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Abstract
Drug–Drug interaction (DDI) prediction is essential in pharmaceutical research and clinical application. Existing com-

putational methods mainly extract data from multiple resources and treat it as binary classification. However, this cannot

unambiguously tell the boundary between positive and negative samples owing to the incompleteness and uncertainty of

derived data. A granular computing method called three-way decision is proved to be effective in making uncertain

decision, but it relies on supplementary information to make delay decision. Recently, biomedical knowledge graph has

been regarded as an important source to obtain abundant supplementary information about drugs. This paper proposes a

three-way decision-based method called 3WDDI, in combination with knowledge graph embedding as supplementary

features to enhance DDI prediction. The drug pairs are divided into positive, negative and boundary regions by Convo-

lutional Neural Network (CNN) according to drug chemical structure feature. Further, delay decision is made for objects in

the boundary region by integrating knowledge graph embedding feature to promote the accuracy of decision-making. The

empirical results show that 3WDDI yields up to 0.8922, 0.9614, 0.9582, 0.8930 for Accuracy, AUPR, AUC and F1-score,

respectively, and outperforms several baseline models.
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1 Introduction

Poly-pharmacy is increasingly common in real-world

clinical settings, especially for aged and cancer patients

who suffer from multiple diseases and need complex drug

treatments. However, unexpected drug–drug interactions

(DDI) frequently occur and lead to adverse drug reactions,

while several drugs are taken together. Unexpected DDI

may threaten the patient’s health, and give rise to re-hos-

pitalization. This may directly or indirectly result in high

burden on medical system. Therefore, it is of vital impor-

tance to identify potential drug–drug interactions before

putting them on the market for clinical use.
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Traditional methods for DDI prediction mainly depend

on in vivo and in vitro experiments, which are usually

labor-intensive and limited in experimental scale. In recent

years, with the development of computer technology and

establishment of kinds of drug-related databases, a number

of data-driven methods for DDI prediction have been

proposed and yielded considerable results. Machine

learning and deep learning methods are impressive due to

their good performance. They tend to extract multiple

drug-related features from open-source databases, such as

DrugBank (Law et al. 2013), KEGG-DRUG (Kanehisa

et al. 2015). And the derived drug-related features usually

consist of drug molecular fingerprint, drug target infor-

mation, drug phenotype information and so on. However, it

is not only labor-intensive to obtain comprehensive drug-

related information from diverse data sources, but also

difficult to guarantee the quality of drug information.

Recently, knowledge graph has been widely studied and

used in various research fields (Ji et al. 2021) for knowl-

edge representation and knowledge integration. And sev-

eral large-scale domain knowledge graphs have also been

established in bioinformatics, such as Bio2RDF (Callahan

et al. 2013) and DRKG (Ioannidis et al. 2020). Existing

methods mainly utilize well-established knowledge graphs

or integrate knowledge from multiple data sources to

construct knowledge graphs (Abdelaziz et al. 2017; Karim

et al. 2019; Dai et al. 2020). Knowledge graph embedding

model (or knowledge representation learning model) is

trained on the knowledge graph to generate embedding

vectors for entities and relations as external knowledge,

which is able to enhance traditional machine learning and

deep learning methods for DDI prediction. And many

studies have proven knowledge graph embedding vector is

a powerful feature.

No matter obtaining drug features from multiple data

sources or using knowledge graph embedding as feature

ideally assume that we can obtain detailed and complete

information about the drug all at once, and then make an

immediate decision for the existence of DDI. However,

only chemical structure information of a drug is easy to

obtain, while others, such as target, pathway, need further

experiments to discover. As a result, it is not easy to decide

whether there is an interaction between two drugs based on

incomplete information. And modeling the problem as a

binary classification directly may hinder the accuracy of

DDI prediction due to the uncertainty and incompleteness

of drug information. In recent years, a granular computing

method called three-way decision aiming to solve uncertain

decision-making is proposed and widely applied in Artifi-

cial Intelligence field, such as image recognition (Huaxiong

et al. 2016), recommendation system (Zhang et al. 2017a).

The main idea of three-way decision is to divide the objects

into three regions instead of two regions in binary

classification, and adopt delay decision for an additional

region called boundary region until more information is

obtained. To model the uncertain decision boundary and

prompt the accuracy of DDI prediction, we thus introduce

the three-way decision for DDI prediction. Meanwhile,

delay decision of three-way decision tends to rely on a

supplementary feature. Herein, we treat powerful knowl-

edge graph embedding vector as the additional feature

which contains global and abundant knowledge of drug.

