
foods

Article

Acacia Polyphenol Ameliorates Atopic Dermatitis in
Trimellitic Anhydride-Induced Model Mice via
Changes in the Gut Microbiota

Nobutomo Ikarashi 1,*, Natsumi Fujitate 1, Takumi Togashi 1, Naoya Takayama 1,
Natsuko Fukuda 1, Risako Kon 1, Hiroyasu Sakai 1, Junzo Kamei 1 and Kiyoshi Sugiyama 2,*

1 Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501,
Japan; s141223@hoshi.ac.jp (N.F.); s151171@hoshi.ac.jp (T.T.); s151150@hoshi.ac.jp (N.T.);
s151206@hoshi.ac.jp (N.F.); r-kon@hoshi.ac.jp (R.K.); sakai@hoshi.ac.jp (H.S.); kamei@hoshi.ac.jp (J.K.)

2 Department of Functional Molecular Kinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku,
Tokyo 142-8501, Japan

* Correspondence: ikarashi@hoshi.ac.jp (N.I.); sugiyama@hoshi.ac.jp (K.S.); Tel.: +81-3-5498-5918 (N.I.)

Received: 1 May 2020; Accepted: 9 June 2020; Published: 11 June 2020
����������
�������

Abstract: We have previously shown that acacia polyphenol (AP), which was extracted from the bark
of Acacia mearnsii De Wild, exerts antiobesity, antidiabetic, and antihypertensive effects. In this study,
we examined the effect of AP on atopic dermatitis. Trimellitic anhydride (TMA) was applied to the
ears of mice to create model mice with atopic dermatitis. The frequency of scratching behavior in the
TMA-treated group was significantly higher than that in the control group, and the expression levels
of inflammatory markers (tumor necrosis factor-α, interleukin-6, inducible nitric oxide synthase,
and cyclooxygenase-2) in the skin also increased. In contrast, both the frequency of scratching
behavior and the expression levels of skin inflammatory markers in the AP-treated group were
significantly lower than those in the TMA-treated group. The abundances of beneficial bacteria,
such as Bifidobacterium spp. and Lactobacillus spp., increased in the AP-treated group compared
with the TMA-treated group. Furthermore, the abundances of Bacteroides fragilis and Clostridium
coccoides in the gut, which are known for anti-inflammatory properties, increased significantly with
AP administration. The present results revealed that AP inhibits TMA-induced atopic dermatitis-like
symptoms. In addition, the results also suggested that this effect may be associated with the
mechanism of gut microbiota improvement.
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1. Introduction

Atopic dermatitis causes eczema, accompanied by itchiness on the body, with repeated aggravation
and remission. As the quality of life of patients with atopic dermatitis is markedly decreased due to
itchiness, the development of a suitable treatment is very important. However, there are still many
unclear points about the pathogenic mechanism of atopic dermatitis. Currently, in the treatment of
atopic dermatitis, topical steroids and immunosuppressants are used as symptomatic treatments, but
it is not a fundamental treatment.

In recent years, it has become clear that gut microbiota is involved in the development of atopic
dermatitis [1]. For example, it has been reported that (1) patients with atopic dermatitis had more
intestinal Clostridium spp. and fewer intestinal Bifidobacterium spp. in their feces than non-atopic
dermatitis subjects [2] and that (2) the administration of probiotics improved atopic dermatitis [3–6].
Thus, drugs or foods that correct the gut microbiota may be useful for atopic dermatitis. To date,
we have clarified that polyphenols, which have a poor absorption rate in the digestive tract, change the
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flora in the large intestine, resulting in substantial alteration of hepatic functional molecules [7,8].
Thus, it was considered that polyphenols may improve atopic dermatitis through the change of gut
microbiota, as well as probiotics.

The aqueous extract from the bark of Acacia mearnsii De Wild. (acacia polyphenol (AP))
is high in polyphenols, and we have previously shown that AP exerts antiobesity, antidiabetic,
and antihypertensive effects [9–11]. In addition, we have demonstrated that AP ameliorates atopic
dermatitis-like symptoms in mice fed a magnesium-free special diet [12]. However, little is known
about the mechanism by which AP improves atopic dermatitis, and, in particular, the effect on gut
microbiota is not known at all. Therefore, based on the above findings, we hypothesized that AP
changed gut microbiota and improved atopic dermatitis and verified the hypothesis. Briefly, AP was
administered to trimellitic anhydride (TMA)-induced atopic dermatitis model mice [13], after which
their scratching behavior and skin inflammatory reactions were observed. In addition, the abundances
of gut microbes in the feces were analyzed.

