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Abstract: This research work extends the fixed interval smoothing based on the joint integrated track
splitting (FIsJITS) filter in the multi-maneuvering-targets (MMT) tracking environment. We con-
tribute to tackling unknown dynamics of the multi-maneuvering-targets (MMT) using the standard
kinematic model. This work is referred to as smoothing MMT using the JITS (MMT-sJITS). The
existing FIsJITS algorithm is computationally more complex to solve for the MMT situation because
it enumerates a substantial number of measurement-to-track assignments and calculates their pos-
teriori probabilities globally. The MMT-sJITS updates a current target track by assuming the joint
(common) measurements detected by neighbor tracks are modified clutters (or pretended spurious
measurements). Thus, target measurement concealed by a joint measurement is optimally estimated
based on measurement density of the modified clutter. This reduces computational complexity and
provides improved tracking performance. The MMT-sJITS generates forward tracks and backward
tracks using the measurements collected by a sensor such as a radar. The forward and backward
multi-tracks state predictions are fused to obtain priori smoothing multi-track state prediction, as
well as their component existence probabilities. This calculates the smoothing estimate required to
compute the forward JITS state estimate, which reinforces the MMT tracking efficiently. Monte Carlo
simulation is used to verify best false-track discrimination (FTD) analysis in comparison with existing
multi-targets tracking algorithms.

Keywords: component existence probabilities; false-track discrimination; multi-maneuvering-targets;
smoothing; target existence probabilities

1. Introduction

We investigate the multi-maneuvering-target (MMT) tracking problem which attained
huge awareness in recent studies. Many MMT tracking systems use infinite resolution
sensors such as radar and sonar to track targets in a difficult, cluttered environment [1].
However, these types of sensor do not have prior knowledge on the target which has a
low probability of detection PD. The sensor detects and produces uncertain measurements
returned by both the real target and the other random object’s sources (such as reflections
from terrain). The clutter measurements returned by the random sources concealed the
targets so that the surveillance scenario becomes complex.

The multi-target tracking (MTT) algorithms generate the tracks subjected to the avail-
able sensor measurements with consequences in the true track (real target) and the false
track (clutter). To discriminate the tracks, a widely used false-track discrimination (FTD)
technique was developed which mainly identified the detection of targets to confirm the
target tracks [2]. The FTD calculates a track quality measure based on the target existence
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probability. In [3], the authors have developed the algorithm referred as an integrated prob-
abilistic data association (IPDA) which standardized the equation of the target existence
probability. The conventional multi-target algorithms such as the joint probabilistic data
association [4,5], joint IPDA (JIPDA) [6], and the joint integrated track splitting (JITS) [7]
develop a cluster of multi-tracks and detected joint measurements. The joint data (measure-
ment) association implies the shared (common) measurements associated to different tracks.
The joint measurement does not guaranteed that a measurement belongs to a target; in fact,
if it finds and detects a target measurement, there are always possibilities of changing the
measurement to another target. Therefore, this joint data association method enumerates a
substantial number of measurements-to-tracks assignments and obtains the corresponding
probabilities of detected measurements as well as their data associations. The number of
assigned hypotheses extend in a combinatorial way cardinality with a number of cluster
tracks and their measurements. This makes the MMT system practically difficult to imple-
ment. In addition, the JITS employed an integrated track splitting filter (ITS) [8] in cluster
formation and evaluation. The ITS filter partitions a track into number of components
which grows exponentially in each scan. Another multiple hypothesis tracking method was
developed in [9], which finds the global measurement-to-associations by considering all
measurements and tracks, and thus develops a large number of measurement hypothesis.
These intractable mathematical complexities were solved using the linear multi-target (LM)
tracking approach [2]. The LM is a suboptimal MTT algorithm which directly converts sin-
gle target tracking method such as IPDA and ITS into the MTT algorithm by incorporating
the joint measurements as a modified clutter measurements. In brief, the target detection
measurement being followed by neighbor tracks acts as modified clutter and thus, a current
track state estimation is updated in the coordinates of modified clutter measurement. For
example, the LM based on the IPDA and ITS were investigated in [10–12]. Except [4,5,9],
all reference algorithms provide the measure of track quality for FTD evaluation.

We apply the smoothing method to improve the target state estimate in the past scan
by using the measurements received from upcoming scans compromising a predefined
smoothing-time delay [2,13]. The most widely used smoothing approaches subjected to the
standard joint probabilistic data association algorithm [14], multiple hypothesis smoothing fil-
ter [15], and smoothing with probability density [16] were invented in the multi-target tracking
situation but they lack the capability to achieve FTD. Many researchers developed smoothing
algorithms using the JIPDA and JITS without discussing the maneuvering dynamics of the
targets such as the fixed-interval smoothing subjected to the JIPDA (FIsJIPDA) [17] and to
the JITS (FIsJITS) [18]. Both FIsJIPDA and FIsJITS outperformed the earlier fixed-interval
smoothing JIPDA [19] and smoothing JITS [20].