In this paper, we treat the knowledge graph as auxiliary

information and combine three-way decision to enhance

drug–drug interaction prediction. The chemical structure

information of drug is collected to generate drug structure

feature for each drug pair in training set. A CNN model

with strong feature extraction ability is adopted to divide

training data into positive, negative and boundary region

based on the drug structure feature. Unlike binary classi-

fication, immediate decision is not made for the samples in

the boundary region. To achieve more accurate decision on

drug–drug interaction in boundary region, knowledge

graph embedding is trained to represent a drug pair, and

further decision will be made by an enhancing model.

Knowledge graph embedding feature shows strong repre-

sentation ability and is significantly different from drug

structure feature. The experimental results demonstrate that

delay decision based on knowledge graph embedding fea-

ture produce more confidence prediction for drug pairs in

the boundary region.

To summarize, this paper makes the following

contributions:

• We introduce three-way decision to solve the uncertain

decision of DDI prediction and utilize the knowledge

graph embedding as supplementary feature to enhance

DDI prediction.

• We propose a novel method called 3WDDI to predict

the existence of drug–drug interaction.

• We compare our method with several classical models

and state-of-the-art works on a popular dataset. The

results show the proposed 3WDDI outperforms the

baselines.

The remaining content of this paper is organized as fol-

lows. In Sect. 2, we introduce the background and related

works briefly. In Sect. 3, the proposed method 3WDDI is

introduced. And we report the experiment results and

analysis in Sect. 4. The conclusions are offered in Sect. 5.

2 Related work

This section introduces the research background and rele-

vant works, including DDI prediction, knowledge graph

embedding and three-way decision.
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2.1 DDI prediction

In the past few years, many works extract drug-related

information from existing databases to construct drug pair

representation and train machine learning models to predict

drug–drug interactions. They mainly model the drug–drug

prediction problem as binary classification. Given a rep-

resentation of a drug pair, the machine learning models

calculate the probability that the drug interaction exists.

We roughly classify current methods into two categories:

traditional machine learning-based method and deep

learning-based method. The former focuses on effective

drug pair representation. Gottlieb et al. (2012) constructed

drug feature vectors based on seven types of drug–drug

similarities to describe drug–drug pairs, and then applies

logistic regression model to predict DDI. A heterogeneous

network-assisted inference framework (Cheng and Zhao

2014) is proposed to assist the prediction of DDI, which

integrates multiple similarity features and applies five

classification models. Zhang et al. (2015) built a high-order

similarity weight network and used a semi-supervised label

propagation algorithm to predict drug–drug interactions.

Drug–drug interaction (Ferdousi et al. 2017) is predicted

by the functional similarity features of drug, including

carriers, transporters, enzymes and targets (CTET). Zhang

et al. (2017b) adopted ensemble learning model to predict

DDI and evaluated the contribution of different features

extracted from multiple data sources. Kastrin et al. (2018)

introduced several statistical machine learning models to

predict DDI in terms of semantic similarity and topology

similarity.

Traditional machine learning-based methods provide a

comprehensive guideline for information extraction and

feature construction of drug. However, feature engineering

is often time-consuming and labor-intensive. Recently,

deep learning models have been widely studied in many

fields due to its powerful ability of modeling complicated

relations and extracting high-order features. Ryu et al.

(2018) proposed a deep learning model called DeepDDI.

They treat chemical drug substructure fingerprint (SSP) as

input feature to predict 86 types of DDI interactions. In the

same way, Lee et al. (2019) integrated three types of drug

similarity fingerprints SSP, GSP and TSP. And they

introduced an autoencoder to solve the curse of dimen-

sionality aroused by additional fingerprints. Rohani and

Eslahchi (2019) constructed several drug similarity matri-

ces based on substructure, target, side effect, off-label side

effect, pathway, transporter, and indication data. The sub-

set of those matrices is then selected to integrate into an

ensemble similarity matrix by a heuristic method. Finally,

the drug representation denoted by the ensemble similarity

matrix is fed into deep neural network for predicting DDI.

A multi-modality drug representation learning method

based on autoencoder DDI-MDAT is proposed by Zhang

et al. (2020), and positive-unlabeled (PU) learning setting

is adopted for higher accuracy. Deng et al. (2020) designed

a multi-modal deep learning framework and generated drug

molecular structure, target, pathway and enzyme finger-

prints to describe a drug pair.

The aforementioned methods have achieved remarkable

results in DDI prediction. However, they usually predicted

DDI by binary classification models, which cannot tell the

clear boundary of the decision due to the uncertainty and

incompleteness of drug information. Further, the process of

feature construction is labor-intensive and the information

extracted from different data sources lack of consistency

and globality. In contrast, we consider uncertainty of drug

information in real word by introducing three-way decision

classification framework to model uncertain decision

boundary for DDI prediction, and utilize knowledge graph

embedding as the input feature of delay decision. In the

following Sects. 2.2 and 2.3, we will give a brief intro-

duction to knowledge graph embedding in DDI prediction

and application of three-way decision.

