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Abstract 

Background:  Cultured human red blood cells (RBCs) provide a powerful ex vivo assay platform to study blood-stage 
malaria infection and propagation. In recent years, high-resolution metabolomic methods have quantified hundreds 
of metabolites from parasite-infected RBC cultures under a variety of perturbations. In this context, the corresponding 
control samples of the uninfected culture systems can also be used to examine the effects of these perturbations on 
RBC metabolism itself and their dependence on blood donors (inter-study variations).

Methods:  Time-course datasets from five independent studies were generated and analysed, maintaining unin-
fected RBCs (uRBC) at 2% haematocrit for 48 h under conditions originally designed for parasite cultures. Using identi-
cal experimental protocols, quadruplicate samples were collected at six time points, and global metabolomics were 
employed on the pellet fraction of the uRBC cultures. In total, ~ 500 metabolites were examined across each dataset 
to quantify inter-study variability in RBC metabolism, and metabolic network modelling augmented the analyses to 
characterize the metabolic state and fluxes of the RBCs.

Results:  To minimize inter-study variations unrelated to RBC metabolism, an internal standard metabolite (phos-
phatidylethanolamine C18:0/20:4) was identified with minimal variation in abundance over time and across all the 
samples of each dataset to normalize the data. Although the bulk of the normalized data showed a high degree of 
inter-study consistency, changes and variations in metabolite levels from individual donors were noted. Thus, a total 
of 24 metabolites were associated with significant variation in the 48-h culture time window, with the largest varia-
tions involving metabolites in glycolysis and synthesis of glutathione. Metabolic network analysis was used to identify 
the production of superoxide radicals in cultured RBCs as countered by the activity of glutathione oxidoreductase and 
synthesis of reducing equivalents via the pentose phosphate pathway. Peptide degradation occurred at a rate that is 
comparable with central carbon fluxes, consistent with active degradation of methaemoglobin, processes also com-
monly associated with storage lesions in RBCs.

Conclusions:  The bulk of the data showed high inter-study consistency. The collected data, quantification of an 
expected abundance variation of RBC metabolites, and characterization of a subset of highly variable metabolites in 
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Background
According to the 2019 World Health Organization 
(WHO) malaria report, there were 228 million cases and 
405,000 deaths worldwide due to malaria [1]. The most 
lethal malaria parasite, Plasmodium falciparum, is asso-
ciated with 99.7% of all cases and 93% of all malaria-asso-
ciated deaths in the WHO African region [1]. During the 
symptomatic stage of malaria, P. falciparum infects red 
blood cells (RBCs) and undergoes asexual replication, 
eventually rupturing the RBCs and starting new infec-
tions. The RBC serves as the host cell, providing essential 
nutrients for P. falciparum growth during asexual multi-
plication and making it an integral component for ex vivo 
studies of P. falciparum for the symptomatic blood-stage 
of malaria.

The human body produces approximately 2 million 
RBCs every second [2], of which an average RBC can stay 
in the blood circulation for 100–120 days, giving rise to a 
distribution of young and old RBCs. Both young and old 
RBCs have differences in metabolism, e.g., young RBCs 
metabolize glucose at a rate that is 2.5 times the rate of 
old RBCs [3]. For the last few decades, synchronous cul-
tures of parasite-infected RBCs (iRBCs) have been used 
to probe parasite biology with the ultimate aim of iden-
tifying more effective anti-malarial strategies. To per-
form these experiments, the parasites are propagated in 
RBCs collected from healthy blood donors. Therefore, for 
each independent experiment, malaria parasites replicate 
asexually in a different RBC environment that depends 
on the metabolic status of the blood donor.

Advances in high-resolution metabolomic meth-
ods allow the study of metabolic abundance alterations 
in hundreds of RBC metabolites upon parasite infec-
tion and any other perturbation. For example, studies 
have reported alterations in metabolite abundances of 
iRBC cultures due to drug treatments [4, 5] or nutrient 
deprivations [6, 7]. The influence of a perturbation on 
iRBC metabolism is typically reported with respect to 
changes observed in a “mock” culture of uninfected RBCs 
(uRBCs) maintained in parallel under identical culture 
conditions. However, the inter-study variability in RBC 
metabolism itself is unknown and assumed not to influ-
ence the analysis of parasite metabolism.

