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Abstract

Background: Polymethylmethacrylate (PMMA) is commonly used for cement-augmented pedicle screw instrumentation
(CAPSI) to improve the fixation stability and reduce the risk of screw loosening in the osteoporotic thoracolumbar spine.
Biomechanical researches have shown that various dose of cement (1-3ml) can be injected to enhance screw stability. To
date, there have been no studies on the relationship between adjacent segment degeneration and the volume of PMMA.
This study aimed to explore the influence of CAPSI with different volumes of PMMA in osteoporotic lumbar vertebrae over
adjacent segments by using finite element analysis.

Methods: Seven different finite element models were reconstructed and simulated under different loading conditions,
including (1) an intact model, (2) three single-level CAPSI models with different volumes of PMMA (1, 1.73, and 2.5ml), and
(3) three double-level CAPSI models with different volumes of PMMA (1, 1.73, and 2.5ml). To improve the accuracy of the
finite element analysis, the models of the injectable pedicle screw and bone cement were created by using a three-
dimensional scanning machine and the CAPSI patient’s CT data, respectively. The range of motion (ROM), the stress of
intervertebral discs, and the stress of facet in the adjacent segment were comparatively analyzed among the different
models.

Results: The ROMs of the different segments were compared with experimental data, with good agreement
under the different load conditions (21.3°, 13.55°, 13.99°, and 6.11° in flexion, extension, bending, and rotation at
L3-S1 level, respectively). Compared with the intact model, the ROM, disc stresses, and facet stress in adjacent
segments were found to be higher in the six operative models. Otherwise, with a larger volume of PMMA
injected, the ROM, disc stresses, and facet stress slightly increased at the adjacent segment. However, the
differences were insignificant with the biggest difference less than 3.8%.
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Conclusions: CAPSI could increase the incidence of disk degeneration in the adjacent segment, while within a certain
range, different volumes of PMMA provided an approximate impact over the adjacent segment degeneration.

Keywords: Cement-augmented pedicle screws, Adjacent segment degeneration, Polymethylmethacrylate, Finite
element analysis

Background
Posterior lumbar interbody fusion, the classic surgical
procedure to treat lumbar degenerative diseases and
thoracolumbar fracture, has been developed for more
than 70 years since the initial description in 1944 by
Briggs and Milligan [1]. A large number of clinical
studies have indicated that posterior-approach fusion
and fixation can effectively restore sagittal alignment,
achieve immediate postoperative stability, and facili-
tate fusion rates [2–4]. However, consensus holds that
the stiffness of the instrument relates directly to in-
creased stress on the adjacent disc and facet joints,
which could trigger segmental hypermobility and ac-
celerate adjacent segment degeneration (ASD) [5, 6].
ASD is one of the most common sequelae of spinal

interbody fusion and affects the patient’s long-term
results. It is usually considered that radiographic de-
generation and/or symptomatic degeneration occurs
in the upper or lower adjacent segment. The annual
incidence of ASD was reported to be approximately
9.8–86.1% in the literature [7, 8]. Studies have shown
that advancing age is an independent risk factor for
ASD and that aging patients have more obvious
degenerative discs, with associated symptoms. In
addition, cement-augmented pedicle screw instrumen-
tation (CAPSI) has often been used in elderly people
with osteoporosis to increase the pullout strength of
the interface between pedicle screws and cancellous
bone. None of the previous studies have dealt with
biomechanical comparisons of different volumes of
polymethylmethacrylate (PMMA) used in osteoporotic
lumbar vertebrae over adjacent segments.
The aim of this study was to develop a non-linear

finite element (FE) model capable of simulating osteo-
porotic and fused lumbar spine biomechanics. The
purpose is to describe how the PMMA volume used
in single- or double-level fixation alters the adjacent
discs behavior. Seven different finite element models
were generated to compare the range of motion
(ROM) and the stress of the intervertebral disc in the
adjacent segment, including (1) an intact model, (2)
three single-level CAPSI models with different vol-
umes of PMMA (1, 1.73, and 2.5 ml), and (3) three
double-level CAPSI models with different volumes of
PMMA (1, 1.73, and 2.5 ml).