2.2 Knowledge graph embedding

Knowledge graphs, a form of structured human knowledge,

have aroused widespread interest from both the academia

and the industry (Ji et al. 2021). Knowledge graph is

composed of fact triple h; r; tð Þ, where h and t are the head

entity and tail entity, respectively, and r denotes the rela-

tion between h and t. From the perspective of graph theory,

knowledge graph belongs to heterogeneous graph, con-

sisting of different types of nodes and edges corresponding

to entities and relations in the knowledge graph. To utilize

rich knowledge contained in knowledge graph, we need

knowledge graph representation learning, namely knowl-

edge graph embedding, aiming to map entities and rela-

tions into low-dimensional vectors while capturing their

semantic information. Score function is a key component

within knowledge graph embedding models. Current

models can be roughly classified into two categories

according to the score function: translation distance-based

model and semantic similarity-based model.

Translation distance-based models, such as TransE

(Bordes et al. 2013), TransH (Wang et al. 2014) and

TransR (Lin et al. 2015) measure the plausibility of fact

triples by calculating the distance between entities, where

addictive translation with relations as hþ r � t is widely

used. Semantic similarity-based models measure the plau-

sibility of fact triples by semantic matching. They usually

adopt a multiplicative formulation, i.e., h>Mr � t>, to

transform head entity near the tail in the representation
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space. Typical models, such as DistMult (Yang et al. 2014)

and ComplEx (Trouillon et al. 2016), can be divided into

this class. Knowledge graph has been studied and applied

in many fields, such as recommendation systems and

question answering systems. There are also some applica-

tions of knowledge graph in bioinformatics (Lan et al.

2021b, 2022). And several works have also introduced

knowledge graphs embedding to DDIs prediction. Abde-

laziz et al. (2017) constructed knowledge graph based on

multiple data source and proposed framework named

Tiresias that generated drug pair representation according

to cosine similarity of knowledge graph embedding vec-

tors. Karim et al. (2019) applied knowledge graph as a tool

for data integration to overcome data skewness, and con-

ducted ComplEx over knowledge graph to obtain embed-

ding vectors. DDIs are predicted by convolutional-LSTM

model, where knowledge graph embedding is the only

input. Instead of applying knowledge graph in feature

generation, Dai et al. (2020) modeled multiple DDIs data

as a knowledge graph and designed a knowledge graph

embedding model based on Wasserstein Adversarial

Autoencoder. DDI prediction is treated as link prediction

over the knowledge graph. The above works have proved

that knowledge graph is a promising tool for many tasks.

Knowledge graphs related to drug are established based on

the information derived from several different databases.

They contain more detailed information about drug and the

interactions with other entities, such as gene and protein,

which enhances the performance of DDI prediction. The

knowledge graph embedding feature can provide more

consistent and global information for drugs.

2.3 Three-way decision

Three-way decision, as a new interpretation of rules in

rough set theory, proposed by Yao (2010, 2021), aims to

deal with complex and uncertain decision-making. It has

been widely applied in several domains of Artificial

Intelligence. Zhou et al. (2014) introduced three-way

decision for e-mail spam filtering. Huaxiong et al. (2016)

applied it for face recognition and designed cost-sensitive

sequential three-way decision framework. Zhang et al.

(2017a) designed a regression-based three-way recom-

mender system to minimize the average cost by adjusting

the thresholds for different behaviors. Li et al. (2017)

developed a three-way decision model for handling the

uncertain boundary to improve the binary text classification

performance based on the rough set techniques and cen-

troid solution. Zhang et al. (2019) introduces a three-way

enhanced convolutional neural network model named 3W-

CNN for sentence-level sentiment classification. Yu et al.

(2020) proposed an active three-way clustering method to

model uncertainty relations between objects and improve

the accuracy of high-dimensional multi-view clustering. Li

and Huang (2020) integrated three-way decision into a

fuzzy condition decision information system for credit card

evaluation. And three-way decision was introduced into the

traditional k-means clustering to combine knowledge of

set-pair information granule (Zhang et al. 2021). The

above works enrich the theoretic foundation of three-way

decisions, and indicate that three-way decisions are capable

of handling many practical decision problems. This paper

introduces three-way decision to model uncertainty deci-

sion boundary of DDI prediction. Further, we treat the

knowledge graph embedding feature as the delay decision

feature of three-way decision for more accurate prediction.

