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Abstract Collective migration is a complex process that contributes to build precise tissue and

organ architecture. Several molecules implicated in cell interactions also control collective

migration, but their precise role and the finely tuned expression that orchestrates this complex

developmental process are poorly understood. Here, we show that the timely and threshold

expression of the Netrin receptor Frazzled triggers the initiation of glia migration in the developing

Drosophila wing. Frazzled expression is induced by the transcription factor Glide/Gcm in a dose-

dependent manner. Thus, the glial determinant also regulates the efficiency of collective migration.

NetrinB but not NetrinA serves as a chemoattractant and Unc5 contributes as a repellant Netrin

receptor for glia migration. Our model includes strict spatial localization of a ligand, a cell

autonomously acting receptor and a fate determinant that act coordinately to direct glia toward

their final destination.

DOI: 10.7554/eLife.15983.001

Introduction
Neurons and glia show mutual reliance in many functional and developmental aspects of biology.

Glia migrate collectively and over long distances to establish an intricate relationship with neurons.

Defective glia migration is associated with several human diseases including glial brain tumors and

defective regeneration following injury in the nervous system (Klämbt, 2009; Kocsis and Waxman,

2007; Oudega and Xu, 2006). Hence, a thorough understanding of the molecules involved in the

process of glia migration may contribute to the development of therapeutics for these pathologies.

Research progress in recent years has revealed the involvement of chemotropic cues in glia migra-

tion (von Hilchen et al., 2010; Chen et al., 2010; Spassky et al., 2002; Kinrade et al., 2001;

Liu et al., 2012). Netrins, a class of secreted laminin-related extracellular proteins, have been

described as chemotropic guidance cues for axons and migrating cells during neural development

(Lai Wing Sun et al., 2011; Harris et al., 1996; Ishii et al., 1992; Kennedy et al., 1994;

Mitchell et al., 1996; Serafini et al., 1994). In vertebrates, Netrins secreted by the floor plate cells

act differentially on the migrating oligodendrocyte precursor cells and this differential outcome is

dependant upon the type of receptors expressed in the migrating cells (Spassky et al., 2002;

Wolf and Friedl, 2009; Jarjour, 2003; Tsai et al., 2003). Netrins act as chemoattractants through

the DCC/Frazzled family of receptors (von Hilchen et al., 2010; Lai Wing Sun et al., 2011;
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Chan et al., 1996; Keino-Masu et al., 1996; Kolodziej et al., 1996; Timofeev et al., 2012) and che-

morepellants through the Unc5 receptor family (Keleman and Dickson, 2001; Labrador et al.,

2005). In Drosophila, the two Netrins (NetA and NetB [Harris et al., 1996; Mitchell et al., 1996;

Keleman and Dickson, 2001]) and their receptor Frazzled (Fra) mediate the attraction of embryonic

longitudinal glia toward the midline (von Hilchen et al., 2010). Despite the extensive knowledge on

these ligands and receptors, the transcriptional control underlying chemoattraction and the impact

of this pathway remain largely unknown. For example, what is the specific role of the receptors and

how do they contribute to the different steps of collective migration, such as initiation,

maintenance and arrest? Related to this issue, which transcription factors regulate the cell-specific

and timely expression of the receptors? We here investigate the chemoattraction cascade

that controls cell migration using the chain of glial cells across the L1 nerve in the developing Dro-

sophila wing (Aigouy et al., 2004, 2008; Berzsenyi et al., 2011; Kumar et al., 2015).

We show that only one of the two Drosophila Netrins, NetB, serves as a chemoattractant for col-

lective glia migration. The role of Fra is to control the time of initiation of glia migration in a dosage-

dependent manner, whereas Unc5 acts as the repellant receptor that controls glial arrest. Finally, we

identify the transcription factor that controls the expression of Fra at the appropriate time and lev-

els: Glial cell deficient/Glial cell missing (Glide/Gcm or Gcm, for the sake of simplicity), the fate

determinant that is expressed early and transiently in the glial lineages (Hosoya et al., 1995;

Vincent et al., 1996; Jones et al., 1995). Thus, we find that an early gene, which regulates the

expression of transcription factors that execute a specific cell fate, also regulates effector genes that

controls late developmental events. To our knowledge, this is the first report showing that a fate

determinant directly controls collective cell migration, prompting us to revisit the role and mode of

action of these types of molecules during development.

Results

Frazzled expression in the glia of the developing Drosophila wing
Fly wings are innervated by two major sensory nerves that navigate along the so-called L1 vein

located at the anterior margin (L1 nerve) and along the L3 vein (L3 nerve) (Figure 1a–d). Glial cells

originating from the sensory organ precursors (SOPs) present on the anterior margin migrate proxi-

mally, i.e. toward the central nervous system (CNS) following the axon bundle and ensheathing it

throughout its length. L1 glia initiate migration at around 18 hr After Puparium Formation (hAPF),

reach the level of the Costal nerve at around 22–24 hAPF and join the glial cells on the Radius by 28

hAPF. The migratory process has been accordingly subdivided into three steps: ‘Initiation’, ‘Costa

reach’ and ‘Complete migration’ (Figure 1a–c).

To gain insight into the molecular pathway that triggers collective glia migration, we first exam-

ined the expression of the Fra chemoattractant receptor by using the pan glial lines repo-Gal4 UAS-

PH-GFP (henceforth repo>GFP) or gcm-Gal4 UAS-CD8-GFP (gcm>GFP), which label the glial mem-

branes. Fra is detected in glia at the time these cells begin to move as well as in the underlying

axons (Figure 1e–g’’, Figure 1—figure supplement 1a–c, g). The Fra protein seems to be evenly

distributed along the L1 glial chain (Figure 1—figure supplement 1d–g). We confirmed these data

using the CoinFLP technique (Bosch et al., 2015) to generate WT and fra knock down clones (KD),

obtained by means of the UAS-fra-RNAi line, within the same wing (Figure 1h, i). The WT clones

covering glia along the L1 nerve and surrounding cells show expression of Fra (GFP-expressing cells

in Figure 1k–k’’’), whereas Fra levels are considerably reduced in the glia and in the surrounding

cells within the KD clones (RFP expressing cells in Figure 1j–j’’’). Glia can be identified by the

expression of the pan glial marker Repo (WT glia are Repo/GFP positive, whereas fra KD glia are

Repo/RFP positive).

Thus, migrating glial cells of the peripheral nervous system (PNS) express Fra.

Next, we studied the impact of Fra on glia migration using the semiquantitative approach

described by Kumar et al.(2015). In short, we assessed the percentage of wings displaying com-

plete glia migration at 28 hAPF (migratory index: MI), as an estimation of migration efficiency

(Kumar et al., 2015). For each genotype, at least 30 wings were analyzed. We first focused on the

most characterized loss-of-function (LOF) allele fra3 (Kolodziej et al., 1996). As this mutation is

embryonic lethal in homozygous conditions, we analyzed fra3 heterozygous wings and found
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Figure 1. Expression of Fra in wing glia. (a–c) Immunolabeled repo>GFP wing (glia in green: anti-GFP; neurons in red: anti-22c10) at different stages. (a)

Initiation of migration, (b) reaching the level of the costa, and (c) migration completion. (d) Schematic of a 18 hAPF developing Drosophila wing, insets

indicate the regions shown in panels (e–f’’’’’) and panels (i–k’’’). L1 and L3 indicate L1 and L3 nerves. (e–e’’’’’) gcm>GFP/+ 18 hAPF wing

immunolabeled with anti-22c10 (red), anti-Fra (gray) and anti-GFP (green). mCD8-GFP was used to label the membrane. (f–g’’) 18 hAPF repo>GFP/+

Figure 1 continued on next page
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incomplete L1 glia migration in a significant fraction of samples, as shown by the position of the glial

nuclei (Figure 2a–c). The number of glial cells is not affected and hence cannot be the cause of the

migratory defect (Figure 2d). We reasoned that nuclei may not migrate properly, but that glial pro-

cesses may still reach the final destination. To test this possibility, we assessed the migratory index

of glial cells labelled by the >GFP transgene, which allowed us to visualize glial processes in flies

that were heterozygous for the .. These wings also show incomplete glia migration as shown by the

position of glial GFP labeling (Figure 2e–g) suggesting that glial cells require Fra to complete their

migration.

In summary, the Fra receptor is expressed in glial cells and is seemingly necessary for their effi-

cient migration.

