structures.

For instance, regular secondary structures such as a-helix, b-strand

tend to be distributed with larger depth values, while non-regular

secondary structures like coils are more inclined to be located with

smaller depth values. These tendencies have different effects on the

final prediction performance of RD, which has been taken into

consideration in our SVR models. Furthermore, our method can be

readily utilized to perform the conventional two-state (exposed/

buried) prediction based on the real-valued prediction results of RD.

We further illustrated the prediction performance of the

Prodepth server by highlighting two representative case studies

(Figure 7 and 8), namely, the Escherichia coli peptidyl-tRNA

hydrolase [51] and the anti-fungal chitosanase [52,53]. In

addition, as an implementation of our approach, we have

developed a prediction webserver Prodepth to facilitate the RD

prediction analysis for interested users. Prodepth can also provide

an accurate prediction of accessible surface area (ASA), a

traditional solvent exposure measure that provides important

complementary information to RD.

In this study, we proposed a new approach to predict residue

depth from primary sequences only, by combining a number of

useful sequence and structural features including the PSI-BLAST

profiles, predicted secondary structure, solvent accessibility infor-

mation, natively disordered region, as well as some global sequence

features. Comparison with the other two state-of-art methods

illustrates the effectiveness of our approach. We hope that the

developed Prodepth sever can become a powerful tool in sequence-

based prediction of RD and ASA values and help towards the

identification of functionally important residues, or key residues in

the folding nucleus from protein primary sequences.

Materials and Methods

Dataset
The analysis is based on a representative dataset of high-quality

protein three-dimensional structures, which was downloaded from

the PDB-REPRDB server [55] that provides representative

protein structures from PDB [56]. The dataset was originally

prepared using the following criteria: all the structures in this

dataset were determined using X-ray crystallography with

resolution #2.0 Å, R-factor #0.25 and R-free factor #0.25;

sequence length should be greater than 60 amino acid residues

and without any chain breaks; each two sequences have sequence

identity less than 30%. For certain PDB chains, the hsexpo

progam [26] used to calculate the RD values had errors. Such

erroneous PDB chains were thus discarded.

We further searched each PDB ID in the dataset and retrieved

their SCOP superfamily classifications [57]. Those PDB chains

without the SCOP superfamily annotations were not retained.

After applying these procedures, we obtained a final dataset

containing 489 protein chains (473 PDBs and totally 124,082

residues). The names of the protein chains, their protein sequences

in FASTA format, the calculated RD values, and the correspond-

ing SCOP superfamily classification were given in Dataset S1, S2

and S3, respectively. For an objective evaluation of the current

approach, we performed a stringent 5-fold cross-validation test to

examine the prediction performance. That is, the whole dataset

was divided into 5 roughly equal subsets based on the SCOP

superfamily-based criterion: no sequence(s) in the testing set should

be in the same superfamily as another sequence(s) in the training

set. This procedure was adopted to avoid the overestimation of

prediction accuracy and reduce the impact of sequence or domain

homology on the prediction performance [58].

Accessible surface area (ASA)
The accessible surface areas for all residues in our dataset were

calculated using the DSSP program [38]. Additionally, the

absolute values were further divided by the maximum ASA values

for the same residue type to obtain the relative accessible surface

area (rASA) of each residue, as defined in Rost and Sander [6].

Secondary structure information was also annotated using the

DSSP program [38].

Residue depth (RD)
According to its definition, atom or residue depth can be

computed as the distance between the residue of interest and its

nearest neighboring water molecule or protein surface [7–9]. The

detailed procedures to calculate residue depth in this study are

described as follows. First, we calculate the accessible surface area

for each atom and the whole molecule (the probing sphere radius is

set as 1.4 Å). Second, atom depth is calculated as the distance

between this atom and its nearest vertex. Third, a residue’s RD is

calculated as the average atom depth for all atoms except the

hydrogen atoms in this residue. The hsexpo progam is used to

calculate the RD values for all residues in a PDB file and the

calculated results will be written out in this PDB file’s B factor field

[26]. Before input into the SVR, we normalize the RD values for all

residues using yi~ yi
0-�yyð Þ=SD, where yi is the normalized RD value

of residue i, �yy is the average RD value, and SD is the standard

deviation. Thus, most of the normalized RD values could fall into

the range of [0, 1], for the sake of data handling and the SVR input.