3 Drug–drug Prediction using three-way
decision

In this section, we first provide an overview of proposed

3WDDI framework in Sect. 3.1. The construction of the

drug chemical structure feature is presented in Sect. 3.2.

The acquisition of knowledge graph embedding features is

later illustrated in Sect. 3.3. Finally, the components of

three-way decision including boundary division and delay

decision are offered in Sects. 3.4 and 3.5, respectively.

3.1 Overview

The procedure of our proposed method is showed in Fig-

ure 1. It takes drug chemical structure feature as the pri-

mary feature and knowledge graph embedding of drugs in

KG as the supplementary feature to predict interaction

value for drug–drug pair using three-way decision classi-

fication model. Therefore, we design our method as the

following steps for DDI prediction:

1. drug chemical structure construction;

2. knowledge acquisition;

3. three-way decision and boundary division;

4. enhancing module.

In step 1, we collect the SMILES (Simplified Molecular

Input Line Entry Specification) of drug from dataset and

compute the drug chemical structure feature. In step 2, we

train a knowledge graph embedding model on large-scale

biomedical knowledge graph to generate embedding for

candidate drugs. Then, based on the drug chemical struc-

tures of drug pairs, we divide the training samples into

three regions including positive, negative and boundary in

step 3. The boundary region contains samples that cannot

be decided immediately into positive or negative. To fur-

ther handle samples in the boundary region, we feed them

to an enhancing module and treat knowledge graph

embedding as input feature for the final result in step 4.
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The final score of classification will be calculated in terms

of the results from step 3 and step 4. Next, we will describe

our proposed method in more details.

3.2 Drug chemical structure feature construction

To train a deep learning model, we need to represent a drug

pair as a continuous vector. Drug chemical structure

information is critical and easy to obtain. Drug feature

based on the chemical structure has already been success-

fully developed in many DDI prediction studies (Cheng

and Zhao 2014; Zhang et al. 2015; Ryu et al. 2018).

According to Zhang et al. (2017b), we construct the drug

feature based on 881 types of chemical substructures, as

known as chemical fingerprints defined in PubChem (Li

et al. 2010). Each drug can be represented as an 881-di-

mensional bit vector where the value 1 or 0 denotes the

presence or absence of the corresponding chemical sub-

structure respectively, such as –NH2, –CH3.

We can obtain a high-dimensional and sparse feature

vector for each candidate drug. To get a low-dimensional

and dense drug feature vector, we calculate the pairwise

drug–drug similarity from bit vectors using Jaccard simi-

larity measure. Given drug di and dj in candidate drug set

D, and their feature vectors Vi and Vj, the Jaccard similarity

can be defined as:

SðVi;VjÞ ¼
M11

M01 þM10 þM11

; ð1Þ

where M11 is the number of chemical substructures shared

by di and dj, or the number of dimensions where Vi and Vj

both have the value of 1; M01 is the number of

substructures that dj has but di does not; and M10 is the

number of substructures that di has but dj does not.

According to the obtained initial Jaccard similarity, we

can obtain a jDj � jDj pair-wise drug–drug similarity

matrix S where the element Sij means the similarity

between di and dj. Then, each drug di can be represented as

a jDj-dimensional dense row vector called Fs
i in matrix S.

As a result, for each drug pair di; dj
� �

in dataset, we are

able to concatenate Fs
i and Fs

j to get drug pair representa-

tion ½Fs
i ;F

s
j �. This drug chemical structure feature will be

used as the input of decision function in Sect. 3.4 below.

3.3 Knowledge acquisition

Compared with the drug structure feature in Sect. 3.2,

knowledge graph embedding feature is a distinctive feature

containing global information of drugs. This section

introduces how to generate the knowledge graph embed-

ding feature for each drug in dataset.

We download a large-scale biomedical knowledge graph

DRKG (Ioannidis et al. 2020), which covers all drugs in

our dataset and other biology entities, such as gene, dis-

ease, pathway and so on, and relationships among them. A

popular knowledge graph embedding model ComplEx

(Trouillon et al. 2016) is used to generate embedding

vectors for all entities and relations in DRKG We denote

the knowledge graph as G ¼ Ne;Nrð Þ, where Ne and Nr is

the set of entities and the set of relations, respectively. G is

composed of entity–relation–entity triples Ti ¼ hi; ri; tið Þ
where hi; ti 2 Ne, ri 2 Nr. For each entity e 2 Ne and

r 2 Nr, knowledge graph embedding model aims to gen-

erate embedding vectors ee 2 Rde and er 2 Rdr where de

Fig. 1 Overview of 3WDDI
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and dr mean the dimension of ee and er, respectively (ex
denotes the embedding vector of object x). Each embed-

