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Advances in single-cell biotechnology have increasingly revealed interactions
of cells with their surroundings, suggesting a cellular society at the micro-
scale. Similarities between cells and humans across multiple hierarchical
levels have quantitative inference potential for reaching insights about
phenotypic interactions that lead to morphological forms across multiple
scales of cellular organization, namely cells, tissues and organs. Here, the
functional and structural comparisons between how cells and individuals
fundamentally socialize to give rise to the spatial organization are investi-
gated. Integrative experimental cell interaction assays and computational
predictive methods shape the understanding of societal perspective in the
determination of the cellular interactions that create spatially coordinated
forms in biological systems. Emerging quantifiable models from a simpler
biological microworld such as bacterial interactions and single-cell organisms
are explored, providing a route to model spatio-temporal patterning of
morphological structures in humans. This analogical reasoning framework
sheds light on structural patterning principles as a result of biological
interactions across the cellular scale and up.
1. Introduction
The proliferation of cells in the human body has intrigued the bioscience
community and questions related to how cells are formed and how they
communicate have been extensively explored in immunology, cancers and extra-
cellular control mechanisms, amongmany others [1–5]. Strikingly, interactions at
the cellular level are recapitulated in even complex human societies. As a cell is
the basic unit of life, it has been widely studied for deciphering differentiation,
specialization and life-death cycle. Similarly, humans are the basic units of
society. To observe behaviour at the cellular level, multiple cellular profiling
technologies have analysed gene expression, protein production and sequencing
[6–9]. In parallel, large-scale human population data exhibit similarities in inter-
action at multiple levels of society that can be, for instance, studied by tracking
behaviour patterns of humans in society using face recognition technologies
[10], among others. These inferences from cell–cell or human–human inter-
actions can better contribute towards unifying theories that link together
intricacies of working principles in life formation, ranging from single cells to
complex organisms including humans.

Cells respond to chemical signals in the environment around them as
explained in the morphogenetic theory, in which morphological structures arise
from differentiation and migration of cells that are dependent on the dissipation
of biochemical signals, termed as morphogens [11]. Molecules carrying spatial
guidance information in the embryo were found to be essential, which led to an
appreciation of the importance of cellular interactions to construct a spatially
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patterned biological structure and organism [12]. Here, groups
of cells working together form a unified cohort that contributes
to the behaviour of a cell, as opposed to individualistic cellular
decision making without the influence of others. Single cells
lack certain properties (intracellular response state, cellular
positions and extracellular messaging) that groups of cells
acquire throughout their established communication [13,14].
A parallelism can be drawn between the paucity of acquired
properties of cells withheld from group communication to
that of insufficient characteristic maturation experienced by
individuals devoid of any societal influence [15–17]. These sur-
prising similarities between cellular and human interactions
are covered in this comparative framework.

Herein, we investigate cellular interactions that lead to
spatial forms in biology and, at the same time, provide
analogies between the sociology of cells and human society.
By looking at the similarities and dissimilarities, we reason
that it is possible to study the complex ties underlying distinct
micro- and macro-scale societies. To provide a framework
emphasizing the interactions between cells, we explore the
complexities in the spatial organization at cellular levels.
Mechanisms similar in approach and formulation are pointed
out as examples, gradually building up in the form of
four hierarchical levels. When cell–cell relationships are
investigated, the mechanisms involved in the communication
within and between different cell groups are analysed. We
then delve into spatial organization beyond that of the
multi-cellular systems and consider organ spatial patterning
and inter-organ communications.
2. Cellular spatial organization in a tissue
This section expounds on the central idea that structural hierar-
chy implies functional properties at multiple scales. Structural
hierarchy defines an organization containing multiple layers,
in which every lower level is a subset of the higher levels of
hierarchy. The depiction of the structural hierarchy is usually
either through a pyramid chart or a tree diagram that progress-
ively explores levels of increasing complexity from molecules
to organisms, from the vantage point of a cell, and compares
it to that of a human. Analogy starts with the base level of
cells as a basic unit of life and humans as the fundamental
element of society per the rubric put forward by society
for population census [15]. Four hierarchical levels will be
explored to cover the 10 µm scale (cellular level), a 500 µm
scale (tissue level), a cross-section of an anatomical model
(organ cross-section level) and a whole organ (organ level)
(figure 1). In a nutshell, cells interact with each other to
create tissues and organs, whereas human interactions
construct city neighbourhoods, states and eventually countries.