We have investigated that the optimal smoothing methods in the MTT environment,
such as FIsJIPDA and FIsJITS, face a lot of mathematical complexities due to the procedure
of joint data association. Therefore, in this paper, we integrate the FIsJITS feasible joint
measurement events (FJEs) with the LM method by considering joint events as modified
clutter measurements and develop a new fixed measurement interval smoothing algo-
rithm called smoothing multi-maneuvering-targets based on JITS (MMT-sJITS). This new
contribution makes the proposed MMT-sJITS simple in a algorithmic structure with less
computational complexity. The MMT-sJITS employ JITS in forward-time direction (fJITS)
and backward-time direction (bJITS) separately to fuse their predictions. The MMT-sJITS
generates tentative forward JITS (fJITS) tracks and develops a validation gate based on
the backward measurements without using the sensor measurements, because the back-
ward measurements are predicted subject to the sensor measurements. In contrast with
existing algorithms, the MMT-sJITS does not use joint data association for MMT state
estimation. The priori smoothing predictions followed by fusion process are obtained
to select the smoothing validation measurements from the sensor set of measurements.
These smoothing measurements often consist of the joint measurements scenario; therefore,
the weighted posteriori smoothing probabilities of these joint smoothing measurements
are evaluated to determine modified clutter measurement densities in the coordinates of
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the current detected measurement. This calculates both the MMT-sJITS and fJITS track
estimates in each scan. Ultimately, both the MMT-sJITS and fJITS track are refined using the
smoothing validation measurements. The MMT-sJITS track becomes robust due to fJITS
track reinforcement in each scan for MMT situation in clutter. For algorithm implementa-
tion, we employ the standard nearly constant velocity kinematic model without utilizing
any computationally expensive type of maneuvering models (such as discussed by [21]).
Monte Carlo simulations are used to verify the smoothing and FTD results of MMT-sJITS
in cluttered environment.

2. Target Trajectory Model

We have assumed that the target state xτ
k (where τ denotes the label of the target as

well as the track and k denotes the scan index) is a random variable and the target existence
χτ

k is a random probabilistic event. It is also assumed that a tracking sensor such as radar
receives at most one measurement per radar scan with a low probability of target detection
PD. Without loss of generality, we supposed that a MMT tracking system measures position
and velocity vectors in the two-dimensional surveillance environment. However, there is
no limitation to utilize the algorithm in the three-dimensional environment, such as the one
which was developed based on the fixed lag smoothing IPDA in [22]. The MMT system
estimates the target state xτ

k without a priori information on its maneuvering dynamics.
The τth target state prediction linearly propagates in each scan k; for example, the state
prediction propagating from k− 1 to k is expressed by:

xτ
k = Fk−1xτ

k−1 + vk−1, (1)

where Fk−1 = T[I2×2, I2×2; O2×2, I2×2] denotes the state propagation matrix, vk−1 denotes
target model white noise that has a zero mean and a covariance Qk−1, T denotes a scan
time, I2×2 indicates the 2× 2 identity matrix, and O2×2 indicates the 2× 2 zeros matrix.
The sensor measures a target position in each scan k by:

zτ
k = Hkxτ

k + wk, (2)

where Hk = [I2×2, O2×2] denotes state position measurement matrix and wk represents
white Gaussian sensor noise that has a zero mean and a covariance Rk.

The measurement set collected by a sensor in kth scan is represented by Yk. Due to
measurement uncertainties in the cluttered environment, the sensor could lose a target
and follow a clutter. The clutter measurement is formed using a non-homogenous Poisson
method [23] that contaminates the target measurement. We have assumed a known clutter
measurement density of the ith measurement Yk,i; that is, ρk,i ≡ ρ(Yk,i).

3. Smoothing Joint Integrated Track Splitting Algorithm

This section proposes a new integrated smoothing method which integrates the FIsJITS
using a modified clutter measurement density to smooth the multi-maneuvering-targets
in clutter (referred as MMT-sJITS algorithm). An important contribution of the proposed
method is to improve the weakness of the FIsJITS algorithm for MMT in clutter. We have
assumed the overlapped measurement interval [17], which consists of N − k + 1 scans.
The block diagram of the MMT-sJITS resembles a feedback tracking loop which obtains
the smoothing state estimate to estimate a forward track state estimate, as illustrated in
Figure 1. The MMT-sJITS uses the following subscript notations, which define the scan
index and conditioning on the available measurements:

• b ≤ N: b denotes the backward scan index and N denotes the last scan index of the
fixed interval [b : N];

• b + 1|b + 1 denotes the current scan and current scan measurement in a backward
direction; for example, x̂τ,c

b+1|b+1 (where, superscript τ, c denotes the track component
and an accentˆ(hat) indicates a state estimate) is the backward state estimate obtained
in scan b + 1 conditioning on the measurements set Yb+1;
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• b|b + 1 denotes the next scan time b, but conditioned on the previous backward scan
b + 1; for example, x̄τ,c

b|b+1 (where, an accent ¯ (bar) indicates a state prediction) is
the backward state prediction obtained based on the measurements set Yb+1 and
propagated to the next scan b;

• k|k− 1 denotes the next scan k in forward direction but conditioned on the previous
scan k− 1; for example, x̄τ,c

k|k−1 is the forward state prediction obtained in previous
scan k− 1 based on the previous scan measurements set Yk−1, which now propagated
to the next scan k;

• k|N\k denotes a current forward scan and conditioning on the last scan measurements
set YN up to Yk+1, and not including measurements set of scan Yk, which is used to
show the fusion of forward and backward multi-tracks (e.g., x̄τ,c

k|N\k is the fused priori
smoothing state prediction in scan k, conditioned on YN excluding Yk);

• k|N denotes the current scan in a forward direction, conditional on the last scan
measurements set YN up to current scan measurements set Yk; for example, x̂τ,c

k|N is the
smoother state estimate obtained in scan k conditioning on the measurements set up
to YN , including the measurements set Yk;

• k|k denotes the current scan and conditioning on current scan measurements set Yk in
a forward direction; for example, x̂τ,c

k|k is the forward state estimate obtained in scan k
conditioning on the measurements set Yk;

• k ≤ N/2 indicates that the smoothing state statistics is evaluated for up to half of the
fixed interval [k : N/2, N/2 + 1 : N], so that the next overlapped fixed interval can be
processed starting from scan k = k + N/2 + 1.