ding model has a scoring function f : Ne � Nr � Ne ! R to

assign a score f hi; ri; tið Þ for a possible triple hi; ri; tið Þ,
which indicates its plausibility. Models are trained in a way

such that for every fact triple hi; ri; tið Þ 2 T and fake triple

h0i; r
0
i; t

0
i

� �
62 T . The models assign scores that satisfy

f hi; ri; tið Þ[ 0 and f h0i; r
0
i; t

0
i

� �
\0. A scoring function is

generally a function of eh; er; etð Þ.
In this paper, a popular semantic similarity-based model

named ComplEx is applied to train embedding vectors for

entities and relations. ComplEx represents entities and

relations in complex space for modeling multi-type com-

plicated relations. Given h; t 2 Ne and r 2 Nr, it generates

embedding vector eh; er; et 2 Rd and defines scoring

function as:

f ðh; r; tÞ ¼ Re eh; er; eth ið Þ

¼ Re
Xd

k¼1

e
ðkÞ
h eðkÞr e

ðkÞ
t

 !

;
ð2Þ

where f h; r; tð Þ[ 0 for fact triples and f h; r; tð Þ\0 for fake

triples. Re denotes the real part of a complex number. �et is

the conjugate vector of complex vector et.

According to complEx model, we can get an embedding

vector for each entity and relation in the biomedical

knowledge. For each drug di in dataset, we can find a

corresponding compound entity ei in the knowledge graph

G. Here, we use embedding vector ei of entity ei as the

representation of drug di. According to Eq. 2, for each drug

pair di; dj
� �

, we concatenate ei and ej to yield drug pair

representation ½ei; ej�, which is regarded as a new feature

for boundary samples and fed to enhancing model for

further decision. Considering the consistency of formula,

we denote the drug pair knowledge graph embedding fea-

ture ½ei; ej� as ½Fe
i ;F

e
j �,

3.4 Three-way decision and boundary division

This section describes the theory of Three-way Decision

and discusses how to divide decision boundary based on

the drug chemical structural feature of Sect. 3.2.

Three-way decision is originally derived from rough set

theory. In rough set theory, object x belongs to either set C

or :C, where C [ :C ¼ U, and U is a finite non-empty

set called the universe. For each object x, there are three

decisions to choose, including dividing x to positive region

POS ðpredicting x 2 CÞ, negative region NEG

ðpredicting x 62 CÞ or boundary region BND (unpredicting)

. According to the differences between real label and

decisional label of the object x, there will be six decision

actions and corresponding six kinds of costs (Table 1): kPP,

kBP, kNP and kNN , kBN , kNN . kPP, kBP, and kNP denote the

costs of dividing x into POS, NEG and BND, respectively

in case of x 2 C. kNN , kBN , kNN mean the costs of dividing x

into POS, NEG and BND, respectively while x 2 :C. In

the practical application environment, the values of costs

are given by domain experts.

Generally, the inequations kPP � kBP\kNP and

kNN � kBN\kPN should be satisfied, indicating that the cost

of classifying an object x that belongs to C into the positive

region POS(C) is less than or equal to the cost of classi-

fying x into the boundary region BND(C), and both of these

losses are strictly less than the cost of classifying x into the

negative region NEG(C). The goal of three-way decision is

to make a proper decision in a minimum cost. Based on the

two inequations, Bayesian decision procedure suggests the

following minimum-risk decision rules:

decide x 2
POSðCÞ; If PðC j xÞ� a

BNDðCÞ; If a�PðC j xÞ� b

NEGðCÞ; If PðC j xÞ� b

8
><

>:
; ð3Þ

where a and b are a pair of threshold parameters used to

divide decision boundary, and a ¼ kPN�kBNð Þ
kPN�kBNð Þþ kBP�kPPð Þ,

b ¼ kBN�kNNð Þ
kBN�kNNð Þþ kNP�kBPð Þ, 0� b� a\1; P C j xð Þ 2 0; 1ð Þ,

called decision status value, is the predicted probability of

x belonging to C, and is calculated by a decision function.

In the application of three-way decision for machine

learning, the decision function is generally a certain

machine learning model. For example, Naive Bayes model

is adapted as the decision function in the three-way spam

filtering system based on Naive Bayes Zhou et al. (2014).

Our method applies a CNN model as the decision function.

In our task, object x is a pair of drugs ðdi; djÞ. C denotes

the set of drug pairs in which an interaction exists between

two drugs, while :C not. In other words, x 2 C indicates

that di interacts with dj, while x 62 C indicates that di does

not interact with dj in contrast. P C j xð Þis the probability

that di may interact with dj. We introduce a CNN model as

the decision function to predict the probability of x 2 C.