Figure 1 continued

wing, immunolabeled with anti-22c10 (neurons in red), anti-Fra (gray) and anti-GFP (glia in green). (e–g’’) The presence of Fra in the glial soma (white

arrowheads) at the front of migration. The position of the high-magnification panels (g–g”) is highlighted by the white rectangle in (f). Maximum

confocal projections are shown in all figures, unless otherwise specified. White arrowheads indicate the glial cells that are expressing Fra. (h) Schematic

representations of the coinFLP technique (modified from Bosch et al. (2015); and the phenotypes of the different cells. (i–k’’’) Immunolabeled Fra KD/

WT-coinFLP wing at 18 hAPF. The WT clones display GFP labeling at the membranes (anti-GFP), the fra KD clones display RFP labeling at the

membranes (anti-RFP); glial nuclei are labelled with anti-Repo in red and anti-Fra is in gray. (i) A projection of 10 confocal sections from a 18 hAPF wing.

The arrowheads indicate glial cells and the white lines outline the L1 nerve. (j–k’’’) Individual sections: (j–j’’’) represents section 2/10; (k–

k’’’) represents section 5/10, which corresponds to a deeper layer than section 2/10. (j, k) The overlay of the three channels (anti-RFP/Repo, anti-GFP

and anti-Fra), (j’, k’) show anti-GFP alone, (j’’,k’’) anti-Fra and (j’’’, k’’’) the overlay of anti-RFP/Repo and anti-Fra. Glial cells are indicated by white

arrowheads, the dashed lines indicate the fra KD clones and the continuous lines indicate the WT clones. For technical reasons, RFP (membrane

labeling) and Repo (nuclear labeling) are shown in the same channel. Note the decrease in Fra levels in the fra KD clones. The scale bar in (a–c)

represents 80 mm, in (e–f) 10 mm and in (i–k) 5 mm.

DOI: 10.7554/eLife.15983.002

The following figure supplement is available for figure 1:

Figure supplement 1. Expression profile of Fra.

DOI: 10.7554/eLife.15983.003
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Figure 2. Role of Fra in wing glia. (a, b) 28 hAPF wings labeled with anti-Repo (glial nuclei): (a) WT wing showing complete migration;(b) fra3/+ wing

showing incomplete migration (dashed box). (c) Histogram representing the migratory index (MI) of the indicated genotypes, calculated using nuclear

labeling (anti-Repo). The MI indicates the percentage of wings displaying complete migration (i.e. in which the glial chain reaches the proximally

located glia on the Radius nerve) and was assessed at 28 hAPF unless otherwise specified. (d) Histogram representing the number of glial nuclei in the

indicated genotypes. (e) Histogram representing the MI of the indicated genotypes. The MI was calculated using the membrane GFP transgenic line

(UAS-mCD8-GFP). (f, g) 28 hAPF wings labeled with anti-GFP (glial processes): (f) repo>GFP wing showing complete migration; (g) repo>GFP/fra3/+

wing showing incomplete migration (dashed box). In this and in the following figures, stars indicate p values: ***p<0.0001; **p<0.001; *p<0.05. Bars

indicate the s.e.m. In this and in the following graphs on fixed wings, n�30. Scale bars: 80 mm.

DOI: 10.7554/eLife.15983.004

The following source data is available for figure 2:

Source data 1. Migratory index and repo count of of fra3 wings in WT background.

DOI: 10.7554/eLife.15983.005
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fra plays an instructive role in L1 glia migration
The lethality of fra3homozygous mutation and the expression of Fra in glia as well as in neurons

prompted us to assess the role of glial fra expression in migration specifically. The knock down of fra

using the gcm>GFP driver, which is the earliest glial driver, reveals a significant decrease in migra-

tion efficiency as compared to that observed in the control wings (Figure 3a, compare blank and

light blue columns). To exclude the possibility of off-target effects, we analyzed wings that express

the UAS-fra-RNAi together with the UAS-fra transgene, and found complete rescue of the migratory

phenotype induced by the fra KD (Figure 3a, patterned light and dark blue column). This strongly

suggests that the RNAi line induces a specific phenotype and that fra acts in a cell autonomous man-

ner. Finally, as a complementary approach, we reintroduced fra expression only in the glial cells of

fra3/+ animals (Figure 3—figure supplement 1a), and found that this rescues the migratory pheno-

type, albeit partially. Given the high levels of Fra expression in the gcm>fra GOF wings (Figure 3g–

g’’’’), it is unlikely that this partial rescue is due to suboptimal levels of Fra. Rather, the lack of total

rescue may be ascribed to the neuronal requirement of Fra. Figure 1e–f’’’’’ shows that Fra is

expressed in glia as well as in neurons, and indeed around one third of fra3/+ wings show an axonal

navigation phenotype (Figure 3—figure supplement 1b–d). In these wings, axonal navigation is

delayed, which may indirectly affect glial migration. To further check the role of Fra neuronal expres-

sion in glia migration, we used a driver that is expressed specifically in the L1 neurons: nsyb-Gal4

(West et al., 2015; Pauli et al., 2008; Riabinina et al., 2015). nsyb-driven expression starts to be

detected around 18 hAPF; but the expression is more prominent at 22 hAPF and onwards (Fig-

ure 3—figure supplement 1f–h”). We then knocked down fra specifically in neurons using nsyb-

Gal4 and found no delayed glia migration (Figure 3—figure supplement 1i), except in one third of

the wings, which present an axonal navigation defect (not shown). This is in line with the above-men-

tioned fra3/+ data and with previous data showing that axon navigation defects indirectly affect glia

migration (Giangrande et al., 1993).

We then asked whether Fra has an instructive role in glia migration and assessed whether migra-

tion is more efficient upon overexpressing fra in glia using the gcm-Gal4 driver (in fra GOF lines). We

first checked the MI of fra GOF wings at 28 hAPF and found that the percentage of wings that shows

complete migration is higher as compared to that of control wings (Figure 3a, compare white and

dark blue columns). Since most control wings show complete migration by 28 hAPF (90%), we also

analyzed an earlier stage, when migration has been achieved in only a few control wings (24 hAPF;

12.5%). We found that many more fra-overexpressing wings show complete migration (68.5%,

Figure 3b). This strongly suggests that high doses of Fra significantly increase the efficiency of glia

migration. Fra levels in fra KD and fra GOF conditions are indeed reduced and increased, respec-

tively, as compared to those observed in control wings (Figure 3c–h).

To clarify why the migratory efficiency decreases in fra KD animals, we performed time-lapse anal-

ysis and found that reducing the levels of Fra affects the first step of migration (initiation), as glia

start to migrate later than the control chain (Figure 3i, compare the initiation step of white and light

blue columns and Figure 3—figure supplement 1e). Accordingly, fra-overexpressing glia start

migrating earlier than control glia, indicating that the phenotype is due to precocious initiation

(Figure 3i–k, compare the initiation step of white and dark blue columns), and that this is associated

with precocious Fra accumulation in fra GOF glial cells compared to that in control glia (Figure 3l–

o”). Finally, the live imaging data demonstrates that the speed of migration at the time of initiation

is not higher in fra GOF glia than in control glia, showing that the observed phenotype is due to pre-

cocious initiation rather than to acceleration (Figure 3—figure supplement 2a).

The cytoplasmic tail of Fra is known to play a major role in mediating Fra-dependent attractive

responses in vivo and in cell culture studies (Bashaw and Goodman, 1999; Hong et al., 1999;

Ming et al., 1997). We therefore asked whether this region is important in mediating glia migration.

A transgenic construct that lacks the Fra intracellular cytoplasmic domain was previously described

as a dominant negative mutation (Garbe et al., 2007) and indeed the expression of this reporter sig-

nificantly reduces migration efficiency (Figure 3a, compare white and green-gray columns).