Tissues are composed of a diverse variety of cell types.Mul-
tiple cellular phenotypes in a tissue cluster together in spatially
distinct regions to perform a specific function. For example, the
spleen is comprised the red pulp (i.e. filters the blood) and
white pulp regions (i.e. regulates immune response with anti-
body production) as indicated by its anatomy (figure 1a)
[16,17]. Structural and functional analogies can be drawn
between the architecture of tissues and that of a city, whose
structural organization covers business, residential and restau-
rant districts, among others (figure 1b). Similarly, biological
information flows into and out of the tissue; here, veins and
arteries are similar to the roads andhighways that flow through
and around a city [18]. Cities are divided into neighbourhoods
because they share certain commonalities, such as the type of
houses available and the cost of living [19]. For instance, the
City of Atlanta is divided into distinct regions, such as down-
town, midtown, Ponce and Old Fourth Ward based on the
functional and structural role of individual regions in themech-
anisms to form the city. The next higher level in the hierarchy
corresponds to the State of Georgia that comprises multiple
cities, while in the cellular case, it is the entire spleen organ.

Cells adopt a particular functionality that is moulded by
external and internal influences, similar to humans deciding
on taking up a particular direction in society. An example of
external influences that contribute to the cells occurs in the
thymus, wherein stem cells undergo differentiation and
specialization into a variety of T cells under the influence of
other cell types such as mesenchymal cells, thymic epithelial
cells and dendritic cells surrounding them (figure 2a) [20].
Internal influences include the initial distribution of crucial
compounds, such as transcription factors (e.g. those controlling
T-cell fate determination usingGata3, TCF-1 and Bcl11b genes),
growth factors (e.g. Notch signalling) and other proteins, as
well as corresponding gene expressions of the cell [21–25].
This concept can be compared to the decisions of humans in
a society. The cellular decision is the role of the thymus,
which has a key function in adaptive immunity.

The commonalities between haematopoietic cell matu-
ration and decision making in human society lie in a myriad
of influences that the haematopoietic stem cells and humans
are subjected to reach the desired stage. Intriguing analogy
occurs between the acquired collective memory of a group of
cells and the way an individual acquires knowledge from his
group from the inception of his life. Humans experience intri-
cate influences that help them to choose a life path and career
from the moment they are born under complex factors such
as genes and external stimuli. Internal factors here are the
personality of human beings, their inherent interests, ambition
and skills, whereas the external factors are socioeconomic
factors, culture, family, friends and situational experience
acquired (figure 2b). Thus, human life cycles and cell cycles
(i.e. leads to apoptosis) are highly parallel.

Recent advances in spatially resolved transcript and protein
analysis can be directly applied to studying the interactions in
the immune system. High-throughput RNA-imaging technol-
ogies, such as sequential fluorescence in situ hybridization
(seqFISH) and multiplexed error-robust FISH (MERFISH)
methods, can determine messenger RNA (mRNA) levels in
single cells for up to 10 000 genes [9,26,27]. In MERFISH and
seqFISH methods, the spatial RNA profiles that are extracted
from tissue samples can then be modelled to dissect cellular
communication using the cell identity from RNA distributions
per cell and their proximity.High-content protein-imaging tech-
nologies, such as co-detection by indexing (CODEX) [28] and
cyclic immunofluorescence [7], spatial metabolic analysis
methods, including secondary ion beam mass spectrometry
[29], matrix-assisted laser desorption/ionization mass spec-
trometry imaging [30] and other analysis techniques
employing sequencing physically interacting cells (PIC-seq)
[31] can be used to analyse molecular mechanisms of cellular
communications forextracting theirnative interactions in tissues.

