
R E V I E W

Metabolism of Proteins and Amino Acids in 
Critical Illness: From Physiological Alterations to 
Relevant Clinical Practice

Chih-Chieh Hsu1 

Ci-Yuan Sun2 

Chun-Yi Tsai1 

Ming-Yang Chen1 

Shang-Yu Wang 1,3 

Jun-Te Hsu1,3 

Chun-Nan Yeh1,3 

Ta-Sen Yeh1,3

1Division of General Surgery, Chang 
Gung Memorial Hospital, Taoyuan, 333, 
Taiwan; 2Division of Colon & Rectal 
Surgery, Chang Gung Memorial Hospital, 
Taoyuan, 333, Taiwan; 3Chang Gung 
University, Taoyuan, 333, Taiwan 

Abstract: The clinical impact of nutrition therapy in critically ill patients has been known 
for years, and relevant guidelines regarding nutrition therapy have emphasized the impor
tance of proteins. During critical illness, such as sepsis or the state following major surgery, 
major trauma, or major burn injury, patients suffer from a high degree of stress/inflammation, 
and during this time, metabolism deviates from homeostasis. The increased degradation of 
endogenous proteins in response to stress hormones is among the most important events in 
the acute phase of critical illness. Currently published evidence suggests that adequate 
protein supplementation might improve the clinical outcomes of critically ill patients. The 
role of sufficient protein supplementation may even surpass that of caloric supplementation. 
In this review, we focus on relevant physiological alterations in critical illness, the effects of 
critical illness on protein metabolism, nutrition therapy in clinical practice, and the function 
of specific amino acids. 
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Introduction
Nutrition therapy has been recognized as a pivotal component of critical care 
medicine for years. Malnutrition appears to alter patient outcomes and is associated 
with a higher rate of complications, increased mortality, longer hospital length of 
stay (LOS) and increased hospital costs.1,2 According to the 2019 European Society 
for Clinical Nutrition and Metabolism (ESPEN) guidelines, all critically ill patients 
staying for more than 48 hours in the intensive care unit (ICU) should be considered 
at risk for malnutrition, and nutrition therapy should be administered to all patients 
staying in the ICU.3 Proteins are undoubtedly among the most important macro
nutrients in nutrition therapy. Current cumulative evidence indicates the importance 
of protein administration and its impact on the clinical outcomes of critically ill 
patients.4,5 The adequate delivery of proteins might have a higher impact than 
caloric delivery.4

Critical illness, such as major trauma or sepsis, is characterized by a high degree 
of stress/inflammation. Stress induces neuroendocrine changes, and inflammatory- 
related cytokine effects further modulate human metabolism.6,7 Normal metabolism 
is shifted to a hypercatabolic status, especially during the acute phase.8 The 
accelerated degradation of body reserves, including proteins, may cause malnutri
tion and organ dysfunction during the later stage under inappropriate management. 
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The increased degradation of endogenous proteins in 
response to stress hormones is among the most important 
events.8 Several currently published studies suggest that 
correctly timed adequate protein supplementation 
improves the clinical outcomes of critically ill patients.9,10

In this article, we review the neuroendocrine and 
inflammatory responses in critical illness and their effects 
on protein and amino acid metabolism. Then, we focus on 
the clinical practice of nutrition therapy and protein 
administration. In addition, the effects of several specific 
amino acids on immune modulation are elucidated.

Physiological Impact of Critical 
Illness
Critical illness resulting from sepsis, trauma, burns or 
major surgery shifts normal metabolism to a dynamic 
state to address different demands during different phases 
of the disease. Metabolic conditions can be divided into 
different stages. During the acute phase, the patient 
encounters the ebb phase, which includes the initial 24 to 
48 hours, and the flow phase, which extends until 7 days.11 

After the acute phase, some patients may enter the recov
ery stage, while other patients remain in a stage of pro
longed critical illness.3 During the ebb phase, the 
metabolic status responds to tissue hypoperfusion and 
vasoconstriction and shifts to a status of decreased overall 
metabolism.12 The most prominent metabolic change dur
ing the ebb phase is glycogenolysis, which occurs in the 
liver in response to a catecholamine surge.13 After the ebb 
phase (ie, during the flow phase), the catabolic response 
increases, and the degradation of human stored compo
nents, including proteins, occurs. According to the current 
guidelines for nutrition therapy, we call the “flow phase” 
the “late period of the acute phase”, which is when hyper
catabolism occurs, and both the recovery stage and pro
longed critical illness stage are considered the post-acute 
phase.3 In the following paragraphs, we discuss the meta
bolic changes in proteins and amino acids that occur dur
ing the late period of the acute phase and the post-acute 
phase. Regarding the post-acute phase, we mention meta
bolic changes in both patients in the recovery stage and 
those with prolonged critical illness.

