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Optimized anti‑reflection core‑shell 
microspheres for enhanced optical 
trapping by structured light beams
Vahid Shahabadi1*, Ebrahim Madadi2 & Daryoush Abdollahpour1,3

In this paper, we study the optical trapping of anti‑reflection core‑shell microspheres by regular 
Gaussian beam and several structured beams including radially polarized Gaussian, petal, and hard‑
aperture‑truncated circular Airy beams. We show that using an appropriate anti‑reflection core‑shell 
microsphere for the optical trapping by several structured light beams can dramatically enhance 
the strength of the trap compared to the trapping by the common Gaussian beam. The optimal 
core‑shell thickness ratio that minimizes the scattering force is obtained for polystyrene‑silica and 
anatase‑amorphous titania microspheres, such that the core‑shells act as anti‑reflection coated 
microspheres. We show that the trapping strength of the anti‑reflection coated microparticles trapped 
by the common Gaussian beam is enhanced up to 2‑fold compared to that of trapped uncoated 
microparticles, while the trapping of anti‑reflection coated microparticles, by the radially polarized 
beam, is strengthened up to 4‑fold in comparison to that of the trapped uncoated microparticles by 
the Gaussian beam. Our results indicate that for anatase‑amorphous titania microparticles highest 
trap strength is obtained by radially polarized beam, while for the polystyrene‑silica microparticles, 
the strongest trapping is achieved by the petal beam.

Optical tweezers (OTs)1–3 are proven as an indispensable tool for applications in various areas of science ranging 
from physics to biology such as  microscopy4,5, investigations of biological  cells6,7, nanoscale rotary  motors8,9, and 
in drug  delivery10,11. Common OTs is a single Gaussian laser beam that is highly focused at the diffraction-limited 
spot size by utilizing a high numerical aperture (NA) objective lens. A steep potential well of light intensity at 
the focus pushes the micro-, nano-particles towards the focal spot, and leads to the formation of a stable optical 
trap. This radiation pressure exerted on a particle is the consequence of the momentum-transfer of light to the 
 particle12–15. The force experienced by particles is Hookian force ( Fi = −ki�xi , i = x, y, z ) with constant, k, rep-
resenting the trap  stiffness16. A greater stiffness is an indication of a stronger trap. In general, the net optical force 
is composed of two different parts: a gradient force, that arises from the intensity gradient of the trapping beam, 
which drags the particle towards the high-intensity region, and a scattering force that pushes the particle along 
the propagation direction of the beam. Often, achieving relatively high trap strengths in transverse planes (i.e. 
perpendicular to the direction of the propagation of the trapping beam) is easier than obtaining adequately strong 
axial optical traps, and therefore the latter has been a challenging issue in the optical trapping  investigations17,18.

Optical trap stiffness can be enhanced by either using specific beam shapes or appropriate beads with engi-
neered optical properties, in such a manner to boost the gradient force or to suppress the scattering force. On 
the one hand, the use of shaped laser beams enhances the trapping forces via minimizing the light  scattering19–23. 
Examples include using circular Airy beam for enhanced trapping efficiency of Rayleigh  particles24, optical trap-
ping with Laguerre–Gaussian modes with improved axial optical forces exerted on the dielectric  particles25, opti-
cal trapping with cylindrical vector  beams21, creation of enhanced trapping forces with complex-valued Elegant 
Hermitte- and Laguerre-Gaussian laser beams compared to standard Gaussian  beams26, and effective multiple 
optical trapping with petal  beams27 . On the other hand, the optical and physical properties of the intended parti-
cle play an effective role in optical trap  enhancement28–30. For instance, using hollow gold and silver nanoparticles 
as handles in the OTs experience stronger optical  forces31, the effect of resonant mode interference on trapping of 
gold core-silicon shell nanoparticles have been  investigated32, optical forces exerted on graphene-coated dielectric 
particle under the illumination of an arbitrary optical beam have been investigated,  theoretically33, and plasmonic 
effects of gold-coated black silicon have shown enhancement of the efficiency of  OTs34.
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Dielectric microspheres have intriguing applications in  sensing35, viscosity  measurements36, thermo optical 
 switches37, and biocompatible drug  delivery38. Coated microspheres are shown to result in stronger  traps39,40, 
and therefore they have been used as handles in  OTs40. A core-shell microbead may gain anti-reflection property, 
with proper choices of materials, and a suitable core-shell diameter ratio, such that the scattering field from the 
particle is dramatically decreased, and hence a rather strong optical trap is  formed41. So far, anti-reflection coated 
polystyrene (PS)-silica and titania (anatase and amorphous) core-shells have been utilized in optical trapping by 
linearly polarized Gaussian beam, that yielded a few nano-newton optical trap  forces42–44.