Support vector regression (SVR)
Support vector machine is a sophisticated supervised machine

learning technique that is built based on statistical learning theory

[59,60] and has been widely used in the applications of

bioinformatics. Note that support vector machine (SVM) has

two practical modes: support vector classification (SVC) and

support vector regression (SVR). Particularly, in comparison with

the SVC, the SVR has excellent regression abilities to infer the

property values from a limited dataset of samples and it is

especially effective when the input data is not linearly separable

and the kernel function is required to map the data into a higher

dimensional space to find the optimal separating hyperplane. Due

to its regression advantages, its computing speed, its ability to

control error, and as well as its superior performance over other

machine learning techniques [59,60], the SVR has been attracting

more and more attention and has been successfully applied in

predicting gene expression level [61], accessible surface area [62],

residue contact number [40], missing value in microarray data

[63], MHC-binding peptides [64,65], residue-wise contact orders

[41], disulfide connectivity [42] and half-sphere exposure [27],

improving sequence alignment quality [66] and ranking predicted

protein structures [67].

As we are more interested in predicting the RD values from

protein sequences, we chose the SVR to train the predictive

models and perform the prediction tasks. As the implementation of

the SVR approach, the SVM_light package [68] (available at

http://svmlight.joachims.org/) was employed. Particularly, we

selected radial basis kernel function (RBF) at e= 0.01, c= 0.01 and

C = 5.0 to build the SVR models. This combination of parameters

has been shown to provide the best prediction performance in the

preliminary analysis through selecting and comparing different

combinations of C and e and examining their respective prediction

performances, using the PSI-BLAST profiles based on the five-fold

cross-validation tests. In the following analysis, we then constantly

set e as 0.01, c as 0.01 and C as 5.0 to evaluate the prediction

performance of other sequence encoding schemes.
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Sequence encoding schemes
For a comprehensive investigation, we employed eight different

encoding schemes in order to examine their corresponding

influence on the prediction performance. These encoding schemes

include both the global and local sequence features. With respect

to the local sequence feature extraction, a sliding window method

was used to capture the sequence environment [27,42]. That is, we

used the fixed window size of 15 residue centered on the residue of

interest and then extracted the sequence profiles in terms of the

PSSMs, PSIPRED-predicted secondary structure matrices, as well

as the predicted solvent accessibility matrices (will be discussed in

the following sections).

Position-specific scoring matrix (PSSM). A residue’s

PSSM in the form of PSI-BLAST profile [69] contains

important evolutionary information that determines whether

this residue is conserved in its family of related proteins [70,71].

Each element in the PSSM represents the likelihood of each

residue position in the multiple sequence alignment of a protein

class. PSSMs have been successfully applied in the prediction

studies of many aspects in structural bioinformatics and have

been shown to be helpful for improving the prediction

performance [72,73,74,75,76,77]. It is generally estimated that

the incorporation of the PSSMs will lead to an increase of the

overall prediction accuracy by 1–5% [45,47–49]. Therefore, in

this study, we queried each protein sequence in our dataset and

extracted the PSSM profiles by running PSI-BLAST [69] against

the NCBI nr database, in a standard manner (by three iterations,

with a default cutoff E-value). All the elements in the PSSM were

divided by 10 for normalization, so that most of the values were in

the range of 21.0 and 1.0. For a given residue, its local sequence

fragment was extracted and encoded as a 206(2l+1)-dimensional

vector using a sliding window scheme, where l denotes the half

window size and 2l+1 is the full window length. In this study, we

consistently fixed the window size at 15 (half window size l = 7),

which has been suggested to lead to the overall best performance

in previous studies [36,37].

Predicted secondary structure (PSS). The secondary

structure information was predicted using the PSIPRED

program developed by Jones [78]. PSIPRED is an accurate

neural network-based predictor for the prediction of three-state

(helix, strand and coil) secondary structure purpose with an

accuracy of up to 80% [78]. In our previous studies, we have

shown that using the PSIPRED-predicted secondary structure

could significantly improve the prediction performance [27,41,42].

Similarly, for a given residue, its local three-state secondary

structure profile was taken from a sliding window of 15

consecutive residues.

Predicted solvent accessibility (PSA). The two-state

solvent accessibility of each residue in the dataset was predicted

using the SSpro program implemented in the SCRATCH

package [50]. SSpro could predict the solvent accessibility

status for each residue in a protein sequence, whose output

result comes in a binary format- either as ‘‘exposed’’ or ‘‘buried’’.

Previous studies have indicated predicted solvent accessibility

could be used to increase the accuracy and improve the reliability

for predicting residue flexibility [13], natively unstructured

regions [14] or loops [15], DNA-binding sites [16] and binding

hotspots [17].