In summary, we find that acts in a cell autonomous manner in glial cells to mediate migration. Fur-

thermore, our data show that that levels of Fra are critical for the initiation stage of glial cell migra-

tion and that this is mediated through the cytoplasmic domain of Fra.
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Figure 3. An instructive role of the chemoattractant receptor Fra in collective glia migration. (a–b) Histogram representing the MI upon fra knock down

(fra KD) or overexpression (fra GOF) using the gcm>GFP/+ line. In (b), the MI was calculated at 24 hAPF. The MI was calculated using the membrane

GFP transgenic line. c–c’”’, e–e’”’ and g–g’”’ Expression profiles of Fra in gcm>GFP/+, gcm>fra KD and gcm>fra GOF animals at 24 hAPF. For the

sake of consistency, in all genotypes, we show the glial cells that are at the front of the chain. Note the reduced protein levels in gcm>fra KD (e–e’”’)

Figure 3 continued on next page
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The efficiency of glia migration depends on the dose of Gcm
Interestingly, the migratory phenotype of fra3/+ glia that also carry the gcm>GFP driver is much

stronger than that of fra3/+ glia (compare Figure 2e patterned black an gray column, MI = 67% and

Figure 4a patterned light gray and white column, MI = 14%). The phenotype is further enhanced in

glia that express both the gcm>GFP and a gcm RNAi line (Figure 4a patterned brown

and pink column). Since the gcm-Gal4 driver is a hypomorphic gcm allele that results from the inser-

tion of a Gal4-containing transposon into the gcm promoter (Jacques et al., 2009), the above result

raised the possibility that Gcm and Fra interact genetically. To explore this possibility, we analyzed

the glia migration phenotype in double heterozygous conditions for fra and two other gcm hypo-

morphic alleles, including the gcmrA87 enhancer trap carrying a LacZ transposon inserted into the

gcm promoter and the imprecise excision line gcm (Riabinina et al., 2015; Vincent et al., 1996;

Jacques et al., 2009). In addition, we also used a gcm null mutation, gcmN7-4 (Bernardoni et al.,

1997). This confirms that reducing the dose of Gcm enhances the fra3-mediated phenotype (Fig-

ure 3—figure supplement 2b). Furthermore, we crossed the fra3 mutation with a gcm driver that

does not affect the gcm locus, a transgenic line carrying 6Kb of the gcm promoter fused to the Gal4

gene, which is inserted on the third chromosome (Flici et al., 2014). In these wings, we did not

observe the enhanced migratory phenotype present in the fra3 , gcm-Gal4 wings (Figure 3—figure

supplement 2c). These findings suggest that the two genes act in the same genetic pathway that

impinges on glial cell migration.

Gcm is a transiently expressed transcription factor that acts very early in glial differentiation

(Hosoya et al., 1995; Vincent et al., 1996; Jones et al., 1995). In situ hybridization on wild-type

(WT) wings has shown that the gcm RNA becomes detectable by 8–9 hAPF (Van de Bor and Gian-

grande, unpublished data) and fades in glial cells by 24 hAPF (Popkova et al., 2012). To clarify the

role of Gcm on glia migration, we analyzed wings that are only mutant for gcm and used hypomor-

phic alleles that allow bypassing the lethality of the null mutation. Three allelic conditions were

tested: gcm-Gal4/gcmrA87(gcm LOF) (Figure 4a, light brown column, MI = 63%, vs. the MI = 90% of

the control line gcm>GFP/+ (white column)), gcm-Gal4 homozygous (Figure 4a, orange column, MI

= 41%) and gcmrA87/gcmN7-4 transheterozygous (Figure 3—figure supplement 2b, last column, MI

= 28%) animals. Migration is indeed less efficient when the amount of Gcm is reduced and the MI is

restored to normal values upon reintroduction of Gcm expression (Figure 4a, patterned pink col-

umns). Finally, we used the UAS-gcm-RNAi line to reduce the amount of Gcm (gcm KD) and also

observed a migratory defect (Figure 4a, dark brown column, MI = 25%). The rescue obtained upon

co-expressing the UAS-gcm and the UAS-gcm-RNAi transgenes indicates that gcm plays a

Figure 3 continued

and enhanced levels in gcm>fra GOF animals (g–g’”’) as compared to those found in gcm>GFP/+ animals (c–c’”’). (d, f and h) Wing schematics, boxes

indicate the regions shown in the above, high-magnification panels. (i) Graphical representation of the migratory behavior of gcm>GFP/+, gcm>fra KD

and gcm>fra GOF wings during three highlighted phases: initiation, costa reach and complete migration (n=10). (j, k) Snapshots from a 21:48 hAPF

time-lapse analysis of gcm>GFP/+ and gcm>fra GOF wings. This corresponds to the time by which most control L1 glia (gcm>GFP/+) have reached

the level of the Costa (white line) (j), whereas L1 glia overexpressing Gcm (gcm>fra GOF) have already completed migration by that time (white arrow)

(k). The two panels show representative samples. (l–o”) Expression profiles of Fra in gcm>GFP/+ and gcm>fra GOF animals at 15 hAPF. See the

enhanced protein levels in gcm>fra GOF animals (n–o”) as compared to those found in gcm>GFP/+ animals (l–m”). The position of the high-

magnification panels (m–m”) is highlighted by the dashed white rectangle in (l), whereas that of panels (o–o”) is highlighted in (n). Please note that (l–

o”) are comprised of few a sections rather than maximum confocal projections. Scale bars: (c–g’”’), (j–o”), 10 mm.

DOI: 10.7554/eLife.15983.006

The following source data and figure supplements are available for figure 3:

Source data 1. Migratory index and time-lapse analysis of fra conditional mutants in the gcm>GFP/+ background.

DOI: 10.7554/eLife.15983.007

Figure supplement 1. Migratory and neuronal defects in the frazzled mutation.

DOI: 10.7554/eLife.15983.008

Figure supplement 1—source data 1. Summarizing the role of neurons in glia migration and the genetic interaction between gcm and fra in different

transheterozygote combinations.

DOI: 10.7554/eLife.15983.009

Figure supplement 2. Speed analysis and genetic interaction between gcm and fra in glia migration.

DOI: 10.7554/eLife.15983.010
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Figure 4. Gcm affects collective glia migration in a dose-dependent manner. (a) MI in fra mutants, gcm LOF and rescues of the indicated genotypes:

gcm>GFP/+, gcm/fra LOF, gcm>gcm LOF, gcm>gcm KD and gcm>gcm GOF wings. (b) MI calculated at 24 hAPF in gcm>gcm GOF wings. The MI

was calculated using the membrane GFP transgenic line. (c) Graphical representation of the migratory behavior of gcm>GFP/+, gcm>gcm LOF and

gcm>gcm GOF wings at three migratory phases. (d–f) Snapshots of a 22:48 hAPF time-lapse analysis on gcm>GFP/+, gcm>gcm GOF and gcm>gcm

Figure 4 continued on next page
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regulatory role in migration and that the RNAi effects are specific (Figure 4a, patterned pink-

dark brown column). Furthermore, overexpressing Gcm using the UAS-gcm transgene (gcm GOF) is

sufficient to increase the migration efficiency of glial cells, as the percentage of wings showing com-

plete migration increases compared to that in control animals (Figure 4a, pink column and

Figure 4b).

To determine which migratory step is affected by Gcm, we analyzed the gcm LOF (gcm>GFP/

gcmrA87) and the gcm GOF (gcm>GFP/+;UAS-gcm/+) wings by confocal time-lapse microscopy and

found that migration starts later in Gcm LOF and earlier in gcm GOF wings compared to

that observed in control wings (Figure 4c–f). Thus, Gcm affects the initiation of glial cell migration,

like Fra, and it does so in a dose-dependent manner: gcm GOF enhances the efficiency of this step

and gcm LOF lowers it.

In summary, the levels of Gcm and Fra are crucial for the initiation of glia migration.

Gcm affects migration independently of its role as a fate determinant
The glial to neuron conversion described in gcm mutant flies prompted us to ask whether this defect

could impact the glial migratory process indirectly (Hosoya et al., 1995; Vincent et al., 1996;

Jones et al., 1995; Bernardoni et al., 1997). We inspected the rate of glia to neuron conversion in

gcm KD wings by using the anti-Elav antibody, which specifically recognizes neurons at the analyzed

stages (Figure 5—figure supplement 1a–b’’ gcm KD). Only a minor fraction of the wings contains

converted cells and only a few cells are converted into neurons, strongly suggesting that fate conver-

sion is not the cause of the altered MI (on average, 14% of the gcm KD wings show up to 10 Repo/

Elav double-positive cells along the L1 nerve, >15 wings were analyzed per genotype; none were

observed in wild-type wings). In addition, we restrained our analysis to gcm KD wings that do not

show Repo/Elav positive cells and still found a strong delay in migration (MI = 45%).

These data strongly suggest that the glial migration phenotype observed in gcm mutant animals

is not due to its early requirement in glial cell determination, but specific to cell migration.

Gcm affects migration independently of glial cell number
Another cause for the migratory phenotype observed in the gcm mutant wings might be the control

exerted by Gcm on the total number of glial cells. It is indeed plausible that the number of cells in

the collective somehow affects the mechanical forces that control migration efficiency, for example

through the amount of chemoattractant receptor. The number of Repo-positive cells in gcm LOF

and KD backgrounds is indeed lower than that in the wild-type glial chain and, accordingly, gcm

GOF wings contain supernumerary glial cells (Figure 5a, light brown, dark brown and pink columns,

respectively).