Figure 1. Block diagram of the MMT-sJITS algorithm.

Figure 1 clearly illustrates the flow of the MMT-sJITS algorithm. First, the backward
loop is generated to obtain the bJITS multi-track state estimation and prediction recursively
from the Nth scan to bth scan. Later, fJITS initializes each one of the forward multi-tracks
with corresponding state prediction in scan k − 1 and propagates it to the fusion block.
In the fusion, each fJITS state prediction develops a validation gate in the coordinates of the
validated backward state prediction, assuming all backward multi-track state predictions as
a set of measurements under the fJITS framework in scan k|N\k. This produces the multiple
numbers of true pairs of fusion components, referred to as priori smoothing component
predictions, which are associated with the validated backward measurements. These priori
smoothing predictions select a subset of the smoothing validation measurements from
the measurements set Yk to obtain the MMT-sJITS state estimation as well as fJITS state
estimation. A feedback loop is generated to update the fJITS based on the smoothing
statistics, which produces the forward multi-track state prediction at scan k− 1. Similarly,
a feedback-loop continues until scan k ≤ N. At each scan k in the interval [k : N/2], a
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chi-squared statistical test is performed to verify the true value of the smoothed state esti-
mate [2]. Finally, following the loop of next overlapped measurement interval k + N/2 + 1,
we obtained the MMT-sJITS output statistics recursively in each scan k.

3.1. Backward Joint Integrated Track Splitting (bJITS)

The MMT-sJITS applies the JITS [7] algorithm in the reverse chronological order of
the measurement interval [b, N], where b indicates a backward scan. An interval consists
of Yb = [Yb, Yb+1, . . . , YN ] measurements set, where YN denotes the measurements set
collected by a sensor in the last scan index N of the corresponding interval. The backward
tracks are initialized using each pair of measurements collected from two successive sets of
measurements (two-point distance method [2]). The tracks are propagated from scan b + 1
to scan b in the form of track components using the following Kalman filter propagation
equation [24,25]:

x̄τ,c
b|b+1 = F−1

b+1x̂τ,c
b+1|b+1

P̄τ,c
b|b+1 = F−1

b+1P̂τ,c
b+1|b+1F−t

b+1 + Qb+1
, (3)

where Fb+1 = F−1
k−1, Qb+1 = F−1

k−1Qk−1F−t
k−1, and superscript t indicates a transpose. Each

new backward track carries an initial probability of target existence P{χτ
b+1|Yb+1} and an

initial component existence ζτ,c
b+1|b+1 = 1.

The probability of target existence is a track quality measure with respect to a track τ,
which is recursively updated and propagated using a Markov Chain One model [2,3], that
is defined by:

P{χτ
b | Yb+1} = αP{χτ

b+1 | Yb+1}, (4)

where α represents the state transition probability of the target which implies the time
update of the priori probability of target existence event from scan b + 1 to the current
scan b.

Each bJITS creates a validation gate in the bth scan using measurement selection crite-
ria [2] so that each τth track collects a subset of the components validation measurements
yτ,c

b,i from the set of measurement Yb using:

(
Yb,i −Hbx̄τ,c

b|b+1

)t
(Sb)

−1
(

Yb,i −Hbx̄τ,c
b|b+1

)
≤ γ, (5)

where Sb = HbP̄τ,c
b|b+1Ht

b + Rb denotes the covariance of the sensor measurement residual
and γ denotes the maximum threshold of the validation gate which is determined by
the gating probability PG = (1 − e)−0.5γ [2,13]. The value of PG should be maximum
such as 0.999, which corresponds to the threshold value of 13.5. Thus, a residue of the
measurements set in the coordinates of the state prediction must be equal to or below the
threshold 13.5 to select the subset of validation component measurements from the set
of measurements received from the sensor. Because the algorithm does not know priori
information on the sensor measurements, therefore, the threshold 13.5 is kept the same
for both target as well as clutter tracks. The selected component validation measurement
computes the corresponding component likelihood as follows:

lτ,c
b,i = 1√

2π|Sb |
e−0.5

(
yτ,c

b,i −Hb x̄τ,c
b|b+1

)t
S−1

b

(
yτ,c

b,i −Hb x̄τ,c
b|b+1

)
. (6)

Equation (6) is used to calculate the backward track likelihood of the selected mea-
surement yτ,c

b,i as expressed by:
lτ
b,i = ∑

cτ

ζτ,c
b|b+1lτ,c

b,i . (7)

The bJITS creates a cluster of tracks where the measurements are mapped to the tracks
using Equation (8) and form a feasible joint event (FJE) εi for i ≥ 0. The bJITS allocates only
joint (common) measurements within one cluster and uncommon measurements to another



Sensors 2022, 22, 4759 6 of 16

cluster, so that each cluster is processed independently [19]. Therefore, MMT-sJITS ignores
the entire joint data association evaluation method of the FIsJITS and obtains the weighted
posterior probability of the FJE with respect to the τth track using the Equation (8). Here,
for i = 0, lτ

b,i = 0, and thus, p
(
ετ

i |Yb
)
= G−1 ∏

τ∈t0(ε
τ
i )

(
1− PDPGP

{
χτ

b |Yb+1
})

.

p
(
ετ

i |Yb
)
= G−1 ∏

τ∈t0(ε
τ
i )

(
1− PDPGP

{
χτ

b |Yb+1
})
×

∏
τ∈ti(ε

τ
i )

PDPGP{χτ
b | Yb+1}

lτ
b,i/ρb,i

mb
∑

i=1
lτ
b,i/ρb,i

 , (8)

where t0 indicates that the measurement was not selected by a track and ti
1 indicates that

the track has a ith measurement, mb indicates the number of validation measurements
selected by Equation (5) and G represents the normalized constant factor that must satisfies:

∑
ετ

i

{ετ
i | Yb} = 1. (9)

The modification in the probabilistic equation (obtained in Equation (8)) avoids the
influence of the measurements originated from other targets by assuming them as modified
(pretended) clutter measurements. This significantly reduces the computational complexity
in MMT-sJITS algorithm. Consider that the cluster track labeled with σ (τ /∈ σ) is act-
ing as modified clutter track in a cluster with a modified clutter measurement density
expressed by:

µτ
b,i = ρb,i +

σ=τn

∑
σ=1
σ 6=τ

lσ
b,i p
(
εσ

i |Yb
)(

1− p
(
εσ

i |Yb
)) , (10)

which is calculated in the coordinates of the validated measurement yτ,c
b,i with respect to

the τth track, τn represents the number of cluster tracks. Equation (10) is used to compute
the backward track likelihood ratio λτ

b for i > 0 as expressed in Equation (11). However,
for i = 0, λτ

b = 1− PDPG.

λτ
b = 1− PDPG + PDPG ∑

i>0

lτ
b,i

µτ
b,i

. (11)

Each ith measurement is a mutually exclusive, so that only one validated measurement
corresponds to the potential τth target with a posteriori probability of target existence
given by:

P{χτ
b |Yb} =

λτ
b P
{

χτ
b |Yb+1

}
1−

(
1− λτ

b
)

P
{

χτ
b |Yb+1

} . (12)

Simultaneously, each validated measurement forms a new track component with
corresponding component existence probability expressed by:

ζτ,c
b|b =

ζτ,c
b|b+1

Λτ
b


1− PDPG; i f i = 0

PDPG
lτ,c
b,i

µτ
b,i

; i f i > 0
, (13)

The predicted bJITS track components (obtained from Equation (3)) are estimated
using the Kalman filter equation of estimation [24,25]:

x̂τ,c
b|b,i = x̄τ,c

b|b+1 + Kb

(
yτ,c

b,i −Hbx̄τ,c
b|b+1

)
P̂τ,c

b|b,i = P̄τ,c
b|b+1 −KbHbP̄τ,c

b|b+1

, (14)
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where Kb = P̄τ,c
b|b+1Ht

bS−1
b represents the Kalman gain measured in scan b. Similarly, the back-

ward multi-tracks state estimations are calculated recursively using Equations (3)–(14) in each
scan b.

3.2. Forward Joint Integrated Track Splitting (fJITS)

When backward scan b arrives at the first scan k scan of an interval [b ≥ k, N], the MMT-
sJITS initializes the multi-tracks using a forward-running JITS (fJITS). The fJITS uses a
two-point distance [2] method to initialize the tracks based on two successive measurement
sets; that is, Yk = [Yk−1, Yk]. Each fJITS track carries an initial probability of target existence
P{χk−1 | Yk−1} and an initial probability of component existence ζτ,c

k−1|k−1 = 1. The fJITS
track components state propagates to scan k using Equation (15).

x̄τ,c
k|k−1 = Fk−1x̂τ,c

k−1|k−1
P̄τ,c

k|k−1 = Fk−1P̂τ,c
k−1|k−1Ft

k−1 + Qk−1
. (15)

The fJITS creates a validation gate by exploiting backward multi-track components
state predictions calculated in scan k = b as the measurements set. Thus, the measurement
selection criteria [2] are used to validate a backward component for fusion in a forward
track. That is: (

x̄τ,c
b|b+1 − x̄τ,c

k|k−1

)T
(sk)

−1
(

x̄τ,c
b|b+1 − x̄τ,c

k|k−1

)
≤ γ, (16)

where sk =
(

P̄τ,c
b|b+1 − P̄τ,c

k|k−1

)
denotes the covariance of the backward measurement resid-

ual. As a result, the MMT-sJITS produces a selected number of validated pairs composed
of forward and backward component state predictions for fusion in the validation gate.
The priori smoothing track component state prediction accompanied by its covariance
associated to the validated backward track τ are expressed by the following equations [26]:(

P̄τ,c
k|N\k

)−1
=
(

P̄τ,c
b|b+1

)−1
+
(

P̄τ,c
k|k−1

)−1
, (17a)

x̄τ,c
k|N\k = P̄τ,c

k|N\k

[(
P̄τ,c

k|k−1

)−1
x̄τ,c

k|k−1 +
(

P̄τ,c
b|b+1

)−1
x̄τ,c

b|b+1

]
. (17b)

In addition, if any of the bJITS track fails to satisfy Equation (16), then it becomes
equal to an associated forward track state component prediction. That is, [xτ,c

k|N\k, Pτ,c
k|N\k] =

[xτ,c
k|k−1, Pτ,c

k|k−1]. Each fused state component calculates the smoothing priori component ex-
istence probability by utilizing the associated priori bJITS track state component probability
in the following equation [26]:

ζτ,c
k|N\k =

ζτ,c
k|k−1

Λτ
N\k


1− Pτ

DPG; i f τ is not validated

Pτ
DPGζτ,c

b|b+1

lτ,c
N\k,i

f τ
b,i

; i f τ is validated
. (18)

where f τ
b,i = τn/A is the assumed total number of backward tracks per unit area of the

surveillance region A, and Pτ
D = 1− (1− Pτ

D)
N−k+1 represents the assumed probability of

target existence that determines the existence probability either in k + 1 or in k− 1. Based
on these assumptions, the priori smoothing track likelihood ratio λτ

N\k with respect to
fusion track τ is expressed by:

λτ
N\k = 1− PDPG + PDPG ∑

i>0

lτ
N\k,i

f τ
b,i

, (19)
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where lτ
N\k,i represents the likelihood of the fusion track in the coordinates of the selected

backward measurement. We have:

lτ
N\k,i = ∑

cτ

ζτ,c
k|N\klτ,c

N\k,i, (20)

where lτ,c
N\k,i represents the hybrid component likelihood measurement of fJITS and bJITS

paired components as expressed by:

lτ,c
N\k,i =

1√
2π|sk |

e−0.5
(

x̄τ,c
b|b+1−x̄τ,c

k|k−1

)t
s−1

k

(
x̄τ,c

b|b+1−x̄τ,c
k|k−1

)
. (21)

The MMT-sJITS calculates a priori smoothing τth target existence probability by using
Equation (19) in:

P
{

χτ
k |YN\k

}
=

Λτ
N\kP

{
χτ

k |Yk−1
}

P
{

χτ
b |Yb+1

}
1−

(
1−Λτ

N\k

)
P
{

χτ
k |Yk−1

}
P
{

χτ
b |Yb+1

} . (22)

Equation (22) modifies the conventional equation of the probability of target exis-
tence [2,3] by utilizing the τth potential target existence probability that was calculated
by a validated backward track. The reason behind it is obvious since the τth target was
already identified in the bth scan using the bJITS iteration followed by Equation (14).

3.3. MMT-sJITS Smoothing Track Update

The MMT-sJITS uses Equation (17) in the validation selection criteria [2] to find the
residual of the sensor measurements in the validation gate and selects a subset of smoothing
track component validation measurements ỹτ,c

k,i (where tilde accent denotes smoothing)
from the set of Yk by using:(

Yk − x̄τ,c
k|N\k

)t(
S̃k
)−1
(

Yk − x̄τ,c
k|N\k

)
≤ γ, (23)

where S̃k = HkP̄τ,c
k|N\k Ht

k + Rk represents the covariance of the measurement residual. Each

feasible smoothing validated component measurement ỹτ,c
k,i has a smoothing component

likelihood l̃τ,c
k,i with respect to the track τ as expressed by:

l̃τ,c
k,i = 1√

2π|S̃k |
e−0.5

(
ỹτ,c

k,i −Hk x̄τ,c
k|N\k

)t
S̃−1

k

(
ỹτ,c

k,i −Hk x̄τ,c
k|N\k

)
, (24)

which computes the smoothing track likelihood l̃τ
k,i of the smoothing measurement:

l̃τ
k,i = ∑

c
ζτ,c

N\k l̃τ,c
k,i . (25)

The MMT-sJITS maps feasible outcomes ỹτ,c
k,i to the smoothing track by making the

feasible joint measurement events and evaluates their weighted a posteriori probabilities. That
is, if the τth target is detected and its measurement zτ

k is selected in the validation gate (zτ
k ∈

ỹτ,c
k,i ) then the weighted smoothing a posteriori probabilities of the feasible joint measurement

events p̃(ετ
i |YN) being followed by a track τ is computed by using Equations (22) and (25)

in Equation (8) replacing P
{

χτ
b |Yb+1

}
and lτ,c

b,i , respectively. The MMT-sJITS uses p̃(ετ
i |YN)

and l̃τ
k,i to obtain the smoothing modified clutter measurement density being observed by a

smoothing track τ. We have:

µ̃τ
k,i = ρk,i +

σ=τn

∑
σ=1
σ 6=τ

l̃σ
k,i p̃(ε

σ
i |YN)(

1− p̃(εσ
i |YN)

) . (26)
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Similar to the bJITS iteration, the MMT-sJITS calculates a posteriori smoothing τth
target existence probability by using:

P{χτ
k |YN} =

λ̃τ
k P
{

χτ
k |YN\k

}
1−

(
1− λ̃τ

k
)

P
{

χτ
k |YN\k

} , (27)

where λ̃τ
k represents the likelihood ratio of the smoothing track which is obtained by using

Equations (25) and (26) in Equation (11) replacing lτ
b,i and µτ

k,i, respectively.
The MMT-sJITS uses Equation (17) in Equation (14) (replacing x̄τ,c

b|b+1 and P̄τ,c
b|b+1) based

on the validated smoothing component measurements ỹτ,c
k,i (replacing yτ,c

k,i in Equation (14))
to obtain smoothing component state estimate xτ,c

k|N and its corresponding covariance Pτ,c
k|N .

Finally, the posteriori smoothing probability of the component existence is calculated
similar to Equation (13); that is:

ζ̃τ,c
k|N = PDPG

ζτ,c
N\k l̃τ,c

k,i

µ̃k,iλ̃
τ
k

. (28)

However, if i = 0, then ζ̃τ,c
k|N = ζτ,c

k|N\k. Equation (28) is utilized to approximate the
MMT-sJITS track components using a Gaussian probability density function mean and its
covariance, respectively. We have:

x̂τ
k,N = ∑

c
ζ̃τ,c

k|N x̂τ,c
k|N,i, (29a)

P̂τ
k,N = ∑

c
ζ̃τ,c

k|N

(
P̂τ,c

k|N,i + x̂τ,c
k|N,i

(
x̂τ,c

k|N,i

)t
)
− x̂τ

k,N

(
x̂τ

k,N

)t
, (29b)

where subscript k, N indicates that the MMT-sJITS track state estimate is computed in scan
k based on the measurements provided up to scan N in an interval [k, N]. Equation (29) is
obtained recursively in each scan k to compute the MMT-sJITS output track state statistics.