2. Materials and Methods

2.1. The Preparation of AP

AP (lot: DF5) was donated by Acacia-No-Ki Co., Ltd. (Hiroshima, Japan) and prepared according
to Cutting’s methods [14]. Briefly, the bark of A. mearnsii De Wild. from South Africa was crushed,
extracted with hot water (100 ◦C), and dried with a spray drier. The HPLC chart of AP used in this study
is shown in Figure S1. Details of AP, such as the ingredients, were given in previous reports [15–17].

2.2. Animals

Female BALB/c mice (5 weeks old, Japan SLC, Inc., Shizuoka, Japan) were used in this study.
The mice were housed at 55± 5% humidity and room temperature (24± 1 ◦C). The study was conducted
with approval (approval no. 30–121) and in accordance with the Hoshi University Guiding Principles.

2.3. TMA-Induced Atopic Dermatitis

The experimental protocol is illustrated in Figure 1 [13]. Briefly, mice were sensitized with TMA
(Fujifilm Wako Pure Chemical Corporation, Osaka, Japan) by topical application on abdominal skin on
day 0, received TMA on both ears on day 5, and were repeatedly challenged with TMA on days 6–14.
The vehicle groups were treated with a mixture of acetone and isopropylmyristate (4:1, v/v).

Figure 1. Experimental protocol.

2.4. Treatments

The mice were divided into the following groups (n = 8, 4 mice/cage, Figure 1): (1) normal group,
(2) AP 3% group, (3) TMA-control group, (4) TMA-AP 1.5% group, and (5) TMA-AP 3% group. With the
exception of the mice in the normal and AP 3% groups, all mice were treated with TMA to induce
atopic dermatitis (AD)-like skin lesions. Each mouse was fed a normal diet (MF, Oriental Yeast, Tokyo,
Japan) or a normal diet containing 1.5% or 3% AP ad libitum for 22 days. On the 15th day (Figure 1),
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the ear skin and feces in the colon were removed and put in tubes. The samples were flash-frozen in
liquid nitrogen and stored at −80 ◦C until analysis.

2.5. Scratching Behavior

Scratching behavior was observed on the 14th day (Figure 1). To measure scratching behavior,
mice were individually housed in a cage divided into compartments and acclimatized for 60 min.
The scratching behavior was recorded using a digital video camera for 30 min, with no direct human
observation. The number of scratching episodes was counted from the recordings.

2.6. Hematoxylin-Eosin (HE) Staining

After mouse skin was fixed and embedded in paraffin, the sample was cut into 5-µm sections and
mounted on slides. The slides were stained with hematoxylin and eosin. We observed the epidermal
thickness, presence of ulcer, and infiltration of inflammatory cells into the dermis.

2.7. Real-Time RT-PCR

Total RNA from mouse skin was isolated by homogenization in TRI reagent (Sigma-Aldrich Corp.,
St. Louis, MO, USA). cDNA was synthesized by a high-capacity cDNA synthesis kit (Applied Biosystems,
Foster City, CA, USA). Target gene expression was analyzed by real-time RT-PCR (CFX Connect Real-Time
System, Bio-Rad Laboratories, Hercules, CA, USA). The primer sequences for real-time PCR are shown in
Table 1. The mRNA expressions were normalized to the expression of the housekeeping gene 18S rRNA.

Table 1. Primer sequences for real-time PCR.

Gene Forward Primer (5’ to 3’) Reverse Primer (5’ to 3’)

TNF-α ATGGACACCAAACATTTCCTGC CCAGTGGAGAGCCGATTCC
IL-6 CCCTGACAGACCCGGACTTA GCCGAGACTGTTGTTCCATAAT

iNOS GGCAGCCTGTGAGACCTTTG GCATTGGAAGTGAAGCGTTTC
COX-2 CAGGGCCCTTCCTCCCGTAG GCCTTGGGGGTCAGGGATGA

18S rRNA GTCTGTGATGCCCTTAGATG AGCTTATGACCCGCACTTAC

TNF-α, tumor necrosis factor-α; IL-6, interleukin-6; iNOS, inducible nitric oxide synthase; COX-2, cyclooxygenase-2.