In this paper, we bring together both structured beams and anti-reflection coated microspheres to be used in 
OTs. We calculate optical trapping forces exerted on core-shell microspheres of PS-silica and anatase-amorphous 
titania, under illumination by several structured beams such as radially polarized beam (RPB)45,46, petal beam 
(PB)27,47, and hard-aperture-truncated circular Airy beam (CAB)48–50, and compare them with those of a Gaussian 
beam commonly used in OTs. Titania core-shell microspheres in two phases (anatase core and amorphous shell), 
are great candidates to be used in OTs to achieve nano-Newton forces with trap stiffness greater than 1 pNnm−1 . 
 Following43, we use a 1 µm radius titania core-shell microsphere with a variable anatase core. Additionally, PS-
silica core-shell microsphere with the same total radius, and variable core-shell radius ratios is considered. We use 
Debye diffraction  theory51 along with the generalized Lorenz–Mie theory (GLMT), and Maxwell stress  tensor52 
to numerically calculate the optical forces on the anti-reflection-coated microspheres.

Methods
In this section, we briefly discuss the properties of the anti-reflection-coated microspheres. Additionally, the 
mathematical formulations of the intended structured beams are introduced. Finally, we present the physical 
and mathematical basis for the calculations of the optical forces under the formalism of GLMT.

Anti‑reflection‑coated microspheres. Structure of anti-reflection core-shell microspheres of PS-silica 
and titania are illustrated in Fig. 1. The refractive indices of the core, and the shell, nc , ns , respectively, are given 
in Table 1, while the surrounding medium is considered to be water with a refractive index of nm = 1.33 . Inner 
and outer radii of the core-shell microsphere are Rc and R, respectively. we can use the refractive index of the 
anti-reflection material for a single anti-reflection layer of a planar surface for a shell in spherical  geometry43,44 
which is:

while by this choice, the optimum thickness of the anti-reflection coating of a planer surface, Rs = �/4ns is not 
reliable in the core-shell microsphere case and it should be calculated through Mie scattering  theory43.

Structured light beams. Radially polarized beam. Radially polarized beam (RPB) is categorized as a cy-
lindrical vector beam in which the polarization direction is radially symmetric in a lateral plane of a cylindrical 
coordinate system. This symmetrical polarization distribution results in a polarization singularity on the beam 
axis which leads to a dark spot on the axis. RPB can be expressed as a superposition of two orthogonal lowest 
order Hermite–Gaussian modes with orthogonal polarizations ( z = 0)45

(1)ns ≈
√
ncnm.

Figure 1.  Schematic structures of a PS-silica and a titania core-shell microspheres. Rs , Rc , and R are the shell 
thickness, core radius, and the total radius of the microsphere ( R = Rc + Rs ). This figure is generated using 
Sketc hup 2020.

Table 1.  Refractive indices of core-shell  microspheres42,43.

Core-shell material nc ns

PS-silica 1.57 1.45

Anatase-amorphous titania 2.3 1.8

http://www.sketchup.com
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where HGmn(·) are the Hermite–Gaussian polynomials, and x, y are the Cartesian coordinates in the transverse 
plane.