The methods to identify the different cell types in an
organ through conventional imaging techniques such as his-
tology and immunofluorescence are limited to the
simultaneous profiling of more than five molecular
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Figure 1. Hierarchical spatial regulation in cells and human cities. Comparisons between the structural similarities at the cellular level and the city level.
(a) Hierarchical cell neighbourhoods: single cells reside in a tissue, stained by haematoxylin and eosin, at 10 µm scales (cellular level) and 500 µm scales
(tissue level), a cross-section of the anatomical model (organ cross-section level) and the entire organ (organ level) are demonstrated. (b) City neighbourhoods:
satellite image of city neighbourhoods in Atlanta by Google Maps at a 0.5-mile scale (building level) and 1-mile scale (neighbourhood level) are depicted. Districts
in Atlanta at a 3 mile scale (suburb level) and the state of Georgia (city level) are presented.
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signatures at a time. By contrast, the previously described
CODEX technology can be used to capture the spatial organ-
ization of immune cells in organs because of its ability to
detect more than fifty protein types simultaneously. Some
autoimmune diseases may be associated with changes in
the distributions of the immune cells within the tissue organ-
ization of the spleen [28]. The progression of such diseases
can be detected through CODEX by observing cell neigh-
bourhoods, micro-scale regions of tissue in which the
central cell is repeatedly surrounded by a group of other
cell types, in the spleen (figure 2b). Disruptions caused by
tumours to the organization of immune cells in the neigh-
bourhoods, such as exhaustion of T-cells, are linked to
outcomes that are inferior in high-risk patients. This stems
from interruptions to effective communication between cell
neighbourhoods, which originally functioned as modules in
the adaptive immune system. PIC-seq uses single-cell RNA
sequencing to model cross-communications such as signal-
ling in cell doublets that are typically ignored in classical
flow-cytometry experiments [31]. PIC-seq identifies the PIC
groups and single-positive cell groups that are sorted and then
sequenced for characterization of the interactions between
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Figure 2. Cellular spatial organization in tissues. (a) Cells are subjected to internal, external and molecular interactions, contributing to the determination of cell
fates. The haematopoietic stem cell differentiates into a CD8 T-cell with the help of cell types that comprise mesenchymal cells, thymic epithelial cells and dendritic
cells. (b) Immune cell neighbourhoods were observed in tissues by multiplexing methods. One example is the repeated cell neighbours in a spleen that were
observed and quantified through CODEX proteomic imaging. Unique cell types cluster together, leading to functional responses in single immune cells. (c) The
PIC groups and the single-positive cell groups were identified in the neonatal murine lungs. The PIC cells were sorted and sequenced from the doublet cells.
Finally, PIC-seq was used to map out interactions between T-cells and dendritic cells in the neonatal murine lungs. (d ) The mRNA distributions in the cortex
of a mouse brain were determined using seqFISH+ to reveal ligand–receptor interactions of microglia and endothelial cells.
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T-cells and dendritic cells in the neonatal murine lungs
(figure 2c). An evolution of seqFISH (seqFISH+) is another ima-
ging technique in spatial genomics that overcomes the problem
of limited resolution. In seqFISH+, super-resolution imaging
capabilities are achieved by the combination of standard com-
mercial confocal imaging and sequential hybridizations.
Using seqFISH+, mRNA over 10 000 genes were imaged in
the cortex of amousebrain to reveal ligand–receptor enrichment
in neighbouring cells, in particular microglia and endothelial
cells based on mRNA expressions (figure 2d) [26]. In the
mouse brain, the pathways of ligand–receptor signalling were
tissue-specific, highly localized concerning the positioning of
nearby cells, and dependent on the expression of distinct
mRNAs. Microglia were found to express transforming
growth factor beta mRNA and endothelial cells near microglia
expressed endoglin mRNAs.
Unique cell types contained in cell neighbourhoods of tis-
sues can be partitioned by using segmentation algorithms
that employ deep-learning and machine-learning concepts.
Based on the cellular phenotypes and phenotypic interactions
of the cells in the cellular neighbourhood, computational
models can not only predict the growth and development
of cells but can also segment the regions that contain different
types of cells. Segmentation algorithms such as compression
and histogram-based methods use deep-learning concepts
based on convolutional neural networks (CNNs) that are pre-
ferred owing to scalability and accuracy of results [32]. For this
purpose, a plethora of algorithms that use computer vision
techniques such as watershed transformation, model-based
segmentation and region growing methods can be used. The
reason why deep learning is preferred is owing to the general-
izability of the problem, given that the network receives the
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appropriate amount of training. This in turn minimizes error
andmaximizes accuracy [33–36]. Similarly, in cities, segmenta-
tion of districts using CNNs can be carried out. Distinct
areas are characterized by permutations of factors such as
businesses, entertainment centres and residential areas. Traffic
regulation benefits from such data-driven segmentation of
cities [37]. Based on quantitativemetrics collected from the resi-
dents of a city, such as the reason for visiting the establishment
and time spent in each establishment, the segmentation of
these distinct areas is possible.