Herein, variability in abundances of metabolites was 
quantified in uRBC cultures of four independent stud-
ies that originally investigated blood-stage growth of 
the malaria parasites [7–10]. In addition, metabolomic 

data were collected from uRBC cultures maintained in 
experimental conditions akin to these four studies. In 
total, RBC metabolomic data were analysed from five 
independent studies using identical experimental meth-
ods and nearly identical culture media. To minimize any 
inter-study differences unrelated to RBC metabolism, 
an internal standard metabolite with minimal variation 
in abundance over time between the five datasets was 
identified that allowed us to consistently quantify inter-
study variations. Metabolic network analyses were also 
performed to identify differences, if any, in the functional 
state of RBCs between the five datasets and compared 
them to the expected alterations in RBC metabolism due 
to parasite infection [11]. Not surprisingly, variation in 
abundances and fluxes of most RBC enzymes between 
the five different studies was not as substantial as the 
alterations caused in metabolic fluxes due to the parasite 
infection. Data are provided for all detected metabolites 
as well as a detailed evaluation of the expected variation 
in abundance of approximately 200 RBC metabolites that 
are consistently detected at all sampled time points and 
in all replicates with robust signals (> 1000 raw counts) in 
all five studies. In this set, a smaller subset showed sub-
stantial variation in metabolic fluxes associated with the 
highly variable metabolites. This latter subset can be used 
for comparisons in other studies to identify non-specific 
changes in metabolic abundances that may obscure accu-
rate metabolomic profiling of P. falciparum-infected 
RBCs.

Methods
RBC experiments and data collection
Experiments were performed at 2% haematocrit in gassed 
flasks (94% N2, 3% O2, and 3% CO2) at 37 °C. O-positive 
human RBCs were obtained from healthy blood donors 
as part of Johns Hopkins University’s phlebotomy pro-
tocol (Institutional Review Board protocol number: 
NA_00019050). Previously described methods were used 
to deplete white blood cells from the collected blood [9], 
and RBCs were maintained in a culture medium that was 
originally designed to maintain continuous cultures of P. 
falciparum [9]. Quadruplicate samples were collected at 
0, 8, 16, 24, 32, and 40 h after transfer into fresh culture 
medium. For all datasets described in this paper, sam-
ple collection began 2–3 days after blood was drawn. All 
samples were immediately spun down at 400×g, and flash 
froze 100 µL of pelleted RBCs and stored them at –80 °C. 

the RBCs will help in identifying non-specific changes in metabolic abundances that may obscure accurate metabo-
lomic profiling of Plasmodium falciparum and other blood-borne pathogens.
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Then, quadruplicate samples were sent to Metabolon, 
Inc. (Durham, NC) for quantification of metabolites in 
the RBC pellets.

In addition, metabolomic data were analysed from four 
independent studies that originally examined P. falcipa-
rum metabolism [7–10]. These datasets were included 
in this analyses because the experiments performed in 
these studies use methods that are identical to this study 
and have only minor differences in their culture medium, 
making these datasets suitable for studying inter-study 
variations in RBC metabolism. As a perturbation stand-
ard, metabolomic data were also analysed from iRBC 
cultures that were maintained under normal conditions 
during blood-stage growth [9]. To ensure the robustness 
of the analyses, only metabolites with greater than 1000 
raw counts at all sampled time points and across all the 
replicates of uRBC and iRBC cultures were included. 
Table  1 lists metadata of all metabolomic datasets that 
were analysed in this study. In Additional file 1, the raw 
metabolomic data collected during this study and the 
four independent studies are provided [7–10].