Late Period of the Acute Phase of Critical 
Illness
Humans do not need proteins as a fuel but need proteins 
to increase their body cell mass during growth, recovery, 

or adaptation under steady-state conditions.14 However, 
proteins become the main energy substrate during the 
catabolic phase of critical illness.2 The human body 
does not have any “reserved protein storage”; all proteins 
in the body exist for structural or functional purposes.2 

A rapid net catabolism of body proteins, which occurs 
particularly in skeletal muscle, has been demonstrated.15 

Muscle loss is thought to be due to amino acid transport 
from the periphery to vital organs in the splanchnic area, 
especially the gut and liver, for gluconeogenesis, protein 
synthesis (acute phase proteins), and substrates for 
immune cells.16,17 Gamrin et al conducted a study inves
tigating skeletal degradation.18 By obtaining muscle biop
sies from 20 critically ill patients (APACHE II scores of 
11 to 30) and 17 metabolically healthy patients, these 
authors demonstrated that the total free amino acids in 
skeletal muscle decreased by 59% and the skeletal muscle 
glutamine concentration decreased by 72% in critically ill 
patients. A recent study conducted by Puthucheary et al 
(MUSCLE study) further recognized an acute wasting of 
skeletal muscle that occurred early and rapidly during the 
first week of critical illness and was highly correlated 
with the disease severity.19 Puthucheary’s findings 
revealed that patients with critical illness suffer from 
acute protein breakdown and a decrease in protein synth
esis during the acute phase of critical illness, and a 15% 
decrease in the muscle amount occurs in patients with 
multiple organ failure. Then, Puthucheary et al extended 
their study to the relationship between bioenergetics 
changes and skeletal muscle wasting.20 Vastus lateralis 
muscle biopsies and serum samples (ICU admission 
days 1 and 7) were obtained from the same 63 intensive 
care patients in the MUSCLE study. Puthucheary’s find
ings revealed a reduction in the mitochondrial beta- 
oxidation enzyme concentrations and intramuscular ATP 
content and an increase in intramuscular tumor necrosis 
factor receptor 1 and IL-10 from days 1 to 7, indicating 
that a relationship exists between an impaired bioener
getic status and acute muscle wasting during early critical 
illness.

The nitrogen balance is another indicator of protein 
utilization. Sakurai et al demonstrated an increased con
sumption of proteins by observing the nitrogen balance.21 

Each 6.25 grams of proteins contain 1 gram of nitrogen, 
and a negative nitrogen balance can be observed in 
patients with critical illness by observing the nitrogen 
balance or using a constant essential amino acid tracer 
infusion method. Using a radioisotope technique to label 
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the essential amino acid leucine, Jackson et al demon
strated that both nonoxidative leucine disposal and leucine 
oxidation/metabolic clearance rates were increased in 
patients with critical illness.22 Jackson’s study revealed 
that both an increase in the proteolysis and synthesis of 
acute phase proteins and an increase in protein turnover 
contribute to an increase in the metabolism of proteins.

In summary, the overall consumption of proteins is 
significant during critical illness. The net effect of multiple 
factors, including the sympathetic response, the neuroen
docrine response, and inflammatory cytokines, contributes 
to this metabolic phenomenon (Figure 1). The consump
tion of proteins is significant during the acute phase of 
critical illness.

Protein Metabolism During the 
Post-Acute Phase: Recovery vs Prolonged 
Critical Illness
Patients who survive the acute phase of critical illness 
enter the post-acute phase, ie, either the recovery stage 

or prolonged critical illness. If the etiology of the critical 
illness is properly addressed and eliminated, the patient 
enters the recovery stage. Currently, over 70% of ICU 
patients recover within 1 week.23 When a patient enters 
the recovery stage, both the energy requirement and the 
protein requirement increase to replace the body mass lost 
during the acute phase. This phenomenon has been proven 
by Uehara et al immediately before this century by mea
suring energy expenditure and body composition.24 