Cells interact with each other in their society. For example,
intercellular communication of the immune systemoccurs both
in the short and long-range. While short-range communication
relies on cell–receptor interaction, long-range communication
uses molecules such as tunnelling nanotubes (TNTs) and
extracellular vesicles (EVs). TNTs are involved in cargo trans-
portation during pathological changes that lead to diseases
[38]. TNTs play critical roles in the survival of cells through
the transportation of subcellular cargos after the onset of
stress or injury [39]. EVs facilitate cancer growth based on the
transport of mRNAs and proteins for long-range communi-
cation [40]. Secreted proteins are a fraction of the proteins
produced by the cell and have a variety of functions, spanning
defence, immunity and inflammation [41]. During an immune
response, different signalling molecules work together to
enhance or inhibit different aspects of immune cells such as
their mobility, antibody production or phagocytosis. Whether
or not a cell is responding to the signals can be measured
with cellular profiling technologies. Mapping RNAs and pro-
teins in cells can be used to dissect the interaction patterns
among cells. For instance, proteomic signatures of 10 000 pro-
teins in 28 human immune cell types obtained by mass
spectrometry were used to map their social network [42].
These RNA sequencing and mass spectrometry techniques
have generated extensive databases about cellular communi-
cations maps in many human systems, particularly in
immunology. The significance of these social connections
among cells is to regulate cellular decision making in response
to intra-body signals.
3. Multi-cellularity in the spatial
organization of organs

3.1. Organ patterning
Spatial patterns of organs in an organism are regulated by
the sociological interactions of their cellular constituents,
which are mediated through key protein factors [43]. At the
same time, organ pattern formation is regulated by modifi-
cations in gene expression [44–46]. Spatial formation rules of
organs are evolutionarily conserved, and thus, numerous
organisms of plants, flies and fishes were analysed for their
intra-organ structures. In plants, the growth of meristems
was initiated and organs were produced based on the effects
of PLETHORA (PLT) activation factors [47]. The expression of
various PLT genes contributed to the identities that were
acquired by the cells during division, causing them to alter
the formation of a new growth axis or a new organ (figure 3a).
Such sociological factors contribute to spatial organ patterning
in plants.

In complex vertebrates, cellular regulation is often modi-
fied by sociological drivers such as gene switches that alter
the communication channels of cells. Zebrafish are commonly
studied in the context of tissue damage and regenerative capa-
bilities [48].Mutations of theUhrf1 gene that are responsible for
hepatic outgrowth impacted the embryos of zebrafish through
cell cyclemodifications [49], resulting in abnormal liver growth
in the various stages of development of the zebrafish
(figure 3b). In this spatial model, the liver growth was studied
in particular during the hepatogenesis stage of embryonic
development and the regeneration stage after partial
hepatectomy of the zebrafish for organ patterning.

Endoderm cells in mice drive spatial patterning from the
progenitor tissues within specified organs at an early stage,
as a small fraction of the cells were found to have acquired
localization-based traits during early stages of development
that later could be matched to a sequence of organ identities
[50]. During embryogenesis, endoderm cells acquire an iden-
tity that pre-defines their spatial positioning [51,52]. For
instance, the cell composition and symmetry of the murine
heart were altered by mutating the PITX2 gene (figure 3c),
wherein the PITX2 gene also affected the development of
the heart valves [53]. These conserved findings in plants
and animals showed that any modifications in the communi-
cation channels of the cells would cause morphological
changes in the spatial patterning of distinct organs.