Global analyses of the data
As a first step, the raw data from each sample were nor-
malized by its Bradford protein concentration, provided 
by Metabolon, Inc. (Additional file 1), and then quantile 
normalization was performed using the built-in MAT-
LAB function “quantilenorm” to minimize batch-to-batch 
variability associated with data-extraction methods [12]. 
An internal-standard metabolite was then identified to 
mitigate inherent physiological variability associated with 
the donor’s metabolism, in addition to batch-to-batch 
variability associated with the data-extraction methods. 
In this study, total ion current (TIC) based methods were 
not employed to normalize the data because they tend to 

exaggerate the effect of metabolites with very high raw 
counts [13]. Moreover, TIC normalization assumes that 
most metabolites do not change under the tested experi-
mental condition, but this assumption may not hold 
while making inter-study comparisons or comparing 
untreated RBCs to treated RBCs [13].

To identify an internal standard metabolite, the built-
in MATLAB function “bootstrp” was used to generate 
10,000 bootstrap samples from quadruplicate samples of 
all five RBC datasets for each metabolite and time point. 
Afterwards, a fold change with respect to a given time 
point t relative to 0 h ( FCt

0 ) for each metabolite was com-
puted using:

where N denotes the total number of bootstrap samples, 
and m0 and mt represent abundance levels of metabolite 
m at 0  h and t h, respectively, of the experiment across 
the replicates of all five datasets.

The internal standard metabolite was identified using a 
metric ζ , which is based on averaging FCt

0 across all the 
time points (FC0) and the resulting standard deviation ( σ . 
Mathematically,

The first term is a penalty term, while the second term 
measures variability in the metabolite with respect to 
the overall mean. The penalty term would increase ζ for 
metabolites that substantially increase/decrease over 
time, while the second term is the square of the coef-
ficient of variation. We selected the internal standard 
metabolite based on the lowest value of ζ.

(1)FCt

0 =
1
N

N∑
i=1

mt

m0

(2)ζ =

∣∣log2 FC0

∣∣+ σ
2

FC2
0

Table 1  Metabolomic studies of in  vitro red blood cell culture systems originally designed to study P. falciparum intraerythrocytic 
development

a All experiments started within 2–3 days of blood collection. bAll experiments used Roswell Park Memorial Institute (RPMI)-1640 medium (Gibco, Gaithersburg, 
MD, USA) supplemented with 20 mM HEPES, 90 µM hypoxanthine, 0.3% sodium bicarbonate, 25 µg/mL gentamicin, 0.5 µM R-lipoic acid, and 0.5% AlbuMAX II (Life 
Technologies, Carlsbad, CA, USA)

 + Fos fosmidomycin-added RPMI medium, − Hxn hypoxanthine-limited RPMI medium, iRBC parasite-infected red blood cells, + Mev mevalonate-added RPMI medium, 
Pure 1 pure RPMI medium, Pure 2 pure RPMI medium, RBC red blood cells

Study Label Date of 
experimenta

RBC infection status RPMI culture medium changeb References

Action Component

1 Pure 1 4/2016 Uninfected None – [9]

2 −Hxn 5/2017 Uninfected Reduce to 0.5 μM Hypoxanthine [7]

3  + Mev 3/2018 Uninfected Add 50 μM Mevalonate [8]

4  + Fos 11/2018 Uninfected Add 1.0 μM Fosmidomycin [10]

5 Pure 2 5/2019 Uninfected None – This study

6 iRBC 4/2016 Infected None – [9]
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Hierarchical clustering analysis (HCA) was performed 
using the built-in MATLAB function “clustergram,” with 
the Euclidean distance as a metric to cluster similar 
metabolites. The built-in MATLAB function “pca” was 
used to perform principal component analysis (PCA). 
To compute the rate of metabolic alteration (Δm/Δt) at 
a given time point t, the backward difference approxima-
tion of the first derivative was used:

Here, mt and mt-1 denote the normalized abundance of 
metabolite m at time t and t-1, respectively, with t vary-
ing from 0 to 8, 16, 24, 32, and 40 h; Δm/Δt at 8, 16, 24, 
32, and 40 h was computed. ∆t represents the difference 
between t and t-1.  