Anabolism is observed during this stage of critical disease.
If the etiology of critical illness cannot be solved, the 

patient enters a phase of prolonged critical illness. The 
physiological response during this stage greatly differs 
from that during the acute phase. In neuroendocrine 
aspects, a decrease in function is the major presentation. 
The major pathways of the neuroendocrine system 
involved in metabolism, including the growth hormone 
axis, pituitary–thyroid axis, pituitary–adrenocortical axis, 
are generally suppressed.23 Under the aforementioned 
effects, patients with prolonged critical illness suffer 

Figure 1 Metabolic response during the acute phase of critical illness: protein consumption.
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from catabolism rather than anabolism and the restoration 
of body structure and lost body mass.3 The cytokine 
immune response affects metabolism, and its effect cannot 
be overemphasized during the acute phase; its functional 
alteration in prolonged critical illness also has an 
impact.6,15 While the initial cytokine storm characterizes 
the acute phase of critical illness, the immune status 
usually returns to homeostasis during the recovery stage. 
However, patients suffer from prolonged critical illness, 
and their immune system enters a specific condition, ie, 
persistent inflammation/immunosuppression and catabo
lism syndrome (PICS).25 PICS is characterized by mark
edly increased C-reactive protein concentrations, 
neutrophilia, and the release of immature myeloid cells.26 

Rosenthal et al demonstrated that patients with PICS pre
sented with persistent inflammatory conditions (elevated 
IL-6 and IL- 8 levels) and immunosuppression (decreased 
lymphocyte count).27 The restoration of metabolic home
ostasis failed, and catabolism persisted as demonstrated by 
relevant biomarkers, including higher glucagon-like pep
tide and a higher 1,3-methylhistidine/creatinine ratio. In 
addition, the persistent synthesis of acute phase proteins, 
such as persistently elevated C-reactive protein, was also 
noted. In summary, patients with PICS suffer from persis
tent low-grade inflammation that drives catabolism and 
blocks anabolism.28

Protein Absorption in Critical Illness
To maintain body proteins, it is important to provide 
adequate nutritional intake of proteins. However, whether 
the human body can absorb and metabolize nutritional 
proteins during critical illness remains uncertain. 
Gastrointestinal failure was observed in 10.4% of critically 
ill adults in a retrospective study.29 Gastrointestinal symp
toms/failure is also associated with an increased risk of 
mortality.30 Gastrointestinal dysfunction indicates func
tional impairment of the alimentary tract that may include 
disturbances in motility or absorption, breaches in the 
mucosal integrity, changes in the microbiome, increased 
intraabdominal pressure, impaired mesenteric perfusion 
and an impaired local immune response in the bowel.31 

Therefore, the digestion of proteins and absorption of 
amino acids could be affected under the circumstances of 
critical disease and lead to protein malabsorption.

Compared with glucose or lipids, evidence regarding 
protein digestion and absorption during critical illness is 
scarce. Liebau et al established a method for quantifying 
the effect of enteral protein feeding in critically ill patients 

receiving early enteral nutrition.32 These authors reported 
that the uptake of labeled 13C-phenylalanine from diet 
could be detected in plasma after nasogastric feeding in 
most adult elderly critically ill patients. However, the 
isotope–labeled amino acid plasma concentration was 
much lower than that in the healthy volunteers. This result 
showed that critically ill patients could digest and absorb 
proteins from enteral feeding but might be affected by 
impaired digestion or absorption or greater splanchnic 
extraction.

Splanchnic extraction represents the fraction of 
ingested amino acids taken up by the splanchnic organs 
(gut or liver) that is not available systemically, eg, not 
available to muscles.33,34 This phenomenon is greater 
among the elderly and presents substantial variability dur
ing critical illness.33,35 This variation is correlated with the 
protein amount provided in enteral nutrition. It seems that 
the lower the protein intake, the higher the fractional 
splanchnic extraction presented.36,37 These studies suggest 
that splanchnic organs extract the amino acids required for 
regional metabolism during feeding and then release the 
remainder to the central circulation. Another small sample 
size randomized trial also reported that a full dose of 
enteral nutrition delivered more amino acids to the central 
circulation than a half dose of enteral nutrition and led to 
a more positive protein balance in adult critically ill 
patients.36 In summary, since the digestion of proteins 
and absorption of amino acids are affected in critical ill
ness, our goal is to supply adequate proteins to these 
patients to deliver more amino acids to the systemic 
circulation.