Methods
Development of the intact lumbosacral model
In this study, a healthy adult female volunteer without
any history of spinal diseases was selected and the data
of her CT scans (AQUIRRON 64, Toshiba, Japan, 250
mAs, 120 kV voltage, slice thickness of 0.625 mm) was
obtained from the department of radiology of our hos-
pital. The computed tomography scan images were
stored in Digital Imaging and Communications in the
Medicine (DICOM) format.
Anatomical 3D models of the lower lumbar vertebrae,

sacrum, and coccyx were generated using Mimics research
19.0 (Materialize, Leuven, Belgium). Subsequently, the
rough spinal model was imported into Geomagic Studio
2013 (3D Systems Corporation, South Carolina, USA) for
further operation, including delete the spikes and the fea-
tures, making triangles more uniform in size, and generate
the surface model. The smoothed model was processed
using SolidWorks 2017CAD (SolidWorks Corporation,
Concord, MA, USA). Cortical bone, cancellous bone, nu-
cleus pulposus, annulus fibrosus, facet cartilage, and verte-
bral endplates parts were constructed subsequently. The
nucleus pulposus, simulated as a fluid-like and incom-
pressible material, occupied 44% of the disc volume [9].
The thickness of the cortical bone was approximately 0.5
mm [9], and the cartilaginous endplates were modeled to
be approximately 1mm thick [10, 11]. The initial gap be-
tween the articulating surfaces was based on computed
tomography images and was approximately 0.3–0.6 mm.
The above parts were assembled into an intact lumbosa-
cral model.

Three-dimensional scanning models of pedicle screw
The 3D scanner (Solutionix Rexcan CS+ 3D scanner,
SolutioniX, Korea) was applied to scan and build the
model of the pedicle screw. The instrument used image
registration and 3D matching technology to create a
point cloud of the geometric surface by a surface scan-
ning of the target object. Then, the geometric model is
generated automatically by the software. Steps to recon-
structed the model were as follows: first, the surface of
the fenestrated pedicle screw was sprayed with the de-
veloper evenly; after that, Ezscan 2017 software was ap-
plied to scan the fixed screws automatically; after
finishing the scanning, the redundant parts of the 3D
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models were deleted using the lasso tool, and the file
was saved in STL format.
The 3D models generated by the scanner were

imported into Geomagic Studio 2013 and SolidWorks
2017CAD for further processing. Finally, the models
with realistic geometry were used for the assembly of
surgical models. The length and outer diameter of the
pedicle screws (DePuy Synthes, California, USA) were 50
and 6.0 mm, respectively (Fig. 1).

The model of bone cement
By using a random number table of CAPSI patients, a pa-
tient who was undergone fenestrated pedicle screw with
cement-augmented was randomly selected from the table.
The cement model was constructed by using the postop-
erative lumbar CT data through the above software. The

volume of bone cement was approximately 1.73cm3 and
distributed in a lump pattern. Then, the cement model
with 1.73ml PMMA was scaled to 1ml and 2.5ml.

Construction of instrument models with different
volumes of PMMA
The models of cage and rod were constructed in the
SolidWorks 2017CAD according to the physical cage
and rod. The outer diameter of the rod was 5.5 mm. The
length and height of the cage were 24 and 12mm. Sub-
sequently, unilateral transforaminal lumbar interbody fu-
sion (TLIF) was assumed in right to remove the facet
joint, facet cartilage, part of the annulus fibrosus, cartil-
aginous endplate, and nucleus. The screws, cement, rod,
and cage were integrated with the lumbosacral model to
construct six surgical models. The interbody cage is

Fig. 1 a The fenestrated pedicle screw material and picture of the 3D scanner working; b the model of the fenestrated pedicle screw

Fig. 2 The models of CAPSI following single-level lumbar interbody fusion (a)1.0 ml PMMA per screw; b 1.73 ml PMMA per screw; c 2.5 ml PMMA
per screw
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placed in the center of the intervertebral space. To con-
trol variables and maintain consistency, the consistent
location of cages, screws, rods, and bone cement were
used in the different surgical models (Figs. 2 and 3).

Loading and boundary conditions
All the FE model was imported into ANSYS Work-
bench 17.0 (ANSYS, Ltd., Canonsburg, Pennsylvania,
USA) for biomechanical testing. The material proper-
ties of cortical bone (osteoporosis), cancellous bone
(osteoporosis), endplates, nucleus pulposus, annulus
fibrosus, facet cartilage, cages, bone cement, and pos-
terior spinal instrumentation was set according to
previous studies (Table 1) [10, 12, 13]. The ligaments
of the spine were simulated using tension-only and
nonlinear spring elements [14]. The contact type of
the facet joint was defined as “frictional”, and the
friction coefficient was set at 0.1. The remaining bod-
ies were defined as the “bonded” mode [11]. To reach
a more accurate calculation, the tetrahedron mesh
was used and the character of mesh was set up ac-
cording to previous reports: the dimension of the
joint cartilage mesh was 0.5 mm, while that of the
other bodies was 2.0 mm. Finally, the loading and
boundary conditions of the six surgical models were
set up [10, 13]: The sacroiliac joint was bilaterally
fixed with all degrees of moment restricted through-
out the whole analysis. a vertical compressive force of
150 N was used on the upper surface of L3, and a 10
Nm moment was applied along the radial direction in
flexion, extension, left lateral bending, right lateral
bending, left rotation, and right rotation. The ROM,

the disc stress at L3–4, and inferior articular process

Fig. 3 The models of CAPSI following double-level lumbar interbody fusion (a)1.0 ml PMMA per screw; b 1.73 ml PMMA per screw; c 2.5 ml
PMMA per screw