Metabolic network analysis
To simulate the RBC metabolism, a proteomically-
derived metabolic network model of a human RBC 
was used [14]. To integrate metabolomic data from 
uRBCs with the metabolic network model, the follow-
ing assumptions were made: (1) flux through an enzyme 
is proportional to the amount of substrate and (2) a sub-
strate with the lowest concentration becomes the rate-
limiting step for reactions with multiple substrates. These 
assumptions hold true for substrates as well as products 
if a reaction is unidirectional. Therefore, the directional-
ity of metabolic reactions was determined by identify-
ing their thermodynamic feasibility, which is equivalent 
to analysing flux variability without any closed loop in 
the metabolic network [15]. This method was previously 
used to estimate RBC metabolism in response to hypox-
anthine deprivation [7]. Briefly, the relative metabolite 
levels of substrates and products were used to scale basal 
unidirectional fluxes of the RBC and predict the tempo-
ral profile of RBC metabolism during the experiment. In 
Additional file 2: Text S1, all of the steps associated with 
the identification of the basal RBC metabolism, and inte-
gration of basal RBC metabolism and the time-resolved 
metabolomic data with the RBC model are provided.

Results
In recent years, several studies collected metabolomic 
data from iRBC cultures in response to a wide range of 
perturbations [4, 7–9, 16]. Typically, the impact of a per-
turbation on metabolite abundances of iRBC culture is 
quantified relative to their abundance in a parallel uRBC 
culture maintained under identical conditions. However, 
this type of comparison is susceptible to false discoveries 
if the perturbation, via specific or non-specific mecha-
nisms, causes significant alterations in metabolite abun-
dances of the uRBC culture itself. Moreover, metabolic 

(3)�m

�t
=

mt−mt−1
�t

alterations cannot ideally be compared from one study 
to another because inter-study variability in the abun-
dance of RBC metabolites is largely unknown. Therefore, 
in this study, the objective was to characterize inter-study 
variability in the abundance of commonly detected RBC 
metabolites. First, the datasets were analysed and an 
internal standard metabolite was identified. Then, vari-
ability in metabolites of uRBC cultures was characterized 
and compared with expected variability in a representa-
tive iRBC culture—a perturbation standard. Lastly, the 
data were integrated with an erythrocytic metabolic net-
work model to identify core RBC metabolism carrying 
the majority of metabolic flux during each independent 
experiment.

Global analyses of the data
To facilitate inter-study data comparisons, an internal 
standard metabolite was identified to minimize inter-
study differences arising due to technical variations, 
and then the normalized data were analysed to identify 
variability in the abundance of commonly detected RBC 
metabolites. For the analysis, only metabolites that had 
greater than 1000 raw counts at all the time points of 
each quadruplicate sample maintained under each cul-
ture condition were included. Figure  1A shows the raw 
metabolomic data (mRaw) obtained from the five inde-
pendent experiments that maintained RBCs under near-
identical culture conditions. The culture media used in 
these experiments are listed in Table  1. To identify the 
internal standard metabolite, the average fold change 
in metabolite abundance over time relative to 0 h (FC0) 
was computed for all the replicates across all the culture 
media and a metric ζ penalizing metabolites with highly 
variable abundance over time was used (see Methods). 
Figure 1B shows ζ values of metabolites that met the raw 
count criterion across all the time points of all the studies. 
Phosphatidylethanolamine (PtdEth C18:0/20:4) under-
went minimal alterations, and 2-hydroxyglutarate expe-
rienced maximal alterations over time (see Additional 
file 3 for ζ values of all metabolites). Figure 1C illustrates 
the relative abundance of the internal standard across 
different culture conditions. Because PtdEth C18:0/20:4 
was the least varying metabolite based on the probability 
distribution of ζ (Additional file 2: Fig. S1), this metabo-
lite was used to normalize the raw metabolomic data 
and minimize any inter-study variations arising due to 
day-to-day variations [17]. Figure 1D illustrates averaged 
metabolomic data after normalization with the 0-h time 
point and the identified internal standard. m̂ was used 
to denote the time-resolved abundance of metabolite m 
after the normalization and averaging across the quadru-
plicates. After normalization, similar trends of increasing 
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Fig. 1  Overview of metabolomic data from uninfected red blood cells maintained under near-identical culture conditions. A Raw counts of 
metabolites (mRaw) that were common between the five independent experiments (Pure 1, −Hxn, + Mev, + Fos, and Pure 2). The thin vertical lines 
separate quadruplicate samples at each time point, while the thick vertical lines separate the five studies. The abscissa denotes the time point of 
sample collection during an experiment; the ordinate represents the different metabolites. B Estimated ζ values for all overlapping metabolites. 
The coloured markers denote the following: pink, metabolites with ζ ≥