Petal beam. Coherent superposition of two collinearly propagating Laguerre–Gaussian beams with opposite 
sign azimuthal topological charge (l) and zero radial topological charge ( p = 0 ), generates a new class of struc-
tured light beams known as petal beams (PB) (also known as cogwheel  beams47) because of the petal-like field 
distribution in the lateral plane ( z = 0)53

where LGl
p(·) are the Laguerre-Gaussian polynomials, ρ and ϕ are the radial and azimuthal coordinates in the 

transverse plane, and ê is the polarization state.

Circular airy beam. Circular Airy beam (CAB) is categorized in a new family of beams known as abruptly 
autofocusing beams, possessing a special capability of autofocusing without an external element. The electric 
field envelope of CAB at an initial propagation distance ( z = 0 ) is given  as48,50

where Ai(·) denotes the Airy function. ρ is a radial coordinate in the transverse plane, ρ0 is the radius of the 
main ring of the beam, a is a decay factor, w is a scaling factor that determines the width of the main ring, and 
ê is the polarization state.

Figure 2 illustrates the intensity distributions of a Gaussian Beam (GB), RPB, PB ( l = 2 ), and CAB. GB, 
PB, and RPB have identical initial waist of w0 = 1 mm . Moreover, CAB parameters are set as ρ0 = 1 mm , 
w = 0.095 mm , and a = 0.15 , since an equivalent envelope Gaussian beam to CAB is defined to have a waist 
equal to the radius of the main ring of the CAB (i.e. ρ0 = w0)54. Furthermore, GB, PB and CAB are assumed to 
be circularly polarized, and all beams are set to convey an identical power.

Beam focusing. In OTs setups, an optical beam is tightly focused by a high numerical aperture (NA) oil-
immersion objective lens. The beam passes through a lam (coverglass) and enters the trapping medium (water), 
as shown in Fig. 3a. With the origin of a Cartesian coordinate system located at the focal point of the objective 
lens, the focal field distribution can be calculated by using the vectorial Debye diffraction theory,  as51:

(2)ERPB(x, y) = E0
(

HG10(x, y)x̂ +HG01(x, y)ŷ
)

,

(3)EPB(ρ,ϕ) = E0

(

LGl
p=0(ρ,ϕ)+ LG−l

p=0(ρ,ϕ)
)

ê,

(4)ECAB(ρ) = E0Ai

(

ρ0 − ρ

w

)

exp

(

a
ρ0 − ρ

w

)

ê,

Figure 2.  Intensity profiles of the intended structured light beams at z = 0 plane for filling ratio ( w0/Ro ) equal 
to 0.8 ( w0 = 1 mm and Ro = 1.25 mm ). Dashed circles show the radius of the back aperture of the objective 
lens Ro . The Gaussian, petal, and circular Airy beams are right-handed circularly polarized. This figure is 
generated using Octav ev.6.1.0.

http://www.octave.org
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where k, f, θmax are the wavenumber, focal length of the objective, and maximum converging angle ( 60◦ , equiva-
lent to NA = 1.3), respectively. According  to55, the optimal filling ratio, defined as the ratio of the beam waist to 
back-aperture radius of the focusing objective Ro , (i.e. w0/Ro ) is taken to be 0.8. The back-aperture radius of the 
objective lens is depicted by the dashed circles in Fig. 2. It is important to note that with such an arrangement, the 
back-aperture of the objective truncates the CAB in a manner that only its first ring is transmitted through the 
lens. Eff,t is the far-field distribution of the optical beams, given by Eqs. (2)–(4), transformed from the cylindrical 
coordinate system before the lens to a spherical coordinate system with the origin at the focus:

where ts(θ) and tp(θ) are the Fresnel’s transmission coefficients of the objective for perpendicular and paral-
lel polarization states, respectively. The refractive index mismatch through the glass-water interface induces 
a spherical aberration ξ = k0d(n1 cos θ1 − n2 cos θ2) , in the  system56, where k0 = 2π/� is the vacuum wave 
number ( � = 1064 nm ), d is the distance between the glass and the focal point (O); n1 = 1.52 and n2 = 1.33 , 
are the refractive indices of the glass and water, and θ1 and, θ2 are the convergence angles in the glass and water, 
respectively, which are related through the Snell’s law of refraction.