The drug substructure feature representation½Fs
i ;F

s
j � of drug

pair ðdi; djÞ will be treated as the input feature of the CNN

model called SCNN. The forward propagation of SCNN is

calculated as:

Table 1 Costs matrix of three-way decision

POS(C) NEG(C) BND(C)

C kPP kBP kNP

:C kNN kBN kNN
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fscnn Fs
i ;F

s
j

h i� �
¼ MLP vec r Fs

i ;F
s
j

h i
	 x

� �� �� �
: ð4Þ

In the above formula, 	 is the convolution operator and x is

the convolution kernel. r denotes the activation function

and vec() means reshaping a tensor to a vector. MLP is a

multi-layer perceptron and its output layer contains only

one neuron activated by a sigmoid function. Therefore, the

output value of SCNN, represented as fscnn½Fs
i ;F

s
j �, ranging

from 0 to 1, is regarded as the decision status value of

three-way decision framework by which we can classify

drug pairs ðdi; djÞ into POS(C), BND(C), and NEG(C) with

two threshold parameters a and b. For drug pairs divided

into BND(C), delay decision will be executed in Sect. 3.5.

3.5 Enhancing Module

Enhancing Module is an important component of three-

way decision classification model, which makes it outper-

form binary classification models. According to the work

of Zhang et al. (2019), we choose knowledge graph

embedding of each drug from DRKG as supplementary

features and the same CNN classifier in Sect. 3.4. We use

the same model but different features in boundary division

and enhancing module, while Zhang et al. (2019) uses the

same feature of object but totally different classification

models to guarantee the complementary property between

boundary division and enhancing module. Global infor-

mation contained in knowledge graph embedding focus on

the drug interactions with other entities, while structure

feature only considers local structure characteristics. In this

way, different drug features between boundary division and

enhancing module can maintain the complementary prop-

erty between them. Meanwhile, treating the same deep

learning model as decision models of boundary division

and enhancing module can maintain strong ability of

learning and feature extraction in both periods.

For drug pair ðdi; djÞ in BND(C), we have obtained the

knowledge graph embedding representation of ðdi; djÞ,
denoted as ½Fe

i ;F
e
j � in Sect. 3.4. Then, following the Eq. 4,

the second CNN that has the same network structure with

SCNN, called ECNN will utilize the feature½Fe
i ;F

e
j � to

produce a new prediction probability fecnn½Fe
i ;F

e
j � for drug

pairs in BND(C). Finally, each drug pair in BND(C) will be

classified into POS(C) or BND(C) according to the final

prediction probability scored by ECNN. Given a drug pair

ðdi; djÞ, the pseudo code of predicting it as positive or

negative is showed in Algorithm 1 below.

4 Experiment results

In this section, we introduce the experiment and analyze

the result. We first introduce the used datasets in Sect. 4.1.

Then, the baseline and parameter settings are detailed in

Sect. 4.2. Finally, Sect. 4.3 discusses the results.

4.1 Datasets

DDIs label data and large-scale biology knowledge

graph data are needed for our model training and evalua-

tion. For DDIs data, we introduce a popular DDI data

zhangDDI (Zhang et al. 2017b) as experiment data, which

contain 548 drugs and 48,548 pairwise known DDIs.

However, since zhangDDI was collected 4 years ago, some

newly found DDIs by subsequent studies might not be

included. Thus, instead of directly treating drug pairs

without known interactions as negative samples, we vali-

date them based on the latest DrugBank (Law et al. 2013)

which covers millions of newly discovered DDIs. We

remove negative DDIs that appear in DrugBank to update

the dataset zhangDDI. Finally, we randomly select 48,548

negative sample from the validated negative samples set.

For the knowledge graph, we choose DRKG constructed

for drug repurposing of COVID-19 (Ioannidis et al. 2020)

as our knowledge graph, which contains several drug-re-

lated biological entities and relations. DRKG is a com-

prehensive biological knowledge graph related to genes,

compounds, diseases, biological processes, side effects and

symptoms that are extracted from six datasets including

DrugBank, Hetionet, GNBR, String, IntAct and DGIdb.
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Statistical information about DRKG is shown in Table 2.

Compound entities in DRKG have already covered all 548

candidate drugs of zhangDDI. Drug (compounds in

DRKG)-related entities and relations information will be

maintained in embedding vectors generated by ComplEx to

promote the prediction of unexpected DDIs.

As mentioned in Sect. 3, the problem of DDI prediction

is modeled as binary classification. Therefore, we apply

several evaluation metrics of classification to measure the

performance of prediction model including accuracy

(ACC), the area under the precision–recall curve (AUPR),

the area under ROC (AUC), and F1 score. And we take

ACC as our primary evaluation metrics.