∼

ζ  ; gray, metabolites with ζ <
∼

ζ  ; green, internal standard metabolite 
(PtdEth C18:0/20:4); red, an outlier metabolite (2-hydroxyglutarate). The dotted line is showing 

∼

ζ  , the median value of ζ for all the metabolites. C 
The temporal profile (relative to 0 h) of the internal standard metabolite during the five experiments. D The average of raw metabolomic data in 
A after normalization with the internal standard and raw counts at 0-h time point under each experiment. We computed the average using the 
normalized values of each metabolite in the quadruplicate samples at each time point of every culture condition. m̂ denotes the time-resolved 
abundance of metabolite m after the normalization and the averaging.  + Fos, fosmidomycin-added RPMI medium; -Hxn, hypoxanthine-deprived 
RPMI medium; + Mev, mevalonate-added RPMI medium; PtdEth, phosphatidylethanolamine; Pure 1, pure RPMI medium; Pure 2, pure RPMI medium; 
RPMI, Roswell Park Memorial Institute
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(or decreasing) metabolite abundances across the five 
datasets emerged (Fig. 1D), which were not visible in the 
raw data (Fig. 1A).

To gauge the impact of a study-specific perturbation, 
such as parasite infection, on RBC metabolism, we per-
formed PCA of the normalized data from the uRBC 
cultures while including metabolomic data from the 
representative iRBC culture (Table 1). Prior to perform-
ing the PCA, the raw metabolomic data from iRBC cul-
tures were normalized using methods akin to Fig.  1D 
and then the data were averaged across the replicates at 
each time point. Figure 2A, B, show the first two princi-
pal components of metabolomic data from uRBC (blue) 
and iRBC (red) cultures before (A) and after performing 
the averaging (B) across the replicates. Both quadrupli-
cate and averaged data from uRBC and iRBC cultures 

separate along the two components, highlighting gross 
differences between the two conditions that increase 
with time (red arrow, Fig. 2, A and B). To quantify the 
degree of similarity (or dissimilarity) between datasets, 
differences in normalized values of the metabolites 
over time were computed between different studies and 
parasite infection. Figure 2C shows the spread of vari-
ability between metabolic abundances, irrespective of 
the time points, for data from uRBC (blue circles) and 
iRBC (red circles) cultures. The solid blue and red lines 
are fits to differences shown with blue circles and red 
circles, respectively. Overall, the differences between 
datasets from the uRBC cultures are less than the dif-
ferences between datasets from uRBC and iRBC cul-
tures, indicating that most metabolite abundances in 
uRBC cultures changed minimally over time irrespec-
tive of the culture medium.