Table 1 Material properties used in finite-element model

Material Properties Young’s Modulus (E:
MPa)

Poisson’s Ratio
(μ)

Osteoporotic cortical bone 8040 (67% of normal) 0.3

Osteoporotic cancellous bone 34 (34% of normal) 0.2

Cartilage 50 0.3

Endplate 1000 0.3

Annulus fibrosus 4.2 0.45

Nucleus pulposus 1 0.499

Ligament

Anterior longitudinal 20 0.3

Posterior longitudinal 20 0.3

Transverse 59 0.3

Ligamentum flavum 19.5 0.3

Interspinous 12 0.3

Supraspinous 15 0.3

Capsular ligament 7.5 0.3

Spinal instrumentation (titanium
alloy)

110,000 0.28

Bone cement (PMMA) 3000 0.4

Spinal cage
(polyetheretherketone)

3600 0.25

PMMA Polymethylmethacrylate
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stress at L3 were recorded to make a biomechanical
comparison of different volumes of PMMA in adja-
cent segments.

Results
We compared our range of motion (ROM) results with
those experimental data conducted by Yamamoto et al.
[15]. The ROMs of different segments were in accord-
ance with the previous literature under flexion-
extension, lateral bending, and rotation loads (Table 2).

Range of motion
As shown in Fig. 4, the instability of the adjacent disc was
accentuated by the CAPSI. The ROM at L3–4 increased
in all motion cases to compensate for the reduction in the
fixed segment. With the increased volume of PMMA, this
effect was slightly magnified, reaching the highest ROM in
flexion movement for both the single- and double-level
lumbar interbody fusion models (Fig. 4). The variation of

Table 2 Comparison of ROM between the intact model and
the in vitro study at different levels

Flexion Extension Bending Rotation

L3-L4 (°)

The intact model 6.66 5.41 5.33 1.64

Yamamoto et al 6.1 3.89 4.3 1.9

L4-L5 (°)

The intact model 7.29 4.19 5.23 2.61

Yamamoto et al 7.1 4 4.1 1.8

L5-S1 (°)

The intact model 7.35 3.95 3.43 1.86

Yamamoto et al 7 4.8 3.7 1.00

Fig. 4 The ROM of adjacent segments following single (a) and double-level (b) lumbar spinal fusion
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ROMs in the double-level lumbar interbody fusion models
was more evident, particularly in rotation. The calculated
data showed that the ROM at L3–4 was nearly unaffected
by different volumes of PMMA in both single-level and
double-level fusion models.

Stress of the disc
Attending to the peak von Mises stress of the disc, com-
pared with the surgical models, the disc stress for the in-
tact model was still lower in all motion modes. Flexion
and lateral bending movement were the worst motion
modes in CAPSI models, as in the ROM analysis, for the
upper adjacent disc. Although the disc stress increased
in the CAPSI models under all loading conditions, the
results were similar for different volumes of PMMA.
The results showed that the PMMA volume did not
have a significant effect on the adjacent disc (Fig. 5). The
peak von Mises stress of the disc in the double-level

CAPSI model with different volumes of PMMA (1, 1.73,
and 2.5 ml) were calculated and are shown in Fig. 6.

The stress of facet
The maximum stress in the inferior articular process
(L3) is displayed in Fig. 7. The facet stress of surgical
models was slightly higher than that of the intact model.
Similarly, with a higher dose of injected PMMA, the
facet stress was increased, while the gap among different
models was still narrowed.