Since the clusters are already formed in forward path track with the MMT-sJITS update,
the steps including measurement selection, FJE formation and posteriori probabilities of
joint measurement events are not required for the forward track state estimation. The MMT-
sJITS calculates the state estimate of the fJITS track components by utilizing the smoothing
component measurements (selected from Equation (23)) and updates the fJITS track using
the modified smoothing clutter measurement densities (obtained in Equation (26)). Hence,
refining the fJITS tracks in a smoothing fashion; that is, they are attaining more accurate
information regarding the τth target state and state existence. The fJITS computes the
track state component likelihood lτ,c

k,i of the measurement ỹτ,c
k,i in the coordinates of the

corresponding fJITS track state component prediction x̄τ,c
k|k−1 by applying Equation (24)

with subscript k|k− 1 on the component prediction. In addition, the likelihood of the fJITS
track is a weighted multiplication of the smoothing component existence probabilities and
the forward track state components likelihoods as expressed by:

lτ
k,i = ∑

c
ζτ,c

k|N ∑
c

ζτ,c
k|k−1lτ,c

k,i . (30)

Equations (26) and (30) are applied in Equation (11) to obtain the likelihood ratio λτ
k

of the fJITS track, which is used to obtain the posteriori τth target existence probability as
expressed by:

P{χτ
k |Yk} =

λτ
k P
{

χτ
k |Yk−1

}
1−

(
1− λτ

k
)

P
{

χτ
k |Yk−1

} . (31)
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The fJITS track components state estimation such as x̂τ,c
k|k and its state covariance P̂τ,c

k|k
are obtained by using the smoothing component measurements ỹτ,c

k,i and the predicted
fJITS state components (x̄τ,c

k|k+1 and P̄τ,c
k|k+1 obtained from Equation (15)) in the Kalman Filter

Equation (14). Consequently, these updated components are applied to Equation (15) for re-
cursive fJITS track propagation in each scan k. Each updated fJITS track state component cal-
culates its updated component existence probability by utilizing the Equations (26) and (28)
in the following Equation:

ζτ,c
k|k = PDPG

ζ̃τ,c
k|N lτ,c

k,i

µ̃k,iλ
τ
k

, (32)

Thus, each fJITS track becomes a powerful tool for treating the bJITS multi-tracks
as measurements and associating the backward predictions for fusion in the forward
validation gate. This not only improves the fusion of forward and backward validated
predictions but also enhance the capability of the smoothing algorithm for an efficient
multi-maneuvering-target tracking in the subsequent scans.

3.4. Implementation of the MMT-sJITS Algorithm

The proposed MMT-sJITS algorithm is implemented using the fixed overlapped mea-
surement interval, which consists of N − k + 1 scans [17,22] as illustrated in Figure 2.

Figure 2. Fixed overlapped measurement interval (Est—estimation; Pred—prediction; Fus—fusion).

Let the current fixed measurement interval starts from scan k = 1 and end with scan
k = 8; that is, the total length of this fixed interval is supposed to be N − k + 1 = 8 scans as
depicted by a blue dotted-rectangular box in Figure 2. The larger the length of measurement
interval, the better the estimation statistics. The following describes the three basic steps
used in the implementation of the fixed smoothing interval structure:

1. bJITS procedure is illustrated in the blue rectangular frame showing the iteration from
the first fixed interval. bJITS multi-track state component estimation and prediction
are computed recursively in each scan starting from the Nth to bth scan, followed by
Equations (3)–(14). The indices of backward scans and conditioning on the measure-
ments (both old and new conditioned observation data) are described in Section 3
(see Figure 1). For example, x̂τ,c

6|6 is a state component estimate and x̄τ,c
6|7 is a state

component prediction. Note that the last two scans (i.e., N − 1 and N) are used to
initialize backward tracks (two-point initialization approach [2]) in every interval.

2. fJITS multi-tracks are initialized using two successive scan measurements (e.g., k = 1
and k = 2) [2]. fJITS track state component prediction is computed using Equation (15),
which propagates linearly and performed a fusion corresponding to the selected bJITS
track components in each scan index k|N\k (e.g., x̄τ,c

3|8\3).
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3. MMT-sJITS multi-track smoothing state estimate is obtained in scan k conditioning on
YN , which indicates that the state is updated based on all measurements collected up
to the Nth scan, including the current scan k (e.g., x̂τ,c

3|8). Consequently, the validated
smoothing measurements are applied to the fJITS via feedback loop to calculate the
forward multi-track state estimation in each scan using Equations (16)–(32). Here,
x̂τ,c

3|3 is state estimation conditioning on Yk and on scan k which is propagated using
Equation (15) to obtain the state component prediction in scan k = 4 conditioning on
Y3, such as, x̄τ,c

4|3. x̄τ,c
3|2 is a state prediction obtained in scan k = 3 conditioning on scan

k = 2 and on Y2 using the track initialization process.

In each forward-time scan, the newly intialized fJITS are concatenated with existing
fJITS tracks so that both the new and estimated fJITS track components are propagated
simultaneously for fusion in each scan. The maximum smoothing is obtained when we
overlapped the current fixed measurements interval to the next interval. For example, we
have overlapped the interval at 5th scan as indicated by a red rectangular frame in Figure 2;
that is, the first half of the interval is smoothed and stored to obtain the output statistics,
and the next half is overlapped to the next four subsequent scans, making the same length
of interval (12− 5 + 1 = 8). In the next fixed interval, k = 5, 6, . . . , 12, bJITS restarts the
backward iteration using Equations (3)–(14) to obtain the multi-tracks state estimation from
scan b = 12 to b = 5. Similarly in the next interval, MMT-sJITS obtains the smoothing and
forward multi-tracks estimate in each scan and continues the overlap smoothing interval
procedure as depicted in Figure 2. At the end of the simulation, the MMT-sJITS smooths all
consecutive scans in the last measurement interval. The overlapping of the fixed interval
not only limits the smoothing time-delay but also maximizes the smoothing performance.