Figure 3b shows the intensity distributions of the focused beams in the axial and lateral directions, in the 
absence of the spherical aberration, i.e. d = 0 , (first and third rows), and in the presence of the spherical aber-
ration, i.e. d = 5 µm (second and fourth rows). As can be seen, the spherical aberration shifts and the focus 
towards the interface (by about 1–1.5 µm ), and also disturbs the intensity distribution. The axial FWHMs of 
the focused beams are approximately 1.3� , � , 1.2� and 1.9rlambda for GB (first column), RPB (second column), 
PB (third column), and CAB (fourth column), respectively, in the presence of the aberration. In the lateral 
direction, on the other hand, the intensity distributions are less affected by the spherical aberration. The lateral 
FWHMs are approximately 0.5� , 0.46� , 0.41� and 0.4� for GB, RPB, PB, and CAB, respectively, in the presence 
of the aberration.

Optical force calculation. To calculate the net optical force exerted on a particle, it is necessary to calculate 
scattered fields from the particle. The GLMT is used to calculate the scattered fields from the trapped particle. In 
this method, the incoming and scattered fields are expanded in terms of vector spherical  harmonics57,58:

(5)Ef (r) =
ikfe−ikf

2π

∫ θmax

0
sin θ

∫ 2π

0
Eff,t(θ ,ϕ)e

ik.reiξdϕ dθ ,

(6)Eff,t(θ ,ϕ) =
(

ts(θ)
[

Ei(ρ,ϕ) . ϕ̂
]

ϕ̂ + tp(θ)
[

Ei(ρ,ϕ) . ρ̂
]

θ̂
)

√

cos θ

n1
,

(7)Ei =
∑

pnm

W
(p)
nmJ

(p)
nm, Es =

∑

pnm

A
(p)
nmH

(p)
nm,

Figure 3.  (a) Schematic of the focusing process of an optical beam by an objective lens, and the intensity 
distribution around a particle. The induced spherical aberration, due to glass-water refractive index mismatch 
shifts the focus towards the interface. (b) Calculated intensities of the focused beams in the axial and lateral 
directions in the absence of the spherical aberration, d = 0 , (first and third rows), and in the presence of the 
spherical aberration, d = 5 µm , (second and forth rows). Columns 1 to 4, from left to right, show the intensity 
distributions of the GB, RPB, PB, and CAB, respectively. This figure is generated using Octav ev.6.1.0 and Apach 
e OpenO ffice  4.1.8.

http://www.octave.org
http://www.openoffice.org
http://www.openoffice.org
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where W(p)
nm and A(p)

nm are the expansion coefficients of the incoming and scattered fields, respectively. J(p)nm and H(p)
nm 

are multipoles for incoming and scattered fields, respectively which are expanded on the basis of vector spherical 
harmonics. Here, p = 1, 2 , represent the TM and TE fields, respectively. By multipole expansion of focused field 
in Eq. (5), the expansion coefficients of the incoming focused beam can be calculated. Then, the expansion coef-
ficients of the scattered field can be obtained by applying the boundary conditions on the surface of the particle:

where T (p′p)
n′m′ nm is the transfer matrix of the particle, which reduces to the Mie coefficients for a single spherical 

 particle58:

Here, Mie coefficients of core-shell microspheres can be expressed  as59:

with

where η1 = nc/n2 and η2 = ns/n2 . x = kRc and y = kR are the size parameters (k is the wave number in the 
ambient medium).

where jn and h(1)n  are the Bessel and the first kind of Hankel functions, respectively. �n(x) , χn(x) and �n(x) are 
the Riccati–Bessel functions.