To assess the impact of glial cell number in migration efficiency more directly, we analyzed wings

that overexpress proteins promoting or repressing cell division. The exit from the cell cycle results

from the timely inactivation of the Cyclin-dependent protein kinase (Cdk) and Cyclin E (Cyc E) com-

plexes. On the one hand, String/Cdc25 encodes a phosphatase that triggers mitosis by activating

the Cdc2 kinase, hence enabling cell proliferation (Edgar et al., 1994; Edgar and O’Farrell, 1989;

Lasko, 2013). On the other hand, Dacapo functions as an inhibitor of the Cdk–Cyc E complex both

in vivo and in vitro, ultimately leading to cell cycle arrest (de Nooij et al., 1996; Lane et al., 1996).

First, we produced animals overexpressing String or Dacapo in glia (gcm>GFP) and verified that this

induces a significant change in glial cell number compared to that present in control wings

(Figure 5a, compare white column with columns with vertical and horizontal lines). Then, we

Figure 4 continued

LOF wings. (d) 22:48 hAPF corresponds to the time at which L1 glia have surpassed the level of the Costa (white line) in the control gcm>GFP/+ wing,

which is why this time point was chosen to compare the position of L1 glia in the different genetic backgrounds. By this time, (e) glia migration is

already complete in gcm>gcm GOF wing (white arrow), while in (f) gcm>gcm LOF wing, L1 glia are still at the level of Costa (white line). Scale bar: (e–

g), 10 mm.

DOI: 10.7554/eLife.15983.011

The following source data is available for figure 4:

Source data 1. Summary of the role of gcm in glia migration.

DOI: 10.7554/eLife.15983.012
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Figure 5. The effects of Gcm on collective glia migration are independent of the number of Repo-positive nuclei.

(a) Bar chart showing the numbers of L1 glial nuclei in the various genotypes. (b) MI in the various genotypes,

calculated using the membrane GFP transgenic line.

DOI: 10.7554/eLife.15983.013

The following source data and figure supplement are available for figure 5:

Figure 5 continued on next page
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analyzed the migration efficiency in both backgrounds and found that it is not affected (Figure 5b),

even though the glial number increase induced by String overexpression and the decrease induced

by Dacapo overexpression are comparable to those observed in gcm GOF and LOF, respectively.

Finally, we found defective glia migration even in gcm KD wings containing a wild-type number of

glial cells, in agreement with the above data (Figure 5—figure supplement 1c).

Thus, the absolute number of glia does not affect migration efficiency, further corroborating the

hypothesis that Gcm specifically affects this process.

gcm expression in blood cells does not affect glial migration
Another round of evidence supports the hypothesis that gcm expression in glia, as opposed to

effects originating in other cells, is absolutely necessary for their migration . It is already known that

gcm is also expressed in hemocytes (Bernardoni et al., 1997; Bataillé et al., 2005; Waltzer et al.,

2010). So, we checked whether the severe migratory delay is specific to reducing the amount of

gcm in glia or in hemocytes. To clarify this, we used an independent hemocyte driver, collagen-Gal4,

which is expressed in the embryonic hemocytes (Asha et al., 2003). We knocked downgcm in hemo-

cytes (collagen-Gal4 crossed with the UAS-gcm-RNAi) and found no defect in glia migration (Fig-

ure 5—figure supplement 1d). Furthermore, as Gcm is only present embryonically in blood cells,we

used a gcm-Gal4, tubulin-Gal80thermosensitive(ts) line to specifically knock down fra in glia after

embryogenesis and confirmed that, in these conditions too, glia migration is affected (Figure 5—fig-

ure supplement 1e).

Taken together, these data suggest that Fra and Gcm act cell autonomously in glial cells to con-

trol migration on the developing wing disc.

fra is a direct Gcm target
The gene-expression profile of Fra and the observed genetic interaction between Fra and Gcm

prompted us to ask whether Gcm acts on glia migration by inducing Fra expression directly. A DNA

adenine methyltranferase identification (DAM ID) screen aimed at identifying the direct targets of

Gcm does indeed suggest that this potent transcription factor may directly control the expression of

genes involved in glia migration, including fra (Cattenoz et al., 2016). There are three canonical

Gcm-binding sites (GBS) in the fra locus, two of which are located at the position of a strong DAM

ID peak, which is indicative of Gcm binding (Figure 6a). To confirm this data, we assessed whether

fra expression is activated by Gcm in Drosophila S2 cells. To do so, we built a GFP reporter under

the control of the fra locus containing two GBSs (Figure 6a–a’). qRT PCR assays clearly show an

increase in the GFP levels upon co-transfection of the reporter vector with the Gcm expression vec-

tor and this effect is dose dependent (Figure 6b, columns with a red color gradient). To further dem-

onstrate that the effect of Gcm on fra is direct (Figure 6a’’), we showed that Gcm-dependent

activation of the reporter is completely abolished upon mutagenesis of the two GBSs (Figure 6b,

columns with a yellow color gradient). The levels of transfected Gcm were verified by qRT PCR and

those of GFP were confirmed by Western blot assays (Figure 6—figure supplement 1a–c).

Finally, we complemented the in vitro data with two in vivo assays. First, we showed that Fra lev-

els are affected in opposite direction in gcm LOF and GOF wings (Figure 6c–f). In gcm GOF wings,

the levels of the Fra protein already increase by 15 hAPF, in agreement with the observed preco-

cious initiation of migration (Figure 6—figure supplement 1d–f, compare with Figure 3l–o”). Sec-

ond, we hypothesized that Fra may constitute an important target of Gcm in L1 glia migration and

showed that overexpressing Fra in gcm KD wings is sufficient to completely reverse the migratory

phenotype that results from gcm KD (Figure 6g, patterned dark blue and brown columns and

Figure 6h–j).

Figure 5 continued

Source data 1. Effects of gcm on glia migration are independent of any change in the number of repo+ cells.

DOI: 10.7554/eLife.15983.014

Figure supplement 1. Fate conversion and Gcm expression in blood cells do not explain the gcm migratory

phenotype.

DOI: 10.7554/eLife.15983.015
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gcm DAM ID peak at the indicated genomic coordinates. (a’) Represents the two GBSs that were amplified and

Figure 6 continued on next page
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In summary, these data suggest that the role of the transcription factor in glial cell migration is

through the direct activation of the of chemoattractant receptor, Fra; this in turn implies that an early

fate determinant is also capable of directly controlling late developmental events through inducing

the expression of cell-surface molecules in a dose dependent manner..

Role and expression of Netrins
The Fra receptor is known to signal through the two Netrin ligands to mediate cell signaling. To

understand which of these ligands were involved in the molecular pathway controlling glial cell

migration, we assayed migration in animals that were null mutants for the two netrins: NetAD or

NetBD (Harris et al., 1996; Mitchell et al., 1996; Brankatschk and Dickson, 2006). In this experi-

ments, we find that while NetAD mutant glia do not display a defective migratory index (Figure 7a,

compare gray and blue columns), migration is significantly affected in NetBD mutant glia (Figure 7a,

compare gray and red columns).

As it has long been known that Netrins can elicit short-range attraction at the Drosophila embry-

onic midline (Harris et al., 1996; Mitchell et al., 1996; Brankatschk and Dickson, 2006), we next

checked whether NetB could act in a similar manner in the migrating L1 glia. For this purpose, we

used a transgenic line that does not express NetA and that only expresses the wild type or the mem-

brane-tethered form of NetB, which is incapable of signal transduction (Brankatschk and Dickson,

2006). The lines NetAD NetBTM and NetAD NetB had been obtained through homologous recombi-

nation and hence express the modified or the wild-type NetB protein at near endogenous levels.

Glia migration was found to be comparable to that of wild-type glia in NetAD NetB/Y wings, whereas

it is delayed in NetAD NetBTM/Y wings. This suggests that NetB must be secreted for proper glia

migration to occur (Figure 7a, compare light and dark purple columns) implying that the NetB

ligand functions as a long-range guiding cue for the receptor Fra that is expressed in glial cells.