4.2 Baselines and parameter settings

We compare our model against a variety of baselines which

covers two state-of-the-art DDI prediction methods

DeepDDI (Ryu et al. 2018), KGDDI (Karim et al. 2019)

and three classical machine learning classification models

including logistic regression (LR), random forest (RF), and

k-nearest neighbor (KNN). DeepDDI is a deep learning

method that predicts multi-type DDIs with dimension-re-

duction drug structure similarity feature. KGDDI applies

drug embedding from knowledge graph and predicts DDIs

with conv-LSTM. Both DeepDDI and KGDDI are similar

to our model. In addition, to validate the effectiveness of

delaying decision from three-way decision, we remove the

delay decision of proposed model (3WDDI-delay) and test

its performance.

We implement DeepDDI and KGDDI according to the

original study (Ryu et al. 2018; Karim et al. 2019) and

adjust the input and output layers for our experiment data.

Chemical structure feature representation of a drug pair

½Fs
i ;F

s
j � is treated as the input feature while 0, 1 labels are

the expected prediction value to train DeepDDI. And

knowledge graph embedding representation ½Fe
i ;F

e
j � is used

to train KGDDI. We carry out the other baseline methods

with scikit-learn python package and adopt gird search to

optimize parameters. We finally set regularization coeffi-

cient of LR to 100, size of decision trees for RF to 100, and

the neighbor number of KNN to 95. Unlike the training of

DeepDDI and KGDDI, we concatenate both the structure

feature and the knowledge graph embedding as the final

representation of a drug pair½Fs
i ;F

s
j ;F

e
i ;F

e
j � to train the

other baselines.

In terms of our proposed method, both SCNN and

ECNN have the same network structure except for the

input layer. We design the CNN with one convolution layer

and three full connection layers where convolution is

conducted on kernel with 3 � 3 and 64 filters. The numbers

of full connection neurons are 128, 64, 32, respectively. As

described in Eq. 4, the output layer is set as one neuron and

activated by a sigmoid function. The other hyperparameter

settings are provided in Table 3. In addition, two thresholds

of boundary division are the only parameters of the three-

way decision. After evaluating on different threshold val-

ues, we find the best threshold parameters a as 0.1 and b as

0.9.

4.3 Results and discussion

In this section, we compare the performance of our pro-

posed model with the baselines and discuss the effective-

ness of delayed decision. Table 4 reports the ACC, AUPR

and AUC of the proposed model and baselines, where all of

the scores are average obtained from 5 runs and the bold

indicates the best performance of each metric. As shown in

Table 4, the proposed model 3WDDI significantly outper-

forms baselines and the join of three-way decision can

achieve obvious promotion in several metrics. Specifically,

Table 2 Statistics of DRKG

Entities Entity types Relation types Triples

DRKG 97,238 13 107 5,874,261

Table 3 Hyperparameter set-

tings of CNN
Hyperparameter Setting

Dropout 0.4

Batch normalization Yes

Learning rate 0.001

Optimizer Adam

Batch size 128

Activation function ReLU

Table 4 Performance of proposed model comparative approaches

Method ACC AUPR AUC F1 score

DeepDDI (Ryu et al. 2018) 0.8472 0.9310 0.9270 0.8482

KGDDI (Karim et al. 2019) 0.8827 0.9575 0.9541 0.8827

LR 0.8720 0.9534 0.9485 0.8732

RF 0.8778 0.9547 0.9508 0.8780

KNN 0.8155 0.8954 0.8962 0.8236

3WDDI-delay 0.8850 0.9587 0.9547 0.8835

3WDDI 0.8922 0.9614 0.9582 0.8930
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compared with structure-based method DeepDDI, 3WDDI

achieves about 4.5% improvement on ACC, 3.0% on

AUPR and 3.1% on AUC. In addition, our method is also

slightly better than embedding-based method KGDDI,

which are 1.0%, 0.4% and 0.4% on ACC, AUPR and AUC.

RF model achieves the best performance among three

classical classification methods. The possible reason is that

the performance of ensemble learning model tends to be

better than a single model. The precision–recall curves and

ROC of 3WDDI against compared methods are shown in

Fig. 2. To evaluate the performance of three-way decision,

we remove the enhancing module of three-way decision

(3WDDI-delay). It is observed that 3WDDI-delay drops

0.7%, 0.3%, and 0.4% on ACC, AUPR and AUC, sug-

gesting that delayed decision with supplementary knowl-

edge can improve the accuracy of DDIs prediction. The

reasons of achieving better performance is that: (i) com-

pared to DeepDDI that only uses drug structure feature, we

introduce knowledge graph embedding as auxiliary feature

to prediction samples in boundary region more accurately;

(ii) compared to KGDDI that only uses embedding feature,

we add structure information as another feature to DDIs

prediction; (iii) compared with classical binary decision,

we adopt three-way decision classification to predict DDIs

by delaying decision for uncertain DDIs.