Discussion
With advances in surgery and anesthesia, posterior lum-
bar fusion and pedicle screw instrumentation have been
used progressively more often in aged patients with lum-
bar degenerative disease by spine surgeons. However,
screw loosening, migration, and back-out is the most
common postoperative complication of the pedicle
screw, which usually results in painful nonunion,

Fig. 5 The disc stress of adjacent segments following single (a) and double-level (b) lumbar spinal fusion
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progressive kyphosis, and revision surgery [16]. Clinical
studies have reported an overall instrumentation failure
rate of 1 to 15% in ordinary patients, even 10 to 62.8%
in patients with osteoporosis [17–20]. Reports in the
surgical literature indicate that CAPSI has been widely
used to enhance fixation strength to improve pedicle
screw stability in osteoporotic spines [21]. However, pre-
vious reports also showed that a rigid instrument may
grossly alter the physiologic load transmission at the in-
strumented level and has a cascading degenerative effect
over the adjacent discs [22, 23].
It is generally agreed that ASD can be divided into

radiologic adjacent segment degeneration (ASDeg) and
adjacent segment disease (ASDis). Studies have docu-
mented a rate of clinical ASDis between 2 and 12.2% at
different follow-up periods [24, 25]. For patients with
ASDis who underwent revision, the satisfaction rate was
approximately only 54%, which is significantly lower than
that of other patients (83%) [26]. In addition, the initial

disc degeneration of adjacent segments in elderly patients
was more severe than that in younger patients, which has
been reported to increase the incidence of ASD. Thus, for
the study we report here, we planned to clarify the effect
of different volumes of PMMA on ASD among aged pa-
tients and to provide a useful reference to spinal surgeons
when considering CAPSI for early patients.
Finite element analysis can accurately characterize the

complex biomechanical mechanism of the spine and
clearly show the stress distribution of each part. Proper
geometric characteristics of models are essential for the
accurate outcome of FE analysis. In previous finite elem-
ent studies, the three-dimensional solid models of the
pedicle screw and bone cement were constructed by
using SolidWorks or Hypermesh software [27, 28],
which cannot accurately simulate the characteristics of
the material object. Therefore, in the current study, the
threaded pedicle screw (Fig. 1) and lumpy bone cement
were constructed to be realistic with a 3D scanner and

Fig. 6 The peak von Mises stress distribution of L3–4 disc in double-level CAPSI model with different volumes of PMMA
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the patient’s CT data, respectively. In addition, lumbar
degenerative diseases such as lumbar spinal stenosis
occur mostly in the L4-S1 segment. Biomechanical ex-
periments found that both solid and fenestrated screws
can significantly increase the pull-out force in cement-
augmented pedicle screw fixation [16]. And fenestrated
screws were used more commonly in CAPSI. Thus, this
study used a model of L4–5/ L4-S1 segmental fusion
and fenestrated screws fixed to analyze the effect of the
volume of PMMA after CAPSI.
In this study, to distinguish the influence in the adja-

cent discs, the ROM, disc stress, and facet stress were
compared with the intact value. An increase in the
ROM, disc stress, and facet stress were found in adjacent
segments in all loading directions that were more pro-
nounced in the double-level CAPSI model with 2.5 ml
PMMA (the increasing stress on disc and facet may be
related to the increasing segmental instability). However,

the variation in single- and double-level CAPSI models
was similar for various volumes of PMMA (1ml, 1.73
ml, and 2.5 ml). Although CAPSI increases the risk of
adjacent segment degeneration, this study did not find
meaningful associations between ASD incidence and the
volumes of PMMA. Otherwise, experimental data have
reported that a cement volume between 1.0 and 3.0 ml
significantly improves screw stability, whereas a volume
beyond 3.0 ml does not increase the purchasing strength
linearly but results in an increase of cement leakage [21,
29]. Therefore, within a certain range, increasing the vol-
ume of PMMA does not significantly affect the stability
of adjacent segments, and PMMA volumes between 1.0
ml and 2.5 ml can be selectively used according to differ-
ent degrees of osteoporosis.
This computational study was based on finite element

analysis and has some limitations. First, because the
scanning accuracy of the 3D scanner in the uneven and

Fig. 7 The facet stress of adjacent segments following single (a) and double-level (b) lumbar spinal fusion
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subtle parts of the screw (such as the screw thread) is in-
sufficient, further processing is required in the scanned
models by Geomagic Studio 2013 and SolidWorks soft-
ware, and the extra processing may result in a modicum
of distortion in the model. Furthermore, several simplifi-
cations were necessary for creating the finite element
model, such as the characteristics of ligaments, para-
spinal muscles, and body weight, which also limited the
results. Otherwise, it is difficult to accurately simulate
the interaction between trabecular bone and bone ce-
ment. Therefore, further cadaver studies and clinical ob-
servations are necessary to reach a more precise
conclusion.

Conclusion
The observed results suggested that CAPSI could in-
crease the incidence of disk degeneration in the adjacent
segment, while within a certain range, different volumes
of PMMA provided an approximate impact over the ad-
jacent segment degeneration. Clinically, PMMA volumes
between 1.0 ml and 2.5 ml can be selectively used ac-
cording to different degrees of osteoporosis.
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