3.2. Organ positioning in humans
Organs in a human body also exhibit location preference based
on cellular society. For instance, malformations and positional
displacement of organs owing to birth defects, often
accompanied by congenital heart defects, is known as a
multi-organ disorder called heterotaxy [54]. In this syndrome,
mutations of certain genes such as CRYPTIC, LEFTYA, ZIC3,
NKX2.5 and ACVR2B are observed to contribute towards
human heterotaxy, specifically disturbing left-right patterning
in the early stages of embryonic development. This disruption
to left-right patterning manifests itself in the form of segmental
discordances and atrial isomerism of the thoracic and abdomi-
nal positioning of organs in the body [55,56]. Intestinal rotation
abnormalities have been commonly observed in infants found
to have heterotaxy syndrome and expressed symptoms by the
age of six [57]. Abnormal structures of the chest and abdominal
organs are common in children with heterotaxy syndrome [58].
Mutations of genes associated with the Bardet–Biedl syndrome
genes lead to ciliopathies, which are in turn associated with
changes in the placement and asymmetry of organs [59,60].
Therefore, humans with heterotaxy syndrome exhibit a range
of phenotypic variability, the complete identification of which
is essential for comprehensive analysis of genetic etiology. On
the other hand, while genomic tools to determine the spatial
patterning of human organs have been limited, the anatomy
of humans can be modelled based on probabilistic atlases
from registered computed tomography scans.
4. Scalable spatial organization from cells
to humans

Multiple models can be used to quantify the sociable actions
exhibited by cells. There has been increasing interest in describ-
ing the growth of tumours, bacterial colonies and single cells
[61,62] to investigate cancer therapy, microbial population
dynamics and in vivo imaging of organs. Mathematical
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modelling has been powerful as a tool for interpreting cellular
and molecular mechanisms and has been useful in modelling
the behaviour of several higher level organisms.

In cell societies, various parameters such as cell cycle,
proliferation and motility are commonly studied as a function
of time. The environment of a cell can controllably be adjusted
to study chemical gradients of stimulants that completely alter
the growth trajectory of the cell. With this systematic approach,
mathematical models have been developed such as reaction–
diffusion models, evolutionary game theory models and
numerical modelling [63–65]. These computational models
can then be fine-tuned based on the simulations, outputs and
parameters, providing ample opportunities to decipher the
spatial dynamics that use the concept of cellular sociology.
Mathematicalmodels have been used to interpret the behaviour
of higher-order organisms. For instance, frameworks to analyse
collective manners in harvester ants colonies using collision
theory and random walk models reveal trends in patterns of
interaction between ants [66]. The integration of behavioural
models using partitioning algorithms describes the social prac-
tices in the swarms of bees and ant colonies [67]. Additional
models simulate the human responses for epidemic scenarios
during evacuations in the case of emergencies [68–71].

Cell movement has extensively been modelled by math-
ematical foundations [72,73]. When a chemical gradient is
formed in an environment, migration models are often used
to predict the relocation patterns of a cell. Several chemotaxis
models have been used to predict the movement of popu-
lation densities [74]. Mathematical models of migration
have been created to quantize these results. The factors that
influence the drifting of single-celled organisms are the con-
centration and direction of chemotaxis, positioning of
similar organisms and threat of predators. The migration of
animals has been analysed extensively using mathematical
models such as periodic Markov models and stochastic
optimal stopping formalism theory [75,76]. To quantify the
cohesive behaviour of insects, stochastic compartmental
models have been investigated. Similarities and differences
in collective migration are studied across organisms of vary-
ing complexities using mathematical models, giving rise to a
unifying theory on collective migration from simple cells to
complex organisms [77].

The international migration of humans globally has been
affected by logistics, cultural, and geographical distances.
Population patterns among countries exhibit preferential
connectivity [78,79]. The associated spatio-temporal patterns
have been investigated using complex network theory to
study the correlation between international human migration
and its influence on bilateral trade between countries [80,81].
Modelling these relationships provides insight into the
mobility patterns of humans in the prediction and control
of diseases [82].
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5. Conclusion
In this commentary, we examined the cellular interactions
underlying the hierarchical spatial organization of tissues
and organs. Environmental factors such as signalling and
internal influences comprise molecular networks that drive
the sociology of cells, leading to intra-organ spatial patterning
rules. Multiplex and high-content imaging technologies have
opened the doors to probe cellular associations based on phys-
ical interacting cell-pairs, ligand–receptor relationships and
spatially regulated gene regulation analysis in nearby cells.
Sociological switches regulate cellular decision making to
determine the eventual spatial organization of organs in
plants and animals. The phenotypic variability that is involved
in the genetic syndromes contributes to the positioning
of organs in humans. Mathematical models have been instru-
mental in the integrated analysis of behaviours in cells and
higher-order organisms. With the advancement in single-cell
biotechnologies and cell–cell interactionmodelling, the cellular
sociology framework paves the way for universal principles of
spatial patterning from individual cells to organs.
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