We next sought to determine the source of the ligand NetB. To do this, we used a transgenic line

that is routinely employed as a reporter of NetB expression (Timofeev et al., 2012; Hayashi et al.,

2002). NP4151>UAS GFP reports NetB expression in the proximal region of the wing (19 hAPF)

(Figure 7b). This profile of expression fits well with the distal to proximal migration of L1 glia, and

we reasoned that if NetB were to act as a chemoattractant, its loss should cause glial migratory

defects similar to those induced by the loss of Fra. We therefore knocked down NetB by crossing

NP4151-Gal4 to UAS-NetB-RNAi (NetB KD) flies and uncovered a severe migration defect, which

could be rescued by simultaneously expressing UAS-NetB and UAS-NetB-RNAi (Figure 7c, first

three columns). Moreover, overexpressing NetB in its territory of expression enhances the efficiency

of glial cell migration, as revealed by the MI at 24 hAPF (Figure 7d). By contrast, ectopic expression

of NetB in the posterior wing compartment using engrailed-Gal4 driver (en>) (Hidalgo, 1994;

Lawrence and Morata, 1976) or in the distal part of the wing using GMR 29F05-Gal4 (GMR

Figure 6 continued

put in front of the GFP reporter to generate a fra WT plasmid. (a”) The two GBSs were mutated in order to

generate a fra Mut plasmid. (b) qRT-PCR analysis of the GFP levels using a WT (red) or a mutant reporter plasmid

(yellow) upon co-transfection with increasing doses of the Gcm expression vector (reported as mg) (n=3). (c–

e”’) Immunolabeling of gcm>GFP/+, gcm>gcm KD and gcm>gcm GOF wings at 28 hAPF using anti-22c10 (red),

anti-Fra (gray) and anti-GFP (green). Note the reduced Fra levels in the gcm>gcm KD and the increased levels in

the gcm>gcm GOF wings as compared to those in the gcm>GFP/+ wings (arrows). (f) Wing schematics: the blue

rectangle indicates the region shown in (c–c”’) and (e–e”’), the black one, the region shown in (d–d”’) (g) MI of the

indicated genotypes calculated using the membrane GFP transgenic line. (h–j) 28 hAPF wings from the indicated

genotypes: control (gcm>GFP/+), gcm>gcm KD and rescue (gcm>gcm KD/fra GOF). (h) gcm>GFP/+ wing shows

complete migration. (i) gcm>gcm KD wing shows incomplete migration (white bracket). Note that this is a

composite image. (j) gcm>gcm KD/fra GOF wing showing complete migration. Scale bar: (c–e”), 10 mm; (h, j), 80

mm.

DOI: 10.7554/eLife.15983.016

The following figure supplement is available for figure 6:

Figure supplement 1. Assays confirming fra as a direct Gcm target.

DOI: 10.7554/eLife.15983.017
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Figure 7. NetB serves as a chemoattractant in collective glia migration. (a) MI of the indicated genotypes. Histogram shows the MIs quantified for

WT, for NetAD or NetBD single mutant wings and for NetADNetBTM or NetADNetBmyc wings. (b) NP4151-Gal4 driven GFP expression of NetB in a 19

hAPF wing. Proximal NetB expression as revealed by the GFP labeling (green). Anti-22C10 is in red. (c, d) Histograms representing the MI of the

indicated genotypes. (e) NP4012-Gal4 driven GFP expression of NetA in a 20 hAPF wing. NetA is expressed in the wing epithelium as revealed by the

profile of GFP (green). Anti-22C10 is in red. (f, g) Histograms representing the MI of the indicated genotypes. For this figure the MI was calculated by

nuclear labeling. Scale bars: (b, e), 80 mm.

DOI: 10.7554/eLife.15983.018

The following source data and figure supplements are available for figure 7:

Source data 1. Summary of the role of Netrins in glia migration.

DOI: 10.7554/eLife.15983.019

Figure supplement 1. Role of Netrins in collective glia migration.

DOI: 10.7554/eLife.15983.020

Figure supplement 2. Early expression of NetB.

DOI: 10.7554/eLife.15983.021
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29F05>)(Pfeiffer et al., 2008) does not affect the migration efficiency of glial cells (Figure 7—figure

supplement 1a).

Finally, NetA is almost ubiquitously expressed in the epithelium, as revealed by the use of the

Gal4 transgenic line NP4012 (Figure 7e) (Timofeev et al., 2012; Hayashi et al., 2002) and knocking

down or overexpressing NetA with that driver has no impact on glia migration at early or at late

stages (Figure 7f,g). Moreover, NetA overexpression in the NetB expression territory fails to

enhance migration efficiency (Figure 7—figure supplement 1b) or to rescue the NetB KD

phenotype confirming our finding that NetA is not involved in the process of glial cell migration (Fig-

ure 7—figure supplement 1c).

Altogether, our data strongly support the hypothesis that secreted NetB in the proximal wing

provides a crucial chemoattractant cue for Gcm-mediated Fra expression, hence controlling the effi-

ciency of glia migration. Our data also suggest that NetB may contribute but is not sufficient to trig-

ger directionality.

Unc5 controls the late phase of L1 glia migration
unc5 is a repellant receptor for Netrins and has been previously shown to be transiently expressed

and required in the embryonic exit and peripheral glia (PG) associated with both the segmental and

intersegmental nerves (von Hilchen et al., 2010; Keleman and Dickson, 2001; Freeman et al.,

2003). We therefore asked whether unc5 might also be involved in the migration of glia in the

developing wing. To do this, we first analyzed its spatio-temporal expression profile during develop-

ment. Unc5 is undetectable in the wing disc at 15 hAPF (Figure 8—figure supplement 1a–a”). Its

expression is first seen at 18 hAPF at low levels and this expression progressively decreases to

completely fade away by 29 hAPF (Figure 8a–d’’’).

If unc5 were to act as a repulsive receptor, the efficiency of glia migration would increase if its

expression decreases, but neither RNAi-mediated KD of unc5, nor the null unc58 mutation

(Labrador et al., 2005) affect glia migration efficiency at the early and late stages of

development (Figure 8e, first three columns; Figure 8—figure supplement 1b). Thus, the loss of

Unc5 does not seem to enhance the migration efficiency of L1 glia in the developing wing. We then

asked whether Unc5 expression must be tightly regulated, and found that overexpressing Unc5

affects the efficiency of glia migration by delaying it, a phenotype that is opposite to the Fra overex-

pression phenotype (Figure 8e, compare blank and green columns). This delayed migration pheno-

type was rescued by reducing the levels of unc5 using the unc5 KD construct or the mutant allele

unc58, in this overexpression background. This rescue demonstrates a direct effect of unc5 on glia

migration (Figure 8e, patterned green and purple column, Figure 8—figure supplement 1c, third

column).

Thus, fra and unc5 serve opposite roles in glia migration, with fra being necessary to trigger

migration and unc5 delaying the migratory process. The two molecules seem to work in the same

signaling pathway because the unc5 GOF phenotype is further enhanced by lowering the levels of

Fra (Figure 8e, patterned green and light blue column). Also, the migratory phenotype induced by

unc5 overexpression is rescued by simultaneously overexpressing Fra (the rescue was analyzed at an

early stage for a better quantification; Figure 8f, patterned green and dark blue column). Finally,

knocking down unc5 rescues the fra KD phenotype (Figure 8—figure supplement 1c, last two

columns).

Altogether, the data described above strongly suggest that Unc5 can act as a repellant but

that its expression is not sufficient to affect migration efficiency, which is mostly controlled by Net–

Fra interaction. A likely explanation for these results is that Unc5 contributes at late migratory

stages, and time-lapse movies indeed show that unc5 overexpression delays migration but does not

affect the initiation step (Figure 9—figure supplement 1a). To further test this hypothesis, we

assessed the effects of knocking down Unc5 using repo-Gal4, which is a late glial driver compared

to gcm-Gal4. In these conditions, we did see an acceleration in migration completion (Figure 8g).

Finally, since Unc5 has been identified in microarrays obtained upon overexpressing Gcm

(Freeman et al. 2003) and in the DAM ID screen performed to identify the direct targets of Gcm

(Cattenoz et al., 2016), we asked whether Unc5 expression is directly induced by Gcm. Co-transfec-

tion assays in S2 cells similar to those performed on fra and using an Unc5–GFP reporter containing

two GBS close to the unc5 transcription start site, suggest that Unc5 is a rather weak target of
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Figure 8. Unc5 may act as a repellant in glia migration. (a–d”’) Wing immunolabeled with anti-22c10 (red), anti-Unc5 (gray) and anti-GFP (green) in the

transgenic line gcm>GFP/+ at different migratory stages. Unc5 starts being expressed in glia and neurons at around 18 hAPF and fades away by 29

hAPF. Arrowheads show glia that express Unc5 at weak levels (a–c’’’) or that do not express Unc5 (d–d’’’). Note that (a–d”) are comprised of a few

sections rather than maximum confocal projections. (e–g) Histograms representing the MI of the indicated genotypes, which in this figure was

calculated using the membrane GFP transgenic line. Scale bars: (a–d”), 10 mm.

DOI: 10.7554/eLife.15983.022

The following source data and figure supplement are available for figure 8:

Source data 1. Summary of role of unc5 in glia migration.

DOI: 10.7554/eLife.15983.023

Figure supplement 1. Unc5 in collective glia migration.

DOI: 10.7554/eLife.15983.024
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Gcm (Figure 8—figure supplement 1d). This was further confirmed in gcm gain-of-function in vivo

assays (data not shown) similar to those mentioned above on fra.