The optical force exerted on the particle can be calculated by numerical integration over time-averaged 
Maxwell stress  tensor57:

where S represents a surface encircling the particle, and n̂ is a unit vector normal to S, respectively. TM is the 
Maxwell stress tensor defined as

where c and ε0 are the speed of light and permittivity of vacuum, respectively. The symbol ⊗ denotes dyadic 
multiplication, and I is the unit dyadic. Additionally, E = Ei + Es and B = Bi + Bs , are the total electric and 
magnetic fields, respectively, which are interrelated through B = (i/ω)∇ × E , with ω representing the angular 
frequency of the light.

Results and discussion
Here, we summarize the results of our calculations based on above mentioned theoretical foundations for 
uncoated uniform and anti-reflection-coated microparticles. In our calculations, the GB, RPB, PB and, CAB 
are used for optical trapping. The trapping wavelength and the power in the entrance pupil are assumed to be 
1064 nm and 1 Watt , respectively. Moreover, all calculations are done for a depth of d = 5 µm and a filling ratio 
of 0.8. The total radius of the particles are chosen to be constant and equal to R = 1 µm.

First, we report the calculation results for uniform microspheres of PS, silica, amorphous-, and anatase-
titania with refractive indices outlined in Table 1. Figure 4 shows the axial (Fig. 4a–d) and lateral trapping 
forces (Fig. 4e–h) exerted on different uniform beads by the structured beams. The calculated trap stiffnesses, 
along the axial and lateral directions, versus the refractive index of the uniform beads are shown in Fig. 4i,j, 
respectively. Trap stiffness can be achieved by calculating the slope of a line fitted on the curves of forces versus 
displacements in the longitudinal and transverse dimensions (i.e. Fz − z , and Fr − r curves) at the linear region, 
around the equilibrium position of the trapped particle. Obviously, the beads with higher refractive indices 
experience greater maximum axial forces for all beams. The maximum axial forces rises from ∼ 0.5 nN for the 
silica bead with the lowest refractive index to ∼ 2.5 nN for the anatase-titania bead with the highest refractive 
index. The trap stiffness increases as the refractive index of micro-bead increases for all structured beams except 

(8)A
(p′)
n′m′ =

∑

p=1,2

nmax
∑

n=0

n
∑

m=−n

T
(p′p)
n′m′ nmW

(p)
nm ,

(9)A
(1)
nm =bnW
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for the CAB whose axial (lateral) trapping stiffness is maximum for the bead with the refractive index equal to 
1.57 (1.8), as can be seen in Fig. 4i,j. It is obvious from Fig. 4d that the GB and PB are unable to trap the anatase 
because of the large refractive index difference of anatase with the ambient while the RPB provides a stable trap 
with an axial stiffness greater than 1 pNnm−1 , as seen in Fig. 4i, and a lateral stiffness greater than 2.5 pNnm−1 , 
as is seen in Fig. 4j . Almost for all beads, the RPB yields the largest axial force in comparison with the other 
beams, while the truncated CAB has the smallest axial force. It is seen that, with an exception of trapping the 
anatase bead, structured beams provide ∼ 2 - to 2.5-fold stronger traps than that of the GB (see Fig. 4i). In the 
lateral direction, the GB provides the greatest force (except for the anatase). This is attributed to a greater lateral 
intensity gradient of the GB compared to that of the structured beams. The figure also shows that the lateral 
stiffness for the GB is about 4-fold greater than that of the axial direction, while the lateral stiffnesses for the 
structured beams, in the best case, are about 2-fold greater than the corresponding axial stiffnesses. For instance, 
the strongest trap is provided by the RPB with a lateral stiffness greater than 2.5 pNnm−1 which is ∼ 2.5-fold 
greater than the corresponding value in the axial direction (see Fig. 4j). Among all beams, only the RPB and 
the CAB can form a three-dimensional trap for the high refractive index micron-sized uncoated particles in the 
presence of the spherical aberration. It is also worth noting that the RPB produces the strongest trap due to its 
steeper intensity  gradient60.