2.8. Quantification of Bacteria from Fecal Samples

DNA from the feces was extracted by the QIAamp DNA Stool Mini Kit (Qiagen, Inc., Valencia,
CA, USA). Target gene expression was analyzed by real-time RT-PCR. The primer sequences for the
gut microbiota are shown in Table 2. The DNA expression levels were normalized to the expression of
16S rRNA.

Table 2. Primer sequences used for the gut microbiota.

Target Forward Primer (5’ to 3’) Reverse Primer (5’ to 3’)

Firmicutes [18] TGAAACTYAAAGGAATTGACG ACCATGCACCACCTGTC
Bacteroidetes [19] GGGGTTCTGAGAGGAAGGT CCGTCATCCTTCACGCTACT
Proteobacteria [20] CATGACGTTACCCGCAGAAGAAG CTCTACGAGACTCAAGCTTGC
Actinobacteria [21] TGTAGCGGTGGAATGCGC AATTAAGCCACATGCTCCGCT

Lactobacillus spp. [22] TGGAAACAGRTGCTAATACCG GTCCATTGTGGAAGATTCCC
Bifidobacterium spp. [23] GGTGTTCTTCCCGATATCTACA CTCCTGGAAACGGGTGG
Bacteroides fragilis [23] ATAGCCTTTCGAAAGRAAGAT CCAGTATCAACTGCAATTTTA

Clostridium coccoides [24] GCCACATTGGGACTGAGA GCTTCTTAGTCAGGTACCG
16S rRNA [25] TCCTACGGGAGGCAGCAGT GGACTACCAGGGTATCTAATCCTGTT

2.9. Statistical Analysis

The results are presented as the mean ± standard deviation. The Tukey’s test was used to compare
data among groups. Values of p < 0.05 were considered to indicate significance.
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3. Results

3.1. Scratching Behavior

We examined the effect of AP on scratching behavior (Figure 2). When AP was administered to
mice, no changes occurred in either the body or liver weight (Figure 2A,B). The frequency of scratching
behavior in the TMA-control group was approximately 250 times per 30 min, which was approximately
10 times higher than that in the normal group. In contrast, the frequency of scratching behavior in the
TMA+AP 1.5% group was approximately 180 times per 30 min, while that in the TMA+AP 3% group
was approximately 130 times per 30 min, showing that AP exhibited a significant dose-dependent
reduction in scratching behavior (Figure 2C).

Figure 2. Scratching behavior. Mice with atopic dermatitis induced by repeated application of TMA
were given a diet with AP. The body weight (A), liver weight (B), and scratching behavior (C) were
measured (mean ± SD, N = 8, *** p < 0.001 vs. normal group, # p < 0.05 vs. TMA-control group,
## p < 0.01 vs. TMA-control group).

The above results demonstrate that AP inhibits the scratching behavior induced by TMA.

3.2. Skin Inflammation

At the onset of atopic dermatitis, skin inflammation occurs and the expression levels of inflammatory
markers, such as TNF-α, IL-6, iNOS, and COX-2, increase [26,27]. We observed the skin condition and
the effect of AP on the inflammatory reactions using these expression levels as indexes (Figures 3 and 4).

Figure 3. Skin inflammation. Mice with atopic dermatitis induced by repeated application of TMA
were given a diet with AP. Clinical features of skin were observed (A). Skin tissue was assessed by HE
staining (B).
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Figure 4. The mRNA expression levels of TNF-α (A), IL-6 (B), iNOS (C), and COX-2 (D). Mice with
atopic dermatitis induced by repeated application of TMA were given a diet with AP. The skin was
harvested, and the TNF-α (A), IL-6 (B), iNOS (C), and COX-2 (D) mRNA expression levels were
measured using real-time RT-PCR (mean ± SD, N = 8, ** p < 0.01 vs. normal group, # p < 0.05 vs.
TMA-control group).

Redness was noted in the ears of the TMA-control group mice compared with the normal group,
and epidermal thickening, ulcers, and inflammatory cell infiltration into the dermis was observed.
In contrast, improvement of these effects was noted in the TMA+AP 3% group compared with the
TMA-control group (Figure 3).

The mRNA expression levels of TNF-α, IL-6, iNOS, and COX-2 in the ears of the TMA-control
group increased markedly compared with the levels in the normal group. In contrast, the expression
levels of TNF-α, IL-6, iNOS, and COX-2 in the ears of mice that were administered AP were significantly
decreased compared with the levels in the TMA-control group (Figure 4).