In summary, these data suggest that apart from a role for chemoattraction mediated through Fra

and NetB, which determines the initiation of glial cell migration, a later chemorepulsion mediated

through Fra-Unc5 ensures the termination of migration. Furthermore, the expression of Unc5 is also

directly regulated by the transcription factor gcm suggesting that the same early determinant con-

trols the timely expression of effector genes that initiate and terminate glial cell migration.

Discussion
Collective migration is a complex biological process that allows cells to leave their place of birth and

reach their destination in a coordinated and timely manner. Here we dissect the signaling pathway

underlying the collective migration of glia on the developing Drosophila wing. The

careful coordination between extrinsic cues and intrinsic, cell autonomous mechanisms ensure that

timely migration of the glia occurs on the wing disc. The chemoattractant receptor Fra controls glia

migration in response to a long-distance signal, thechemoattractant NetB. Fra is expressed before

glia start to move and triggers migration initiation in a dose-dependent manner. Such tight control

of Fra expression depends upon the Gcm transcription factor, which directly induces the expression

of Fra at threshold levels. Thus, the glial determinant factor also affects a specific step of collective

migration by regulating the key effector gene.

Collective migration comes in different flavors: streams, chains, sheets and clusters, which all

imply tight coordination and cell–cell interactions (Klämbt, 2009; Gilmour et al., 2002; Gupta and

Giangrande, 2014; Marı́n et al., 2010; Rørth, 2003). The small cluster of Drosophila border cells

migrates through nurse cells towards the oocyte in response to growth factors (Montell, 2003;

Rørth, 2009). The stream of hundreds of proliferating cells of the fish lateral line migrate direction-

ally upon expressing different chemokine receptors within the collective (Dambly-Chaudiere et al.,

2007; David et al., 2002; Ghysen and Dambly-Chaudière, 2004; Haas and Gilmour, 2006). The

current challenge is to dissect the role of the signaling pathways in the different steps (initiation,

maintenance and arrest) and features of collective migration (adhesion, overall velocity and timing)

and to analyze this in vivo. The second challenge is to understand how those signaling pathways

are regulated, an issue that has been addressed at the post-transcriptional level (Yu and Bargmann,

2001) but much less so at the transcriptional level.

By focusing on the Netrin signaling pathway, which has been extensively studied in the context of

axonal navigation and cell proliferation, we have addressed the above questions using the migrating

wing glia of Drosophila. The analysis of the mutant phenotypes and the time-lapse approach show

that the Fra receptor controls glia migration along the L1 nerve. Reducing the amount of Fra delays

migration, whereas excessive Fra in the glial cells triggers their precocious migration. Thus, the Fra

receptor plays an instructive role in the first step of collective migration, initiation. These data high-

light the importance of quantitative regulation: large cohorts of cells are likely to need strong forces

to switch from an immotile to a motile phenotype; therefore only the strong expression of the recep-

tor allows migration toward the chemoattractant. Other migratory collectives also depend on quanti-

tative regulation. Typically, epithelial cells migrating in groups exert much stronger forces than an

individual cell before and after epithelial-mesenchymal transition (du Roure et al., 2005). The cell

adhesion molecule E-cadherin plays an important role in supporting the directional and efficient col-

lective migration of epithelial cells by mediating adhesion and force generation (Li et al., 2012).

Additionally, the collectively migrating border cell cluster cannot exert enough adhesive/pulling

force to move between the nurse cells in the absence of E-cadherin (Niewiadomska et al., 1999).

The timely regulation of the Fra receptor and its early role in collective migration allowed us to

show that the Gcm fate determinant affects migration through this receptor. Thus, early genes not

only trigger the expression of transcription factors that in turn implement a specific developmental

program, but also directly contribute to the acquisition of specific phenotypes, such as the migratory

potential. Similarly, the Lim-homeodomain transcription factor Islet was shown to specify the electri-

cal properties of motor neurons by repressing the expression of the ion channel Shaker during devel-

opment, suggesting that the regulation of late genes by early transcription factors might also be a

common phenomenon (Wolfram et al., 2012). These observations prompt us to revisit the role of

the so-called ‘master regulators’, which indeed control processes beyond fate choices.
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Netrins are thought to act either in a gradient at long range, as secreted molecules, or at short

range, as membrane-tethered molecules (Lai Wing Sun et al., 2011; Brankatschk and Dickson,

2006). In contrast with studies in the Drosophila embryo and visual system (von Hilchen et al.,

2010; Timofeev et al., 2012; Brankatschk and Dickson, 2006), we observed that secreted NetB in

the developing wing acts at a long range: glia migration is delayed when solely membrane-tethered

NetB is available at near-endogenous levels. While we still do not know whether the distinction

between long- and short-range signaling depends on the complement of surface receptors and the

associated transduction pathways, it seems that different strategies are used in specific processes.

Future studies will reveal whether long-range signaling is specifically dedicated to migration over

many cell diameters and/or to large collectives.

NetA and NetB have been suggested to act on the embryonic longitudinal glia through Fra

(von Hilchen et al., 2010) and both Netrins are reported to act as chemoattractants, even though in

one case, only NetB was proposed to mediate dendritic targeting via Fra (Matthews and Grueber,

2011). Clearly, downregulating or overexpressing NetA has no impact on the migrating glial cells of

the wing and NetA cannot rescue the NetB phenotype. While it is possible that NetA may affect

other aspects of wing glia biology, our data indicate that NetB alone serves as a chemoattractant

ligand to guide L1 glia migration upon signaling to Fra. Studies in other systems will assess whether

it is only NetB that works as a long-range chemoattractant. If this were the case, it would be interest-

ing to assess whether the different behavior of NetA and NetB relies on the intrinsic potentials of

the two ligands (e.g. the affinity with which NetA and NetB bind to their receptors) or on extrinsic

cues (e.g. cell-specific cofactors modulating NetA and/or NetB activity).

The chemoattractant receptor DCC/Fra and the chemorepellant receptor Unc5 have been mostly

studied in different cell types, so it is unclear whether the same process and cells require the coun-

teracting activities of these molecules. While mammalian migrating oligodendrocyte precursor cells

express both DCC and Unc5, the precise function of these receptors has not been assessed

(Tsai et al., 2003). We found that the two receptors Fra and Unc5 are expressed by the same set of

PNS glial cells, with Fra appearing earlier than Unc5. The two receptors seem to have a different

impact on wing glia migration and their stoichiometry is an important factor, as reducing Unc5 levels

does have an effect on migration when fra is downregulated (Figure 8—figure supplement 1b last

columns). The fact that overexpressing Unc5 and Fra have opposite effects suggests that Unc5 con-

verts the Netrin-mediated signal from attraction to repulsion in the Drosophila wing glia, in agree-

ment with published data on chimeric molecules. For example, when fused to the cytoplasmic

domain of Unc5, the extracellular domain of DCC is as effective in mediating the chemorepellant

response to Netrin as a wild type Unc5 (Hong et al., 1999). Additionally, a study performed on Dro-

sophila showed that fusing the cytoplasmic domain of Fra with the extracellular domain of Unc5 sig-

nals chemoattraction (Keleman and Dickson, 2001). This may explain how the same cues such as

Netrins can work differently on various aspects of collective migratory behavior.

The key element in this study is time: Gcm accumulates and triggers the onset of glial migration

through fra but subsequently fades away. The fact that the expression of fra stays on till the end of

migration suggests that another player, possibly a direct target of Gcm, maintains its expression.

Being a major Gcm target, repo represents a potential candidate. Our in vivo and cell transfection

data using a Repo expression vector are in line with this hypothesis and suggest that Repo may play

a regulatory role in the maintenance of fra at late migratory stages (Figure 9a). It is known that

Repo expression first depends on Gcm but subsequently becomes independent of it through autore-

gulation (Flici et al., 2014), indicating a transition from early to late events in gliogenesis (see model

in Figure 9b). We propose that the initial Fra expression in wing glia strictly depends on Gcm and

triggers the initiation of migration (see the graph in Figure 3—figure supplement 1e). Accordingly,

the overexpression of Fra using the repo promoter does not induce migratory defects (Figure 9c,d)

and repo>fra KD wings show only modest defects in migration initiation (Figure 9—figure supple-

ment 1b). Later on, however, when Gcm fades away, Repo takes over in controlling Fra expression,

hence affecting later phases of migration (Figure 9—figure supplement 1b, see model in

Figure 9b). Conversely, the unc5 repellant is a weak target of Gcm thatmay require Repo and con-

trols migration completion.