Fig. 2  Inter-study variation in metabolomic data from uninfected red blood cells (uRBC) of the five studies and parasite-infected red blood cells 
(iRBC). A Principal component analysis (PCA) of metabolomic data after normalization with the 0-h time point and the identified internal standard. 
For each time point, there are four data points corresponding to the quadruplicate samples of each study. B PCA of averaged metabolomic data 
after normalization with the 0-h time point and the identified internal standard. The red arrows denote separation of iRBC data from the uRBC 
as time progresses, indicated by light to dark red, while the blue arrow denotes separation within the uRBC data. Abscissa and ordinate in A and 
B denote the percentage of the total data variance explained by each principal component. C Raw differences between normalized data from 
uRBC cultures and the iRBC culture. The difference was taken within uRBC data for each time point (blue circles) or between uRBC data and 
iRBC data for each time point (red circles). The table in the inset shows the average differences. Note that for PCA and difference computations, 
we did not include the 0-h data, as they serve as the comparator for other time points. + Fos, fosmidomycin-added RPMI medium; -Hxn, 
hypoxanthine-deprived RPMI medium; + Mev, mevalonate-added RPMI medium; PC1, first principal component; PC2, second principal component; 
Pure 1, pure RPMI medium; Pure 2, pure RPMI medium; RPMI, Roswell Park Memorial Institute; SD, standard deviation
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Changes in uRBC metabolites over time
Next, specific metabolite abundances that vary substan-
tially over time across uRBC cultures were identified. 
Specifically, the average of normalized metabolite abun-
dances across all five datasets was computed to identify 
substantially varying metabolites. Table  2 lists metabo-
lites that increased substantially across all datasets at 
all time points relative to 0  h. There was an approxi-
mately two-fold increase in the abundance of metabo-
lites involved in the synthesis of glutathione, namely 
α-ketoglutarate [18], ophthalmate, 5-oxoproline, and glu-
tamate (Table 2). There was also a similar increase in gly-
colysis products, namely fructose, 3-phosphoglycerate, 
sedoheptulose-7-phosphate, and lactate (Table 2), which 
play an important role in the synthesis of nicotinamide 
adenine dinucleotide phosphate (NADPH), the primary 
reducing equivalent in the RBCs [19].

The RBCs carry oxygen with the help of haemoglobin, 
which contains iron, making haemoglobin prone to oxi-
dation. The RBC manages oxidative stress with the help 
of glutathione and reducing equivalents. Therefore, an 
accumulation of metabolites involved in glutathione syn-
thesis and NADPH suggests that RBCs invoke antioxi-

dant processes to maintain low levels of oxidative stress 
under in  vitro conditions. It is known that oxidation of 
haemoglobin produces methaemoglobin [19], which the 
RBCs degrade via pathways that do not require ATP or 

ubiquitin [20]. In concordance with these reports, an 
approximately two-fold increase in peptides and haem in 
RBCs across all the cultures was found (Table 2). These 
results suggest that, under in  vitro conditions, degrada-
tion of oxidized haemoglobin occurs at a rate that is pro-
portional to glycolysis in each independent experiment.

To further identify highly variable metabolites in uRBC 
cultures, we computed the rate of change in metabolic 
abundances (Δm/Δt). Figure  3A shows the distribution 
of Δm/Δt at each time point under each culture medium. 
Overall, most metabolites have a near-zero rate of change, 
emphasizing that most metabolites do not change notice-
ably over time. Figure  3B shows the average of Δm/Δt 
at specific time points in each independent experiment, 
again illustrating that most metabolites change minimally 
over time. To identify specific metabolites with signifi-
cant rates of change, we performed HCA of metabolic 
rate of change (Fig.  3C). HCA resulted in identification 
of a cluster (annotated with the number 1) containing 
metabolites that appeared to be changing noticeably in 
each independent culture experiment as compared to 
other metabolites.  Figure  4 categorizes metabolites in 
Cluster 1 based on their respective metabolic classes. 

In addition to the metabolites listed in Table  2, this 
analysis also identified five additional lipid metabolites, 
namely 10-heptadecenoate (17:1n7), 10-nonadecenoate 
(19:1n9), 1-oleoyl-glycerophosphoethanolamine (18:1), 

Table 2  Metabolites that vary substantially across all datasets at all time points relative to 0 h

Metabolites that have 
−

m greater than 1.5. Here, 
−

m represents average value of m̂ (shown in Fig. 1D). The average was taken across all datasets and time points (except 
0 h). ‡Metabolite identified based on m/z ratio alone with no external standard for validation

Major pathway Subordinate pathway Metabolites Mean (SD)

Amino acids Glutamate metabolism Glutamate 1.74 (0.48)

Glutamate, γ-methyl ester 1.54 (0.33)

Glutathione metabolism Ophthalmate 1.96 (0.58)

5-Oxoproline 1.92 (0.54)