Based on these findings, it is suggested that AP inhibits TMA-induced inflammatory reactions.

3.3. The Phyla Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria

Recently, it has become clear that changes in the gut microbiota are associated with the onset
and remission of atopic dermatitis [1,3–6]. Therefore, we investigated the mechanism by which AP
inhibited atopic dermatitis, focusing on the intestinal flora.

Ninety-nine percent of human intestinal bacteria belong to four phyla: Firmicutes, Bacteroidetes,
Proteobacteria, and Actinobacteria [28,29]. The abundance of the gut microbiota (phyla Firmicutes,
Bacteroidetes, Proteobacteria, and Actinobacteria) in the TMA-control group was approximately the same
as that in the normal group. In contrast, administration of AP significantly decreased the abundance of
the phylum Firmicutes in the gut microbiota and significantly increased that of the phyla Bacteroidetes
and Actinobacteria (Figure 5).

Based on these findings, it is suggested that AP causes significant alterations in the gut microbiota.
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Figure 5. The phyla Firmicutes (A), Bacteroidetes (B), Proteobacteria (C), and Actinobacteria (D). Mice with
atopic dermatitis induced by repeated application of TMA were given a diet with AP. The feces were
collected from the colon, and the abundances of the phyla Firmicutes (A), Bacteroidetes (B), Proteobacteria
(C), and Actinobacteria (D) in the gut microbiota were measured using real-time PCR (mean ± SD, N = 8,
*** p < 0.001 vs. normal group, # p < 0.05 vs. TMA-control group, ## p < 0.01 vs. TMA-control group,
### p < 0.001 vs. TMA-control group).

3.4. Bifidobacterium spp., Lactobacillus spp., Bacteroides fragilis, and Clostridium coccoides

Gut microbes, such as Bifidobacterium spp. and Lactobacillus spp., are called beneficial bacteria and
are considered to be effective in the prevention and treatment of many diseases [1,3–6]. Meanwhile,
both Bacteroides fragilis and Clostridium coccoides are related to the onset and remission of inflammatory
diseases [30–32]. The abundance of Bifidobacterium spp. in the gut microbiota decreased significantly in
the TMA-control group compared with the normal group. In contrast, the abundance of Bifidobacterium
spp. increased significantly in the AP-treated group in a dose-dependent manner compared with the
TMA-control group (Figure 6A). No differences were noted in the abundance of Lactobacillus spp.,
B. fragilis, or C. coccoides in the gut microbiota between the normal group and the TMA-control group.
The abundances of these bacteria increased significantly with the administration of AP (Figure 6B–D).

Based on the above findings, it is suggested that AP increases the abundances of Bifidobacterium
spp., Lactobacillus spp., B. fragilis, and C. coccoides.
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Figure 6. Bifidobacterium spp. (A), Lactobacillus spp. (B), Bacteroides fragilis (C), and Clostridium coccoides
(D). Mice with atopic dermatitis induced by repeated application of TMA were given a diet with AP.
The feces were collected from the colon, and the abundances of Bifidobacterium spp. (A), Lactobacillus
spp. (B), Bacteroides fragilis (C), and Clostridium coccoides (D) in the gut microbiota were measured using
real-time PCR (mean ± SD, N = 8, * p < 0.05 vs. normal group, ** p < 0.01 vs. normal group, *** p < 0.001
vs. normal group, # p < 0.05 vs. TMA-control group, ## p < 0.01 vs. TMA-control group, ### p < 0.001
vs. TMA-control group).

4. Discussion

AP is a powder extracted from the bark of A. mearnsii De Wild. by using hot water. It contains large
amounts of flavonoids, such as fisetinidol and robinetinidol [15–17], and its antidiabetic, antiobesity,
and antihypertensive effects have been confirmed [9–11]. In this study, we examined the effect of AP
on atopic dermatitis and the underlying mechanism.

Model mice with atopic dermatitis exhibiting scratching behavior can be generated by regularly
applying TMA to the ears of the mice. The mice used in this study also exhibited increased scratching
behavior, as observed in previous reports [6]. When AP was administered to model mice with
TMA-induced atopic dermatitis, inhibition of scratching behavior was observed (Figure 2). Although
inflammatory reactions on the skin were noted in these model mice, AP significantly inhibited these
reactions (Figures 3 and 4). As it has been reported that the induction of skin inflammation increases
the intensity of itchiness, there is a close relation between inflammatory reactions and scratching
behavior [33]. Thus, these findings suggest that AP inhibits skin inflammatory reactions and restrains
scratching behavior.