Predicted natively disordered region (DISO). Natively

unstructured/disordered region was predicted using the

DISOPRED2 server [79], which is one of the leading servers for

predicting natively disordered regions in proteins. As natively

disordered regions are often functionally important and commonly

associated with molecular assembly, protein modification and

molecular recognition [80,81], incorporating this information

might be helpful for improving prediction performance. The

probability of each residue being disordered generated by

DISOPRED2 is used as the input to the SVR models.

Global sequence features. With regard to the global

sequence features, we calculated the twenty amino acid

compositions, the percentage of secondary structure classes, the

percentage of exposed/buried residues, and the percentage of

ordered/disordered residues. Additionally, the protein size

descriptor based on protein molecular weight and protein

sequence length were also utilized and normalized as the input

into the SVR model. Incorporation of these global features has

been shown to be helpful for improving the prediction

performance in other groups’ work [13–17].

The Architecture of the Prodepth
All the extracted local sequence profiles will be input into

Prodepth along with other global sequence features. The

procedures of generating local sequence input features for

Prodepth is illustrated in Figure 9. Prodepth is comprised of three

modules: the input, the prediction and the output module. First,

users’ submitted protein sequence in the FASTA format will be

processed: PSI-BLAST, PSIPRED, SCRATCH and DISOPRED

will be called to search this sequence against the non-redundant

NCBI nr database, and the matrix profiles will be returned as the

input to the prediction module.

Performance assessment
For the performance evaluation of the real-value regression task

in this study, the Pearson’s correlation coefficient (CC) between

the predicted and observed RD values is given by

CC~

PN
i~1

xi-�xxð Þ yi-�yyð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i~1

xi-�xxð Þ2
� � PN

i~1

yi-�yyð Þ2
� �s ,

where xi and yi are the observed and predicted normalized RD

values of the i-th residue, respectively, �xx and �yy are their

corresponding means and N is the total residue number in a

protein sequence.

The root mean square error (RMSE) and mean absolute error

(MAE) are respectively given by

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i~1

yi-xið Þ2
vuut ,

MAE~
1

N

XN

i~1

yi-xij j,

where xi and yi are the observed and predicted RD values of the i-

th residue, respectively and N is the total residue numbers in a

protein sequence.

In addition, we also calculate the R square values for each

sequence encoding scheme used in this study, which is given by

R2~1{

PN
i

yi-xið Þ2

PN
i

xi-�xxð Þ2
:
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where xi and yi are the observed and predicted RD values of the i-

th residue, respectively, �xx is the corresponding mean value and N is

the total residue number in a protein sequence.

Structural analysis
All structure images were rendered using the PyMOL program

[82].

Supporting Information

Dataset S1 List of 489 PDB structures used in this study. This

file contains the PDB ID codes for the 489 protein structures

compiled for the current study. Protein sequences in FASTA

format and their respective chain names are also given.

Found at: doi:10.1371/journal.pone.0007072.s001 (0.14 MB

TXT)

Dataset S2 The calculated residue depth values for all residues

in the dataset. The first and second columns are the residue name

and the chain name of PDB structures, respectively. The third

column corresponds to the original residue position in the PDB

ATOM records, while the last column is the observed residue

depth value.

Found at: doi:10.1371/journal.pone.0007072.s002 (2.49 MB

TXT)

Dataset S3 The 5-fold cross-validation list used in this study. 5-

fold cross-validation test is performed to examine the prediction

performance of the current approach: the whole dataset is

randomly separated into 5 roughly equal subsets and at each

cross-validation step, every subset is singled out as the testing set

while the rest four subsets will be merged as the training set. For

each protein sequence, its corresponding SCOP superfamily

annotation is also provided.

Found at: doi:10.1371/journal.pone.0007072.s003 (0.06 MB

TXT)

Figure S1 Distributions of RD versus ASA based on the current

dataset.

Found at: doi:10.1371/journal.pone.0007072.s004 (1.11 MB TIF)

Figure S2 Consistency variation of the two-state solvent

accessibility assignment based on residue depth and accessible

surface area measures. The left y-axis denotes the ASA (red curve)

value, while the right y-axis corresponds to the RD (blue curve)

value.

Found at: doi:10.1371/journal.pone.0007072.s005 (1.25 MB TIF)

Figure S3 Front view and back view of the Escherichia coli

peptidyl-tRNA hydrolase (PDB code: 2pth, chain A) showing the

hydrophobic core regions, as indicated by the dashed line circle.

Found at: doi:10.1371/journal.pone.0007072.s006 (5.49 MB TIF)
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