Protein Deficiency and Clinical 
Outcomes
Protein Deficiency
In ICU patients, the nutritional status should be assessed 
after admission. Idrissi et al reported that 42.9% of 
patients had low plasma levels of prealbumin, 73.6% of 
patients had low plasma albumin and 99% of patients had 
low plasma transferrin upon admission to the ICU.38 

However, laboratory data alone may not be reliable for 
nutrition assessments under the circumstances of a critical 
illness, and multiple monitoring, including laboratory and 
other clinical aspects, is necessary.39 Since net protein 
consumption results in muscle wasting, the change in the 
body composition is also an important observation related 
to the nutrition status,40 especially in the case of a protein 
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deficiency. The composition of the human body is divided 
into lean mass, containing water plus all proteins, and fat 
mass, containing mainly fat-energy stores. A change in the 
body composition is a characteristic of patients with cri
tical illness, and this change is due to protein breakdown. 
The rapid net catabolism of body proteins, which occurs 
particularly in skeletal muscle,15 renders muscle loss an 
indicator of protein deficiency in critically ill patients. 
A loss of more than 10% of lean body mass decreases 
immunity and increases the risk of infection, while a loss 
of more than 20% of lean body mass decreases wound 
healing and increases muscle weakness.41 Furthermore, 
notably, with a loss of 30% or more of lean body mass, 
the wound healing rate is decreased until lean mass is 
restored.42 In a study of measurements of muscle wasting 
during critical illness, significant reductions in the rectus 
femoris cross-sectional area were observed on day 10 
(−17.7% [95% CI, −20.9% to −4.8%], p < 0.001).19 

Therefore, the loss of muscle is a characteristic phenom
enon of protein deficiency and a predictor of clinical 
outcomes.43–47

Short-Term Outcomes
In critically ill patients, malnutrition and protein deficiency 
are important issues because they are associated with 
increased morbidity, mortality, LOS, use of healthcare 
resources and costs.48 Protein-energy malnutrition also 
causes impaired wound healing and the development of 
chronic wounds and infections.

The nutritional status of critically ill patients is 
a significant predictor of survival. According to a cohort 
study involving 6518 ICU patients, the nonspecific mal
nutrition 30-day mortality odds ratio (OR) was 1.17 (95% 
confidence interval [CI], 1.01–1.37), and protein malnutri
tion increased the 30-day mortality with an OR of 2.10 
(95% CI, 1.70–2.59).49 A prospective observational cohort 
study involving 113 ICU patients also reported that the 
low-protein/amino-acid provision group was associated 
with a higher 28-day mortality than the high-protein 
/amino-acid provision group.50 Elke et al studied 2270 
critically ill patients with a diagnosis of sepsis/pneumonia 
who were admitted to the ICU for ≥3 days, mechanically 
ventilated within 48 hours of ICU admission and only 
received enteral nutrition.51 The results showed that the 
provision of an additional 30 grams of protein per day 
decreased the 60-day mortality and days of ventilator use. 
Another multicenter international study conducted by 
Nicolo et al reported a cohort of 1584 patients who stayed 

in the ICU ≧12 days.4 The authors reported that the time 
to discharge alive (TDA) was shorter in patients who were 
prescribed adequate proteins (intake ≥80% goal amount) 
compared with those patients who were not (hazard ratio 
[HR], 1.25; 95% CI, 1.04–1.49). In summary, protein 
deficiency in critically ill patients might be associated 
with a higher mortality rate and a worse prognosis and 
restoring the protein deficiency may improve the clinical 
outcomes.

Long-Term Outcomes
In addition to the increased short-term mortality rate, 
malnutrition and protein deficiency also have a negative 
impact on long-term survival and post-discharge out
comes. Mogensen et al reported an observational cohort 
of 23,575 patients who received critical care and then 
survived hospitalization.52 Mogensen’s study revealed 
that the 90-day post-discharge mortality in patients at 
risk of malnutrition, nonspecific malnutrition, and pro
tein-energy malnutrition fully adjusted relative to 
patients without malnutrition was 1.77, 2.51, and 3.72, 
respectively. Furthermore, the ORs of 365-day post- 
discharge mortality in patients at risk for malnutrition, 
nonspecific malnutrition, and protein-energy malnutri
tion compared with that in patients without malnutrition 
was 1.14, 1.70, and 3.75, respectively. In addition, the 
ORs of 30-day re-admission in patients at risk for mal
nutrition, nonspecific malnutrition, and protein-energy 
malnutrition was 1.08, 1.20, and 1.67, respectively, 
compared with that of patients without malnutrition. 
Therefore, the overall clinical impact of protein defi
ciency is negative according to current evidence. 
Furthermore, malnutrition also has an influence in the 
social-economic aspect. For example, the British 
Association for Parenteral and Enteral Nutrition 
(BAPEN 2005) described that malnutrition costs the 
UK more than £7.3 billion per annum; £3.8 billion 
was spent on treating malnourished patients in the hos
pital, and £2.6 billion were spent on long-term care 
facilities.48