With respect to what has previously been described in embryonic glia migration, we propose a

different role for Netrins and their receptors in the migration of L1 glia. The migration of embryonic

longitudinal glial cells seems to rely on very early expression of Fra, which is detected in the
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longitudinal glial precursor, but no longer in the longitudinal glial cells (von Hilchen et al., 2010;

Kolodziej et al., 1996). In our work, we do detect Fra expression in the wing glia. However, while in

the case of the longitudinal glia both Netrins guide the glia toward the midline, the L1 glia seem to

require only NetB. Moreover, ectopic expression of Netrin affects the migration of the longitudinal

glia, whereas it does not do so in wing glia, hence suggesting that Netrin has a role in migration effi-

ciency rather than on directionality. And finally, we propose that Fra and Unc5 act in different migra-

tory phases of the same glial population, the first phase being under the direct control of the Gcm

glial determinant. Overall, this paper displays a model in which the ligand NetB is expressed early

during wing development (Figure 7—figure supplement 2), whereas its receptor Fra is expressed

right before migration onset and cell autonomously decides the time of migration initiation of the

glial chain. Unc5 appears later and contributes to migration termination. The acquisition of the Fra

levels that trigger migration is part of the cell-specification program dictated by the Gcm glial deter-

minant, which not only induces the expression of downstream transcription factors but also directly

implements a specific developmental program by triggering the expression of effector genes.

Together, these findings in the Drosophila wing suggest that the dynamic and coordinated action

of fate determinants and chemotropic cues contribute to the timely and efficient migration of the
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Figure 9. Repo regulates Fra at late stages. (a) Histogram showing the endogenous expression of fra upon S2 cell

transfection with a Repo expression vector. The y-axis represents the relative expression levels in cells transfected

with Repo compared to that observed in cells not transfected with the Repo expression vector (n=3). (b) Schematic

summarizing the regulatory network. (c, d) Graphs representing the MI found at early and late stages in fra GOF

animals crossed with the repo-Gal4 line. In this figure, the MI was calculated using the membrane GFP transgenic

line.

DOI: 10.7554/eLife.15983.025

The following source data and figure supplement are available for figure 9:

Source data 1. Summary of role of repo in glia migration.

DOI: 10.7554/eLife.15983.026

Figure supplement 1. In vivo analysis of Unc5 GOF wings and fra KD wings using a late driver.

DOI: 10.7554/eLife.15983.027
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glial cells. A similar molecular mechanism, relying on Netrins or other localized attractive cues and

their receptors, may be used in other cases of collective migration.

Materials and methods

Fly stocks and genetics
Fly stocks were raised at 25˚C in standard medium. repo-Gal4 (indicated as repo>) was used to

detect glial-specific expression of UAS-PH-GFP (fusion protein between the Pleckstrin homology

domain of PLC-d and the GFP coding sequence). gcm-Gal4 UAS-mCD8-GFP (membrane localiza-

tion) (gcm>GFP) was used as an early glial-specific driver (Jacques et al., 2009). gcm-Gal4,tub-

Gal80ts (Soustelle et al., 2007). The other strains used were gcm 6Kb> 42; fra3 (von Hilchen et al.,

2010); UAS-fra (von Hilchen et al., 2010); UAS-fra-RNAi (Manhire-Heath et al., 2013); UAS-

fraDC (Garbe et al., 2007); gcmrA87 (Vincent et al., 1996); gcmN7-4 (Vincent et al., 1996); UAS-gcm

(F18A) (Bernardoni et al., 1998); UAS-gcm-RNAi; gcm>GFP/gcm>GFP (used as a homozygous

mutant of gcm) (Popkova et al., 2012); UAS-string (Inaba et al., 2011); UAS-dacapo (Lane et al.,

1996); gcm34 (Vincent et al., 1996); NetAD (von Hilchen et al., 2010; Newquist et al., 2013a,

2013b); NetBD (von Hilchen et al., 2010; Newquist et al., 2013a, 2013b); NetAD

NetBTM (Brankatschk and Dickson, 2006); NetAD NetBmycBrankatschk and Dickson, 2006) (note

that both NetAD NetBTM and NetAD NetBmyc encode the c-myc epitope tags); UAS-NetB-RNAi

(Manhire-Heath et al., 2013); UAS-NetB (Timofeev et al., 2012); NP4151-Gal4 and NP4012-Gal4

(DGRC, Kyoto) (Timofeev et al., 2012; Hayashi et al., 2002); UAS-NetA-RNAi (Manhire-

Heath et al., 2013); UAS-NetA (Newquist et al., 2013a, 2013b); unc58 (Labrador et al., 2005); col-

lagen-Gal4 (Asha et al., 2003); engrailed-Gal4 driver (Hidalgo, 1994; Lawrence and Morata,

1976); GMR 29F05-Gal4 (Pfeiffer et al., 2008); UAS-unc5-RNAi; UAS-unc5 (von Hilchen et al.,

2010); nsyb-Gal4>GFP-LAMP (B# 42714); elav-Gal4. The RNAi lines were obtained from Blooming-

ton and/or the VDRC stock center.

To generate the coinFLP clones, the hsFLP;UAS-fra-RNAi built with hsFLP (B# 6) and UAS-fra-

RNAi (Manhire-Heath et al., 2013), was crossed with UAS-mCD8-RFP,LexAop-mCD8-GFP;CoinFLP-

LexA.GAL4 (B# 58754) (Bosch et al., 2015). Heat shock was carried out in wandering third instar lar-

vae at 37˚C for 30 min, wings from female pupae were dissected at 18 hAPF.

The summary table here below provides the genotypes for each figure reporting MI, for the sake

of simplicity.

Genotypes Abbreviated as

Figure 2

WT Control

fra3/+ LOF

repo>GFP/+ Control

repo>GFP/fra3 fra LOF

Figure 3

gcm>GFP/+ Control

gcm>GFP/+;UAS fra RNAi/+ fra KD

gcm>GFP/+;UAS fra RNAi/UAS fra fra KD, Rescue

gcm>GFP/+;UAS fra/+ fra GOF

gcm>GFP/+UAS fraDC

Figure 4

gcm>GFP/+ Control

gcm>GFP/fra3 fra LOF

gcm>GFP/fra3;UAS gcm RNAi/+

gcm>GFP/gcmrA87 gcm LOF

gcm>GFP/gcmrA87;UAS gcm/+ gcm LOF, Rescue
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gcm>GFP/gcm>GFP

gcm>GFP/gcm>GFP;UAS gcm/+ Rescue

gcm>GFP/+;UAS gcm RNAi/+ gcm KD

gcm>GFP/+;UAS gcm RNAi/UAS gcm gcm KD, Rescue

gcm>GFP/+;UAS gcm/+ gcm GOF

Figure 5

gcm>GFP/+ Control

gcm>GFP/gcmrA87 gcm LOF

gcm>GFP/+;UAS gcm RNAi/+ gcm KD

gcm>GFP/+;UAS gcm/+ gcm GOF

gcm>GFP/UAS string string GOF

gcm>GFP/UAS dacapo dacapo GOF

Figure 6

gcm>GFP/+ Control

gcm>GFP/+;UAS gcm RNAi/+ gcm KD

gcm>GFP/+;UAS gcm RNAi/UAS fra Rescue

Figure 7

WT Control

NetAD/Y

NetBD/Y

NetADNetBTM/Y

NetADNetB/Y

NetB>/Y Control

NetB>/Y;+/+;UAS NetB RNAi/+ NetB KD

NetB>/Y;+/+;UAS NetB RNAi/UAS NetB NetB KD, Rescue

NetB>/Y;+/+;UAS NetB/+ NetB GOF

NetA>/Y Control

NetA>/Y;+/+;UAS NetA RNAi/+ NetA KD

NetA>/Y;UAS NetA/+ NetA GOF

Figure 8

gcm>GFP/+ Control

gcm>GFP/+;UAS unc5 RNAi/+ unc5 KD

gcm>GFP/unc58 unc5 LOF

gcm>GFP/+;UAS unc5/+ unc5 GOF

gcm>GFP/+;UAS unc5; UAS unc5 RNAi unc5 GOF, Rescue

gcm>GFP/+;UAS unc5/UAS fra RNAi

gcm>GFP/+;UAS unc5/UAS fra

gcm>GFP/+;UAS fra/+ fra GOF

repo>GFP/+ Control

repo>GFP/UAS unc5 RNAi unc5 KD

Figure 9

repo>GFP/+ Control

repo>GFP/+;UAS fra/+ fra GOF
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Molecular cloning
For the fra gene, oligonucleotides (see primers sequence below) surrounding the GBSs were

designed with flanking restriction sites for KpnI at the 5’ extremity and NHeI at the 3’ extremity.