Anti-reflection coating on the microspheres reduces the scattering fields that destabilize the optical traps. 
Figure 5 shows the results of the calculations for optical trapping of PS-silica and anatase-amorphous titania 
core-shell microspheres by the structured beams. Here, the core-shell microspheres used in our calculations 
have the same core radius and shell thickness (i.e. Rc = Rs = 0.5 µm ). It is clearly seen that the RPB creates 
the greatest maximum axial force (Fig. 5a,b) compared to other beams due to its sharp focus in the axial direc-
tion. For instance, the maximum axial optical force is about 4.1 nN for titania core-shell, which shows ∼ 46% 
enhancement in comparison with the maximum axial optical force exerted on a uniform anatase microsphere 
shown in Fig. 4d. Figure 5e shows that the trap stiffness of the PS-silica microsphere trapped by the GB and 
RPB is enhanced compared to that of the PS microsphere shown in Fig. 4i. Qualitatively, trap stiffness for the 
uniform PS microsphere, trapped by the GB and the RPB are about 0.33 and 0.61 pNnm−1 , respectively, while 
the corresponding values for PS-silica are 0.49 and 0.79 pNnm−1 that means ∼ 50% and ∼ 30% increase in the 

Figure 4.  Axial (a–d) and lateral (e–h) force diagrams of structured light beams exerted on the uniform 
microspheres ( R = 1 µm ) made up of 4 intended materials and comparison with the Gaussian beam. Axial (i) 
and lateral (j) trapping stiffnesses of each particle trapped by the structured beams.
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trap stiffness, respectively. However, the PB and CAB do not represent enhancement in this case. In the lateral 
direction, the GB creates the greatest maximum exerted optical force for both PS-silica and titania core-shells 
(Fig. 5c,d). The lateral trapping stiffness for PS-silica and titania particles are shown in Fig. 5f. For PS-silica 
particles, a comparison with the corresponding values of the trap stiffnesses plotted in Fig. 4j for PS, reveals an 
enhancement of ∼ 60% , ∼ 36% , and ∼ 25% for the GB, RPB, and CAB, respectively.

The most pronounced message of Fig. 5b compared to Fig. 4d is the ability of the GB to trap titania core-shell 
microsphere. Also, Fig. 5e reveals that the axial stiffness for titania core-shell trapped by the GB is increased by a 
factor of 2 compared to that of amorphous titania (Fig. 4i). Furthermore, it can be seen that the axial stiffness of 
the RPB increases from 1.05 pNnm−1 in Fig. 4i, up to 1.25 pNnm−1 in Fig. 5e, which is about ∼ 20% enhance-
ment when we use titania core-shell rather than the uniform anatase microsphere. In addition, it shows that the 
strength of trapping of the titania core-shell with the CAB is enhanced by about ∼ 150% and ∼ 55% compared 
to the trapping of anatase and amorphous titania microspheres, respectively. On the other hand, lateral stiffness 
enhances about ∼ 78% for the RPB, and more than ∼ 150% for the CAB in comparison with corresponding 
lateral stiffness for anatase titania illustrated in Fig. 4j. Figure 5b also shows that here again the PB is unable to 
trap the titania core-shell microsphere.

Although, Fig. 5 represents a significant enhancement in trapping strength of the core-shell microspheres 
with the same core radius and shell thickness, compared to trapping of the uniform microspheres, but it might 
not be an optimized configuration for achieving an efficient anti-reflection property. In order to investigate a 
configuration that may result in an optimized anti-reflection property of a coated microsphere, that reduces the 
scattered fields by the particles, we consider the core radius as a variable and define a ratio of the core radius to 
the total radius of the microsphere as a new parameter α as:

We then repeat the calculations for different values of α to find an optimal value that yields maximum enhance-
ments of the axial and lateral trap stiffnesses for each of the structured beams.