4. MMT-sJITS Analysis Using Simulation

The false track discrimination (FTD), root-mean square error (RMSE), and the statistics
of the multi-track retention of the proposed MMT-sJITS method are compared with the
existing MTT algorithms such as FIsJITS, JITS, FIsJIPDA, and JIPDA.

4.1. Track Component Management

The MMT-sJITS method applies the track component merging and pruning [2,26–28]
to manage the growing length of forward and backward components. These track manage-
ment approaches are not part of the algorithm; therefore, further details on both approaches
can be found in the references. The fJITS and bJITS compared the component measurement
directories from the four latest scans and merged the identical component measurement
using one Gaussian probability density function mean and its covariance. The MMT-sJITS
imposed a predefined pruning limit to delete the track components with a low component
existence probabilities that are determined from ζτ,c

k|k and ζτ,c
b|b in forward and backward

track, respectively. Because, smoothing components does not propagate, therefore, compo-
nent management procedure is not required in smoothing tracks. In the simulation analysis,
we used the same component management approach in the MMT-sJITS, FIsJITS and JITS
algorithms.

4.2. False Track Discrimination (FTD)

Without loss of generality, a tentative track becomes a confirmed track if its updated
track existence probability excelled by the confirmation threshold; or else becomes a termi-
nated track if its updated track existence probability sank by a track deletion threshold [29].
The MMT-sJITS utilizes the smoothed target existence probabilities to determine the track
quality measure required for FTD evaluation. Similarly, both fJITS and bJITS applied the
FTD method to determine the quality of their tracks. Only, confirmed fJITS and bJITS tracks
are used in the evaluation of the MMT-sJITS multi-tracks statistics. Therefore, the updated
target existence probabilities of bJITS, MMT-sJITS, and fJITS are calculated recursively by
applying Equations (12), (27) and (31) in each scan. For a fair analysis of the algorithm,
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a confirmed track remains confirmed until its updated track existence probability dips
below a deletion threshold. Because of the influence of the non-homogeneous extended
clutters, a confirmed track often reflected by a clutter. Therefore, a chi-squared statistical
criterion [2,13] is applied to the status of the confirmed track as expressed by:(

x̂τ
k,N − xτ

k

)T(
Pτ

0|0

)−1(
x̂τ

k,N − xτ
k

)
< γ , (33)

where Pτ
0|0 is the initialized covariance determined from the sensor measurement noise

and γ represents the selection threshold that depends on the false-alarm probability of
chi-squared distribution [2,13]. The two consequences are as follows:

1. Confirmed true tracks (CTTs): To achieve a CTT, a confimed track must satisfy Equa-
tion (33) with γ ≤ 20. The CTTs stay in the same status until their normalized distance
squared value (expressed by parenthesis term in above Equation) goes ahead of the
maximum threshold limit; that is, γ ≥ 40.

2. Confirmed false track (CFTs): With γ > 20, a confirmed track becomes a CFT. It is
also possible CFT becomes a CTT and vice versa. The value of γ is not fixed and can
be used differently, which depends on the situation of the surveillance scenarios and
requirements.

We assumed a point target tracking; therefore, at most one measurement belongs
to a target track. Therefore, we have utilized the auction algorithm [30] to identify and
detect only one target measurement by a CTT in each scan. The auction reference method
computes the weighted score of the normalized distance squared of the target state cor-
responding to each CTT. Each CTT passes a bid and computes the weighted score to
determine the winning bid. Thus, a CTT is associated to the τth target state smoothed
estimate with a highest bid. Further details on the use of auction method can be found
from the reference.

4.3. Output Statistics Analysis

We assume that two maneuvering targets are moving in the two-dimensional cluttered
environment, which is corrupted with random number of clutters with the measurement
density of ρk,i = 1× 10−4m−2, as shown in Figure 3.
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Figure 3. Trajectories of multi-maneuvering targets in cluttered environment.

The surveillance platform depicted in Figure 3 has a length and a width dimension of
800 m and 500 m along the x-axis and y-axis, respectively. A sensor produces a measure-
ment noise covariance Rk = 25I2×2 and tries to detect the targets with PD = 0.9. There are
36 scans with a scan time of T = 1 s composed in 500 Monte Carlo runs. Around 29,205
(58 per run in average) false forward and 39,944 (80 per run in average) false backward
tracks were generated using the two-point measurement distance equation [2] with the
assumed maximum velocity of target Vmax = 25 m/s. The two-point distance equation mea-
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sured the uniform velocity of each target, which approximately equals 15 m/s until the scan
k = 14. Later, each target is reflected by the target maneuvering dynamic corresponding to
the coordinated turn under the assumption:

FM =


1 0 sin ωT/ω −1− cos ωT/ω
0 1 1− cos ωT/ω sin ωT/ω
0 0 cos ωT −sin ωT
0 0 sin ωT cos ωT

, (34)

where FM denotes the maneuvering state propagation and ω denotes the coordinated turn
rate. Note that the algorithm does not know the value of the angular velocity of the target
ω. The turning rate velocity was calculated based on the nearly constant velocity model, as
expressed in Equations (3) and (15).

Each algorithm including the MMT-sJITS assumes the Markov Chain One model [2,3]
of the target existence event, so that the tracks are recursively updated and propagated
using the state propagation probability α = 0.98, in each scan k. Furthermore, assume that
a low initial probability of target existence 0.01 is assigned to track at its initialization scan
and the confirmation threshold of the target existence is varied to obtain almost a similar
number of confirmed false tracks (≈20) in each algorithms.