Each pair of oligonucleotides was used to amplify the genomic region encompassing the GBSs using

the Expand High fidelity polymerase (Roche). The amplicons were digested with 20 U of KpnI (NEB #

R3142S) and 20 U of NheI (NEB # R3131S) in Cutsmart buffer (NEB # B7204S) for 2 hr min at 37˚C.
The digested amplicons were then cleaned using the PCR clean-up kit (Macherey-Nagel (MN) #

740609) according to manufacturer’s instructions.

For ligation, 50 ng of the digested probe were used and cloned into the pGreen Pelican vector

overnight at 18˚C. 1 mL of the ligated product was used for transformation of electro competent

DH5a bacterial cells. Bacteria were then kept for 1 hr at 37˚C and plated on ampicillin-containing

medium. After overnight incubation at 37˚C, several colonies were picked up in separate tubes con-

taining LB and incubated overnight at 37˚C. The following day, plasmid DNA was extracted using

the DNA Purification Kit (MN #740410) according to the manufacturer’s instructions; DNA from posi-

tive colonies was identified upon gel electrophoresis and sent for sequencing for final confirmation.

Same procedure was conducted to build the mutated fra reporter plasmid.

Following oligonucleotides were used:

fra WT forward:

5’ GAGAGGTACCGTGTCCAAAAATGCGGGTCTGTTTCTCG 3’

fra WT reverse:

5’GAGAGCTAGCGTTAAGACAAACATGCAGGCATAAAGACATG 3’

fra Mutant forward:

5’GAGAGGTACCGTGTCCAAAAAAAAAAACTGTTTCTCGAAATTGAGTT 3’

fra Mutant reverse:

5’GAGAGCTAGCGTTAAGACAAACAAAAAAAAATAAAGACATGAAATGGATG 3’

Similarly, we built unc5 WT and mutant plasmids with flanking restriction sites for EcoR1 at the 5’

extremity and Kpn1 at the 3’ extremity.

Following oligonucleotides were used:

unc5 WT forward:

5’ GAGAGAATTCTCGTTTTCCCGTTTAGGGCA 3’

unc5 WT reverse:

5’ GAGAGGTACCACTAGCGCTCACCACAGTTC 3’

unc5 Mutant forward 1:

5’ GTGTGAACAGTGATATAAAGTGCACCGTGTAAAAAAAATAGAGATACCT 3’

unc5 Mutant reverse 1:

5’ TTCGTGTGGCACTAGGTTAGGTATCTCTATTTTTTTTACACGGTGCACT 3’

unc5 Mutant forward 2:

5’ ATAAAAACAAGCCGCACACACAGTAGCACAAAAAAAAAAAGGGGCGCAC 3’

unc5 Mutant reverse 2:

5’ CATCGGACGACCACTGCAGTGCGCCCCTTTTTTTTTTTGTGCTACTGTG 3’

Co-transfection and Western blot assays
Co-transfections in S2 cells were carried out using Lipofectamine (Invitrogen). 6 � 106 cells were cul-

tured in 6-well plates containing Schneider medium. In each well, cells were transfected with 1 mg of

fra WT or

mutant reporter plasmid, 1 mg of pPAC-lacZ (Flici et al., 2014; Cattenoz et al., 2016) as a trans-

fection control, 0.5 mg or 1 mg or 2 mg of pPac gcm (Cattenoz et al., 2016) expression vector and

pPac ‘empty’ (Flici et al., 2014) to make up the volume up to 4 mg. Cells were collected 48 hr after

transfection, washed in cold PBS and resuspended in lysis buffer (25 mM Tris-phosphate pH7.8,

2 mM EDTA, 1 mM DTT, 10% glycerol, 1% Triton X-100). Total protein extract was obtained by four

freezing-thawing cycles in liquid nitrogen and centrifugation at 4˚C at 13,000 g. Protein expression

was detected as per standard Western blot procedures. Primary antibodies used were as follows:

mouse anti-b-Gal (1/2000, Sigma), rabbit anti-GFP (1/5000, Molecular Probes); and rabbit anti-HRP

(1/5000, Jackson ImmunoResearch) were used as secondary antibodies. Each experiment was per-

formed in triplicate.
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b-Gal assays were performed to measure the levels of LacZ for each replicate. 20 mL of protein

extract mixed with 50 mL of b-Gal assay buffer (60 mM Na2PO4, 40 mM NaH2PO4, 10 mM KCl,

1 mM MgCl2, and 50 mM b-mercaptoethanol) containing ONPG was incubated at 37˚C.
The reaction was stopped by adding 50 mL of 1M Na2CO3 once the solution turned yellow, DO was

analyzed at 415 nm. The levels of GFP were normalized to the LacZ value in each blot and were

quantified using ImageJ software. The background was subtracted from each band value and the

average was calculated.

Same protocol was used for unc5 S2 cell co-transfection assays.

Reverse transcription and qRT-PCR
Total RNA was extracted from S2 cells using tri-reagent, 1 mg of purified RNA was reverse tran-

scribed by SuperScript II. qPCR was performed with the Roche LightCycler 480 and Sybr Green Mas-

ter mix (Roche) using the following oligonucleotides:

GFP forward: ACATGAAGCAGCACGACTTCT

GFP reverse: TTCAGCTCGATGCGGTTCA

Gcm WT forward: 5’GAGAGATCTTATCCCGATCCCCTAGC3’

Gcm WT reverse: 5’CTACTACTACAGCAATACGGG3’

LacZ forward: TGTGCCGAAATGGTCCATCA

LacZ reverse: GTATCGCCAAAATCACCGCC

For each gene, the expression levels were automatically calculated (LightCycler480 Software,

release 1.5.0) by calibration to gene-specific standard curves generated on input cDNAs. Collected

values, derived from three amplification reactions, each performed in three independent experi-

ments, were normalized to b-gal mRNA amounts.

Immunolabeling and antibodies
Pupae of desired stage were collected and fixed in 4% PFA PBS (paraformaldehyde in phosphate

buffer saline) overnight at 4˚C. They were dissected in PBT (PBS Triton-X100, 0.3%) and wings were

given four quick washes of 10 min in PBT and were incubated in the blocking reagent PBT-NGS (5%

normal goat serum in PBT) for 60 min at room temperature on a planar shaker. Samples were then

incubated overnight in primary antibodies (diluted in PBT-NGS): mouse-anti-Repo labels glia (1:800)

and mouse-anti-22c10 labels neurons (1:1000) (DSHB), rabbit-anti-HRP labels neurons (1:1000)

(DSHB), chicken-anti-GFP (1:1000) (Abcam), rat anti-Elav labels neurons (1:1000) (DSHB), rabbit-anti-

Unc5 and rabbit-anti-Fra (1:500) were gifts from Benjamin Altenhein. After four washes in PBT, wings

were incubated for 2 hr at room temperature in secondary antibodies (1:500) raised in mouse, rat,

rabbit or chicken and coupled to Cy3, Cy5 or FITC fluorescent dyes diluted in PBT-NGS. Following a

final wash in PBT, wings were mounted on slides in Aqua- Poly/Mount medium (Polysciences Inc.).

In vivo imaging
Time-lapse analyses were performed using the standard procedure as described by Aigouy et al.

(2004, 2008), Kumar et al. (2015), and Soustelle et al. (2008). Photo bleaching was avoided by

using low magnification and reduced exposure time. Maximum projections for time-lapse and confo-

cal images were obtained by using the ImageJ software. Images were annotated by using Adobe

Photoshop and Illustrator.

Quantification methods were defined previously (Berzsenyi et al., 2011; Kumar et al., 2015).

Briefly, based on the time-lapse movies, the migratory process was subdivided in three phases: the

earliest one describes migration initiation around 18 hAPF; this time point defines the movement of

the soma of the first cell at the front of the chain. The intermediate phase identifies the time at which

the glial chain reaches the level of the nerve on the costa, which is around 22 hAPF; the latest phase

refers to migration completion, upon connection of the chain with the proximal glia located on the

radius nerve, at around 28 hAPF, see panels shown in Figure 1a–c. The time points (hAPF) that were

used to define these three migratory phases were calculated on the basis of time-lapse movies per-

formed in at least 10 control animals (n�10). In order to quantify the migratory defects, the differen-

ces in time between the control and mutant wings were compared and the graphs were plotted

using the standard Student’s t test method.
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Statistical analysis
The number of wings dissected for each experiment and genotype were more than or equal to 30.

The Migratory Index (Kumar et al., 2015) defines the percentage of wings in which glial cells have

completed migration at a given time point (28 hAPF in most cases). Graphs were made using Prism

software, and the Student’s t test method was used for the comparison between two different

experimental sets. Error bars indicate the standard error mean (s.e.m.). p values: ***p<0.0001; **p

<0.001; *p<0.05.
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