In summary, protein deficiency in patients with critical 
illness results from both excessive breakdown during the 
acute phase and inadequate protein provision. The nega
tive impact of protein deficiency is extensive. Clinical 
management should attempt to reverse this condition 
after the initial acute phase. Therefore, nutrition therapy 
interventions are an important management tool used to 
improve clinical outcomes.
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Protein Delivery in Critically Ill 
Patients
Timing and Amount of Protein 
Administration: Acute Phase
The importance of protein supplementation in critically ill 
patients is currently well known, but how to deliver suffi
cient protein to ICU patients is still debatable In general, 
enteral nutrition (EN) is considered superior to parenteral 
nutrition (PN), and EN should be initiated early (within 48 
hours) in critically ill adult patients.3,53 Calorie/protein 
targets are determined to gradually achieve more than 
70% of the resting energy expenditure (REE) but not 
100% during the acute phase of critical illness.3

During the late period of the acute phase (ie, the flow 
phase), full EN or PN should be gradually achieved within 
three to seven days. The protein targets should gradually 
reach 1.3 g/kg or 1.2 to 2.0 g/kg protein per day, which is 
recommended for critically ill patients in the current 
guidelines (Table 1).3,54–56 Over the past several years, 
some experts have suggested that delivering more proteins 
is better for patients with critical illness and that even up 
to 2.0–2.5 g/kg/day is safe and optimum.57,58 However, 
some studies, including several randomized controlled 
trials (RCTs), revealed that a higher protein formula has 
no impact on mortality in critically ill patients. Doig et al 

compared intravenous high-amino-acid therapy (2.0 g/kg/ 
day) to standard nutrition care and reported no difference 
in mortality.59 A higher protein formula also had no effect 
on the ICU LOS, hospital LOS or duration of mechanical 
ventilation in critically ill patients.60 Thiessen et al 
explained that this phenomenon may be caused by the 
increasing amino acid levels during critical illness stimu
lating glucagon and resulting in more hepatic amino acid 
breakdown and ureagenesis.16 In conclusion, energy and 
protein delivery to critically ill patients should be estab
lished in a stepwise method to achieve the target (80– 
100% energy expenditure and 1.3 g/kg/day protein) 
after day 3 in the acute phase to avoid overfeeding.

Amino Acid Provision in Supplemental PN
If a patient cannot tolerate an oral diet or EN or an oral diet 
or EN is contraindicated in a patient, the current consensus 
suggests that PN should be implemented within three to 
seven days. Parenteral amino acid therapy should be con
sidered at this time. Ferrie et al compared PN solutions 
containing amino acids at 1.2 g/kg/day to those containing 
amino acids at 0.8 g/kg/day and reported no effect on mor
tality, ICU and hospital LOS or mechanical ventilation dura
tion in critically ill patients. However, this study revealed 
better handgrip strength on study day 7, a lower fatigue 

Table 1 Protein Delivery Recommendations According to the Current Practice Guidelines

ESPEN Guideline 
(2019)3

ASPEN Guideline (2016)56 Canadian Guideline (2015, 2021)54,84

Daily protein 

administration

1.3 g/kg protein equivalents 

per day.

1.2–2.0 g/kg actual body weight per day. Insufficient data to make a recommendation.

Branched Chain 

Amino Acids 
(BCAAs)

NA No evidence of benefit for patients with hepatic 

encephalopathy. Guideline suggested standard 
enteral formulations to be used in ICU patients 

with acute and chronic liver disease.

BCAA was associated with a trend towards 

a reduction in mortality of critical ill patients, 
but insufficient data to make 

a recommendation.

Arginine NA Immune-modulating enteral formulations 

(including arginine and glutamine) should not be 

used routinely in the medical ICU; reserved for 
patients with trauma and perioperative patients 

in the surgical ICU.