Figure 4 shows tangible FTD comparison of the algorithms. The MMT-sJITS confirms
the track (target) in scan k = 4 and shows the highest number of the confirmed true tracks
(CTTs). While other methods are lacking the improvement in the estimation which results
in higher position root-mean square estimated errors (RMSEs) as depicted in Figure 5a,b.
The FIsJIPDA, FIsJITS, and MMT-sJITS utilize the smoothing measurements for their
forward and smoothing update, which results in good FTD performance compared to
others. However, we can see the RMSEs statistics of the FIsJIPDA and FIsJITS are higher
than that of MMT-sJITS as depicted in Figure 5. Thus, the MMT-sJITS provides almost
100% efficiency in tracking from scan 10 to end scan and shows a reduced estimation error
as shown in Figures 4 and 5, respectively. The conventional non-smoothing reference
methods such as JIPDA and JITS result in the highest RMSEs. Finally, Figure 5 shows the
convergence of the algorithms at end scan k = 36 when their estimates taper off near the
end scan since they have used same set of measurements in the end scan for their iterations.
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Figure 5. Root mean square errors (RMSEs) (a) RMSE of Target 1 (b) RMSE of Target 2 .

An important conclusion from the simulation results presented in this paper and
from the one which was illustrated in FIsJITS [17] is that the execution time of FIsJITS
exponentially increases as the number of targets increases. For example, the execution time
required for FIsJITS to track three targets and five targets is 3.0 s and 7.6 s, respectively,
as discussed in [17]. In addition, the FIsJITS forms the clusters for all tracks and all
measurements in [17]. In this paper, the FIsJITS allocates only joint measurements within
one cluster and non-joint (non-shared) measurements to another cluster; each cluster was
processed independently [19]. This mainly limits the computation time but degrades
the performance of the tracking system due to unknown maneuvering dynamics of the
targets. In the comparison, the proposed MMT-sJITS integrates the MMT system with LM
method [10] and utilizes the modified clutter measurement (which plays the role of joint
measurements) to update the current target-track. Thus, the MMT-sJITS acts like a single
target tracker which significantly improved the tracking performance of the unknown
targets in a cluttered environment.

The track retention statistics of all algorithms are determined by storing the identity
number of the CTTs corresponding to each target in scan k = 17. We need to show how
much number of CTTs retained with the same track identity until scan k = 30? This implies
that the track identity of CTTs is checked before and after crossing of the multi-targets.
Each track is identified by track index τ. The track retention statistics are accumulated from
500 Monte Carlo simulation runs, as shown in Table 1.

Table 1. Retention parameters and data.

Method Case Okay Swapped Lost Result Execution Time [s]

MMT-sJITS 998 932 64 2 979 1.64
FIsJITS 981 893 75 13 970 1.72

FIsJIPDA 986 931 43 12 972 2.0
JITS 955 897 29 29 946 0.7

JIPDA 956 772 156 28 956 0.5

In the Table 1, we can define the following parameters:

• Case: a number of CTTs followed by a τth target in scan k = 17;
• Okay: a number of CTTs pursued the same τth target in scan k = 30;
• Swapped: a number of CTTs exchanged by some other target CTT τ in scan 30;
• Lost: a number of CTTs in scan 30 lost due to either track deletion because of the low

target existence or low component existence probabilities, or they became CFTs;
• Result: a number of CTTs in the final scan k = 36.
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• Execution time [s]: the average calculation time per each Monte Carlo Simulation
run that was analyzed using the MatLab R2020b software on the platform, 11th Intel
Core™i7-1165G7 (@ 2.80 GHz, 2.80 GHz).

Table 1 shows the highest number of Case, Okay, and Result, and the lowest number
of Lost in the MMT-sJITS algorithm. In the comparison, the JITS has the lowest number of
Swapped, but it also has the lowest number of Case and Okay compared to the proposed
method. The MMT-sJITS has consumed more time (1.64 s) per run compared to that
of consumed by the JITS because of the smoothing-time delay. However, MMT-sJITS
provides the significant performance in terms of multi-track retention and FTD. The FIsJITS
and FIsJIPDA digest highest CPU time per run because they were involved in lengthy
calculations of joint measurements data associations. The FIsJITS has some limitations due
to the mathematical complexities in the algorithm. Therefore, imposing the FIsJITS to track
the multi-targets in difficult surveillance situations may stop the simulation at a certain stage
due to excess memory in the available platform source. The proposed MMT-sJITS method
allowed the MMT system to avoid the enumeration of joint measurement assignments
while assuming them as modified or pretended clutters. Therefore, the computational
complexity in the MMT-sJITS is approximately linear in terms of the number of targets
and the number of measurements involved. The reason behind the highest number of
Case, Okay, and Result, and the lowest number of Lost in the MMT-sJITS, is due to its
capability to avoid the track allocation of the joint measurement associations. In addition,
the MMT-sJITS confirms the track at earliest and provides a rapid growth of smoothed
target existence probabilities in each scan. Thus, a rapid increase in the number of CTTs
was observed in the simulation results.

5. Conclusions

The MMT-sJITS extends the FIsJITS method in a multi-maneuvering-targets scenario.
Compared to existing algorithms, the MMT-sJITS does not use a multi-target joint data
association process. In the joint measurement situations, the MMT-sJITS considered the
joint cluster-measurements being followed by other cluster tracks as modified clutters, thus
avoiding the influence of joint measurement events. The proposed method utilized the
modified smoothing clutter measurement density to obtain the smoothed components state
estimate and forward JITS components state estimate. The impact of backward-running JITS
multi-tracks reinforced the forward multi-tracks to obtain the MMT-sJITS state estimation
for an effective MMT tracking. This significantly improved FTD performance and accuracy
in the estimation compared to other methods.
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