Figure 6 illustrates the calculated trap stiffnesses for different values of α in the full range from α = 0 (i.e. 
uniform silica or amorphous titania) to α = 1 (i.e. uniform PS or anatase titania). It is clear that the strongest 
axial trap for trapping PS-silica microparticle belongs to the PB with α = 0.75 (it means the radius of PS core 
equals 0.75 µm ). The stiffness value is about ∼ 1 pNnm−1 that is ∼ 20% higher than the corresponding value for 
the uniform PS particle trapped by the PB, and 3-fold, 5-fold, and 2-fold greater than those of the PS, silica, and 
PS-silica with α = 0.5 microspheres trapped by the GB. Figure 6a shows that the structured light beams provide 
stronger traps along the axial direction than the GB in all the range of α . It can be seen from Fig. 6c,f that the GB 
yields the strongest lateral trap for trapping the PS-silica microparticle with α = 0.5 with a stiffness value equal 
to ∼ 2.12 pNnm−1 , which is about ∼ 62% and ∼ 180% greater than the corresponding values for trapping the 
uniform PS and silica microspheres with the GB, respectively.

Looking at Fig. 6b,d for axial and lateral trapping stiffnesses of the titania core-shell, reveals that (1) the 
behavior of trapping stiffness is not simple and have some maxima and minima, and (2) the maximum values of 
trapping stiffnesses are approximately independent of the beam type, and the peaks appear at the same values of 
α for all beam types. This implies that for the titania core-shell particle, certain values of α considerably minimize 

(15)α = Rc/R.

Figure 5.  Axial (a,b) and lateral (c,d) force diagrams for PS-silica and titania core-shells with the same core and 
shell sizes ( Rc = Rs = 0.5 µm ). Axial and lateral calculated stiffness values are shown in (e,f), respectively.
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the scattering fields while for other values the scattering fields are strong enough to destabilize the optical traps, 
disregarding the beam type. Moreover, the RPB provides the strongest and the most enhanced axial trap strength 
for α = 0.52 with an axial stiffness value ∼ 1.4 pN nm−1 , which is ∼ 40% higher than that of the uniform anatase 
microsphere trapped by the RPB, ∼ 48% higher than that of uniform amorphous titania trapped by the PB 
(both shown in Fig. 4i), and ∼ 40% higher than that of the titania core-shell trapped by the GB (Fig. 6e). Our 
results for trapping the titania core-shell is in good agreement with the results of Jannasch et al.43. In order to 
compare our results, the maximum reported lateral and axial trap stiffnesses in their work are 3.8 pNnm−1 and 
0.9 pNnm−1 , while we obtained 4.6 pNnm−1 and 1.41 pNnm−1 , respectively, which show more than 20% and 
56% enhancement for trapping by utilizing the RPB instead of the GB. Furthermore, as Fig. 6f shows, the RPB 
produces the greatest trapping stiffness for trapping the titania core-shell with α = 0.52 in the lateral direction 
with a stiffness value of 4.6 pNnm−1 which shows ∼ 84% , ∼ 120% , and ∼ 5% improvement compared to the 
trapping of anatase, amorphous titania microspheres trapped by the RPB (Fig. 4j), and the titania core-shell with 
α = 0.52 trapped by the GB.

Conclusion
In conclusion, it is shown that the core-shell microspheres have a great potential to enhance the optical trap-
ping strength. With a proper core-shell thickness ratio, microparticles exhibit an anti-reflection property that 
dramatically reduces the scattering force and leads to stronger optical traps. Moreover, utilizing the structured 
light beams in place of the Gaussian beam to trap the core-shell particles result in rather stronger optical traps. 
We showed that the titania anti-reflection-coated microspheres provide stronger trap stiffness than the PS-silica 
particles in both axial and lateral directions. Additionally, using a proper core-shell ratio for both PS-silica and 
anatase-amorphous titania microspheres, the structured light beams provide stronger traps in the axial direction 
compared to the GB. For instance, for the PS-silica microsphere, the axial trapping stiffness of the PB is two times 
greater than that of the GB, while for the titania core-shell microspheres, the axial trapping stiffness of the RPB 
is ∼ 40% higher than the corresponding value for the GB, at their optimal core-shell thickness ratios. Moreover, 
we showed that the RPB provides the strongest trap for titania core-shells in both the axial and lateral directions.
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