Diets supplemented with arginine used for 

critically ill patients is not recommended.

Glutamine (EN) Suggested for trauma and 

burn patients but should 

not be used in other ICU 
patients.

Should not be added to an EN regimen. Not recommended for use in critically ill 

patients. However, may benefit patients with 

burn or trauma.

Glutamine (PN) Should not be used. Should not be used. Should not be used.

Abbreviations: ESPEN, European Society for Clinical Nutrition and Metabolism; ASPEN, American Society for Parenteral and Enteral Nutrition; EN, enteral nutrition; PN, 
parenteral nutrition; NA, not available; ICU, intensive care unit.
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score and greater forearm muscle thickness on ultrasound.5 

Parenteral amino acid provision can be an alternative to 
enteral formula, and the recommended dosage is similar.

Timing and Amount of Protein 
Administration: Post-Acute Phase
As mentioned in the section regarding the recovery stage of 
the post-acute phase, both energy requirements and protein 
requirements increase to replace the body mass lost during 
the acute phase. During this post-acute phase, activity and 
exercise increase. Therefore, the target calorie intake might 
increase to 125–150% of the predicted values, and the 
protein intake goal might increase to 1.5–2.5 g/kg/day.10,61 

During this time, patients are often discharged from the ICU 
and start oral intake. Therefore, clinicians should monitor 
the patient’s oral intake amount to avoid insufficient protein 
intake. Ensuring that the feeding tube is not removed too 
early or providing oral nutrition supplemental products 
might resolve these problems.61 However, if the etiology 
of the critical illness cannot be resolved, the patient enters 
a phase of prolonged critical illness, and PICS might 
develop. As mentioned above, patients with PICS suffer 
from prolonged low-grade inflammation and catabolism 
with a loss of lean body mass. Nutritional support in these 
patients is similar to that in patients with sarcopenia or 
cancer cachexia, and the provision of 1.5–2.0 g/kg/day 

protein might be appropriate.28 A summary of the protein 
delivery in each specific phase is provided in Figure 2.

Special Considerations of Amino 
Acids in Critical Care
Branched-Chain Amino Acids
A branched-chain amino acid (BCAA) is an amino acid 
that has an aliphatic side-chain with a branch. The three 
BCAAs are valine, leucine and isoleucine. All three 
BCAAs are essential amino acids for humans. The use 
of BCAAs in the treatment of hepatic failure and hepatic 
encephalopathy is based on enhanced detoxification of 
ammonia in skeletal muscle and the promotion of liver 
regeneration.62 According to some studies, BCAA sup
plementation appears to be associated with the preven
tion of progressive hepatic failure and a decreased 
frequency of complications of cirrhosis.63,64 However, 
BCAA supplementation may lead to enhanced ammonia 
production from glutamine breakdown in the gut and 
kidneys and, thus, has adverse effects on hepatic 
encephalopathy.65 Due to controversial evidence, the 
American Society for Parenteral and Enteral Nutrition 
(ASPEN) guidelines suggest that standard enteral formu
lations (not BCAA formulas) may be used in ICU 
patients with acute and chronic liver disease.56 In trauma 
patients without liver disease, a previous study also 

Figure 2 Protein delivery recommendations in critical illness. Adapted from. Figure 1 in Zanten et al Critical Care (2019) 23:368: Nutrition therapy and critical illness: 
Practical guidance for the ICU, post-ICU, and long-term convalescence phases.61 

Abbreviation: EE, energy expenditure.
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reported no effect on mortality or the LOS in the ICU 
when a BCAA-enriched (45%) parenteral solution was 
added to standard EN.66

Arginine
Arginine is classified as a nonessential amino acid in 
healthy individuals. However, arginine can become 
a conditionally essential amino acid during metabolic or 
traumatic stress because the endogenous arginine supply is 
inadequate to meet physiological demands.67 Arginine 
depletion during critical illness may have several impor
tant effects, including reduced NO production, poor wound 
healing, impaired microcirculatory blood flow, immuno
suppression (T-cell dysfunction), and impaired muscle 
function.67,68 However, evidence of a benefit of arginine 
administration in ICU patients is still lacking.69 Tadié et al 
showed that early enteral L-arginine administration does 
not reverse immunosuppression or inflammation in medi
cal ICU (MICU) patients.70 Luiking et al also reported no 
effect on global hemodynamics, organ function parameters 
or protein metabolism by L-arginine infusion in severe 
sepsis patients.71 However, a previous study reported that 
using an arginine-supplemented diet in perioperative 
patients reduced infection and the hospital LOS but had 
no significant effect on mortality.72 Therefore, the ESPEN 
guidelines for nutrition in critical illness had no recom
mendations related to arginine use. The 2016 Society of 
Critical Care Medicine (SCCM)/ASPEN nutrition therapy 
guidelines also suggest that immune-modulating enteral 
formulations (including arginine and glutamine) should 
not be used routinely in the MICU and that these formula
tions should be reserved for patients with trauma and 
perioperative patients in the surgical ICU (SICU).56