5 Conclusion

This article proposes a novel method 3WDDI for drug–

drug interaction prediction by combing three-way decision

and application of knowledge graph. It applies a simple

CNN structure as the decision function and the delay

decision model. We prepare drug sub-structure similarity

feature and drug embedding from knowledge graph DRKG

based on ComplEx for 3WDDI. Then the drug sub-struc-

ture similarity feature is used to divide boundary region

and provide classification result for the rest regions. The

knowledge graph embedding of a drug pair is treated as

new supplementary features by 3WDDI to carry out delay

decision. We implement the proposed method and conduct

comparison experiment on a widely used datasets. The

experimental results show that 3WDDI outperforms DDI

prediction models of baselines.

There is some work we may address in the near future to

improve the DDI prediction. We will consider a more

effective strategy to divide sample data into different

regions. Further, diverse drug features and multi-omics

data (Lan et al. 2020, 2021a; Chen et al. 2019, 2020) can

be extracted to promote the performance of DDI prediction.

Acknowledgements The work reported in this paper was partially

supported by a National Natural Science Foundation of China project

61963004 and 62072124, a key project of Natural Science Foundation

of Guangxi 2017GXNSFDA198033, and a key research and devel-

opment plan of Guangxi AB17195055.

Data availability Data sharing not applicable to this article as no

datasets were generated.

Declarations

Conflict of interest On behalf of all authors, the corresponding author

states that there is no conflict of interest.

References

Abdelaziz I, Fokoue A, Hassanzadeh O et al (2017) Large-scale

structural and textual similarity-based mining of knowledge

graph to predict drug-drug interactions. J Web Semant

44:104–117

Bordes A, Usunier N, Garcı́a-Durán A et al (2013) Translating

embeddings for modeling multi-relational data. Adv Neural Inf

Process Syst 26:2787–2795

Callahan A, Cruz-Toledo J, Ansell P et al (2013) Bio2rdf release 2:

improved coverage, interoperability and provenance of lifeFig. 2 Performances of all models

Granular Computing

123



science linked data. Extended semantic web conference.

Springer, New York, pp 200–212

Chen Q, Lai D, Lan W et al (2019) ILDMSF: inferring associations

between long non-coding rna and disease based on multi-

similarity fusion. IEEE/ACM Trans Comput Biol Bioinform

18(3):1106–1112

Chen Q, Qiao Y, Hu F et al (2020) Community detection in complex

network based on APT method. Pattern Recogn Lett

138:193–200

Cheng F, Zhao Z (2014) Machine learning-based prediction of drug-

drug interactions by integrating drug phenotypic, therapeutic,

chemical, and genomic properties. J Am Med Inf Assoc

21(e2):e278–e286

Dai Y, Guo C, Guo W et al (2020) Drug-drug interaction prediction

with Wasserstein adversarial autoencoder-based knowledge

graph embeddings. Brief Bioinform 22(4):bbaa256

Deng Y, Xu X, Qiu Y et al (2020) A multimodal deep learning

framework for predicting drug-drug interaction events. Bioin-

formatics 36(15):4316–4322

Ferdousi R, Safdari R, Omidi Y (2017) Computational prediction of

drug-drug interactions based on drugs functional similarities.

J Biomed Inform 70:54–64

Gottlieb A, Stein GY, Oron Y et al (2012) INDI: a computational

framework for inferring drug interactions and their associated

recommendations. Mol Syst Biol 8(1):592

Huaxiong L, Libo Z, Bing H et al (2016) Sequential three-way

decision and granulation for cost-sensitive face recognition.

Knowl-Based Syst 91:241–251

Ioannidis VN, Song X, Manchanda S et al. (2020) DRKG- drug

repurposing knowledge graph for covid-19. https://github.com/

gnn4dr/DRKG/

Ji S, Pan S, Cambria E et al (2022) A survey on knowledge graphs:

representation, acquisition, and applications. IEEE Trans Neural

Netw Learn Syst 33(2):494–514

Kanehisa M, Sato Y, Kawashima M et al (2015) KEGG as a reference

resource for gene and protein annotation. Nucleic Acids Res

44(D1):D457–D462

Karim MR, Cochez M, Jares JB et al. (2019) Drug-drug interaction

prediction based on knowledge graph embeddings and convo-

lutional-lstm network. In: International conference on bioinfor-

matics, computational biology and health informatics,

pp 113–123
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