It is commonly known that polyphenols have a low rate of absorption. Thus, although we
have not conducted a pharmacokinetic study of AP, it is considered that components containing AP
are unlikely to affect the skin after being absorbed into the body. Meanwhile, we have confirmed
that polyphenols change the flora in the large intestine, resulting in substantial alteration of hepatic
functional molecules [7,8]. Therefore, we considered that there is a possibility that AP changes
the gut microbiota and inhibits symptoms of atopic dermatitis. As a result, the abundance of the
phylum Firmicutes decreased markedly in TMA-treated mice that were administered AP, while that
of the phyla Bacteroidetes and Proteobacteria increased significantly (Figure 5). It was also revealed
that the abundances of Bifidobacterium spp. and Lactobacillus spp., which are involved in the onset
and cure of atopic dermatitis [1,3–6], increased with the administration of AP to TMA-treated mice.
In addition, the amounts of B. fragilis, which corrects intestinal immunity and is involved in the
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allergy-like eczema [32], increased with the administration of AP (Figure 6). Moreover, AP increased
the amount of C. coccoides, which has been shown to be involved in the development of inflammatory
diseases [31]. Although no reports have directly linked C. coccoides to the onset of atopic dermatitis,
it was considered that C. coccoides corrects intestinal immunity, similar to B. fragilis. Based on the above
findings, it was suggested that AP alters the gut microbiota substantially and likely prevents the onset
of atopic dermatitis.

It has been reported that patients with atopic dermatitis have large amounts of intestinal Clostridium
spp. (phylum Firmicutes) and small amounts of intestinal Bifidobacterium spp. (phylum Actinobacteria) [2].
However, there were no differences in the amounts of most gut microbes between the normal group and
the TMA-control group (Figures 5 and 6), suggesting that there is no correlation between TMA-induced
atopic dermatitis-like symptoms and alteration of the gut microbiota. On the other hand, the abundance
of Bifidobacterium spp. in the gut microbiota decreased significantly in the TMA-control group compared
with the normal group. Although it has been reported that the application of hapten changes in gut
microbiota [6], the reason for this is hardly known. This result suggests that skin inflammation may
regulate gut microbiota and this is an important finding in considering the skin–gut axis. In the future,
analysis of the effect of AP on gut microbiota in patients with atopic dermatitis is awaited.

The gut microbiota is associated with the onset of many diseases other than atopic dermatitis.
For instance, it is known that in patients with obesity the abundance of the phylum Firmicutes is high,
while that of the phylum Bacteroidetes is low, and the Firmicutes-to-Bacteroidetes ratio is used as an
obesity index [34,35]. In addition, it was reported that the Firmicutes-to-Bacteroidetes ratio increased
in diabetes [36], coronary artery disease [37], or hypertension [38]. When normal mice were fed AP,
the intestinal abundance of the phylum Firmicutes decreased, while that of the phylum Bacteroidetes
increased (Figure 5). These results indicate the association of changes in the gut microbiota with the
antiobesity, antidiabetic, and antihypertensive action of AP.

Currently, in addition to probiotics, many prebiotics that promote the growth of intestinal
bacteria are offered commercially, with the aim of preventing and treating diseases through correction
of the gut microbiota. The present study—which demonstrates that polyphenols are involved
in significant alteration of the gut microbiota—suggests that polyphenols may be useful as an
intestinal-flora-improving food, in addition to probiotics and prebiotics. We believe that our findings
provide crucial insights.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-8158/9/6/773/s1,
Figure S1: HPLC profile of the extract of Acacia mearnsii bark. Dried extract of Acacia mearnsii was solubilized
with 60% EtOH (5.0 mg/mL). After filtration (membrane filter, 0.45 µm), 10 µL of filtrate was analyzed by
analytical HPLC. Analytical HPLC was performed on a Cosmosil 5C18-ARII (Nacalai Tesque, Kyoto, Japan)
column (250 × 4.6 mm, i.d.) with a gradient elution of 4−30% (39 min) and 30−75% (15 min) CH3CN in 50 mM
H3PO4 at 35 ◦C (flow rate, 0.8 mL/min; detection, 230 nm; detector: Jasco photodiode array detector MD-4010,
Jasco, Tokyo, Japan).
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