Glutamine
Glutamine is among the most abundant amino acids and is 
classified as a nonessential amino acid in the human body. 
However, glutamine may become a conditionally essential 
amino acid during stress. Glutamine is an important oxi
dative fuel for rapidly proliferating cells, including those 
in the gastrointestinal tract and immune system, and 
mainly serves as a precursor in the synthesis of other 
amino acids and glucose for energy.68 In addition, gluta
mine seems to be a potent enhancer of stress-induced heat 
shock protein expression, which can decrease cell death 
and organ injuries in several models of cellular stress.73

Numerous studies investigating the effects of gluta
mine have been published over the past years. Two 

major meta-analyses illustrated the positive effect of glu
tamine before 2014. Bollhalder et al analyzed forty rando
mized clinical trials and reported no significant reduction 
in short-term mortality but found reduced infection and 
hospital LOS with parenteral glutamine supplementation 
in severely ill patients.74 Wischmeyer et al also analyzed 
26 RCTs and reported that parenteral glutamine supple
mentation was associated with a significant reduction in 
hospital mortality and the hospital LOS.75 However, this 
beneficial effect was only observed in single-center studies 
and not in multicenter studies during the subgroup 
analysis.

Since 2013, several strong studies investigating the 
negative influence of glutamine have been published. 
One multicountry, multicentered large RCT (1223 criti
cally ill patients in 40 ICUs who received supplements 
of glutamine, antioxidants, both, or placebo), the 
REDOXS study, reported that the early provision of glu
tamine did not improve survival and was associated with 
an increase in mortality among critically ill patients with 
multiorgan failure.76,77 Another MetaPlus study compared 
high-protein EN enriched with immune-modulating nutri
ents (IMHP, including glutamine, omega-3 fatty acids, and 
antioxidants) to standard high-protein EN (HP) in 
mechanically ventilated critically ill patients. The results 
showed that the IMHP group did not show improvements 
in infectious complications but had a higher 6-month mor
tality rate than the medical subgroup.78 A recent meta- 
analysis also reported that enteral glutamine provision 
resulted in no significant difference in mortality or the 
length of hospitalization.79

However, some evidence has proven that glutamine has 
benefits in subgroups of critical patients. Glutamine- 
supplemented EN could be associated with a reduction in 
hospital mortality and bacteremia in burn patients and 
a reduction in infectious complications in multiple- 
trauma patients.80,81 Finally, Stehle et al published a meta- 
analysis (15 RCTs involving 842 patients) of studies that 
enrolled only hemodynamically stable patients without 
liver or renal failure. The conclusion showed that parent
eral glutamine dipeptide supplementation significantly 
reduced infectious complications, the ICU LOS, the hos
pital LOS, and the mechanical ventilation duration and 
lowered the hospital mortality rate by 45% but had no 
effect on ICU mortality.82 In conclusion, supplemental 
glutamine might be used cautiously in surgical patients 
with burns or multiple traumas and stable medical 
patients.83 The current published nutritional guidelines 
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also have conservative recommendations for glutamine use 
in critical patients (Table 1).

Conclusion
Amino acid and protein metabolism are altered when the 
human body faces stress, such as sepsis, trauma or major 
surgery. Under such a clinical setting, protein-energy mal
nutrition results in an increased mortality rate and several 
other negative influences on the hospital LOS and long- 
term outcomes. Understanding these changes and issues 
could help clinicians provide adequate and appropriate 
nutrition therapy to critically ill patients, especially during 
the late acute phase and post-acute phase. While several 
specific amino acids, including arginine and glutamine, 
may have immunomodulatory effects, the current level of 
evidence is still weak. During clinical practice for patients 
with critical illness, giving protein supplementation to the 
right patient at the right time in an adequate amount may 
optimize the overall clinical outcome.
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