Carbohydrates Fructose, mannose, and galactose metabolism Mannitol/sorbitol 1.99 (0.59)

Fructose 1.69 (0.54)

Glycolysis, gluconeogenesis, and pyruvate metabolism Lactate 2.41 (1.26)

3-Phosphoglycerate 1.76 (0.40)

Phosphoenolpyruvate 1.71 (0.27)

Pentose phosphate pathway Sedoheptulose-7-phosphate 2.93 (1.16)

Cofactors and vitamins Haemoglobin and porphyrin metabolism Heme 1.83 (0.41)

Vitamin B6 metabolism Pyridoxal 2.41 (0.74)

Energy Tricarboxylic acid cycle α-Ketoglutarate 2.19 (0.87)

Lipid Endocannabinoid Oleoyl ethanolamide 2.22 (1.09)

Stearoyl ethanolamide 1.75 (0.44)

Long-chain fatty acid Erucate (22:1n9) 1.72 (0.44)

Peptide Gamma-glutamyl amino acid γ-Glutamylisoleucine‡ 2.33 (0.72)

γ-Glutamylleucine 2.14 (0.59)

γ-Glutamylthreonine 2.10 (0.73)
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eicosapentaenoate (20:5n3), and oleate/vaccenate (18:1). 
The appearance of metabolites listed in Table  2 during 
this analysis (Fig. 4) suggests that these metabolite abun-
dances indeed vary substantially within the RBCs irre-
spective of the culture medium and any study-specific 
perturbation, such as parasite infection. Until now, the 
analyses in this study focused on alterations in abun-
dance of specific metabolites; however, RBC metabolism 
depends on an inter-connected network of metabolic 
enzymes, converting one metabolite into another. There-
fore, to quantify the impact of these alterations in metab-
olite abundances on the RBC metabolism, an in silico 
model of RBC metabolism was utilized [14]—presented 
in the next subsection.

Model predicted metabolic state of RBC
To gain insight into the functional state of RBC metabo-
lism during the five studies, the metabolomic data from 
the respective studies were used to estimate the cor-
responding RBC metabolic fluxes. Figure  5A illustrates 
metabolic fluxes at 0  h for RBCs maintained under 
pure RPMI culture medium, labeled “Pure 1” in Table 1. 
In Additional file  2: Figs. S2–S30, an overview of RBC 
metabolic states at 8, 16, 24, 32, and 40  h and at every 
sampled time point of the other four studies is provided. 

The Escher web tool [22] and the RBC map drawn by 
Buchweitz et  al. [21] were used to visualize the RBC 
model simulations of this study. It was determined that 
the glycolysis pathway carried fluxes of high magnitude 
in the RBC network. In addition, enzymes of the bicar-
bonate buffering system and glutathione oxidoreductase 
(GTHO) also exhibited substantial metabolic flux. The 
map boundary shows transport reactions (Fig.  5A), of 
which the only non-glycolytic reactions that appeared 
significant were those containing sodium and potassium 
ions. These results highlight the dependence of RBCs on 
glucose for generation and storage of high-energy phos-
phates [23].

Figure  5B provides a detailed view of the glycolysis 
pathway to further shed light on the involved glycolytic 
enzymes. In this representation, orange circles denote 
metabolites, and thick/thin lines represent the metabolic 
enzymes. The thickness and colour of each line are pro-
portional to the metabolic enzyme flux shown in the col-
our map. The pentose phosphate pathway (PPP), which 
generates reducing equivalents used by antioxidant pro-
cesses, such as GTHO, is highlighted. It was determined 
that the majority of the glucose is diverted to PPP, which 
then reenters glycolysis via phosphofructokinase (Fig. 5, 
PFK) and glyceraldehyde 3-phosphate dehydrogenase 

Fig. 3  Rates of change in metabolite abundances (Δm/Δt) of red blood cells during the five studies. A Counts of metabolites within the range of 
Δm/Δt shown on the abscissa between 8 and 40 h of each experiment. B Average rate of change at the indicated time points of each experiment, 
where N denotes the total number of metabolites. C Hierarchical clustering of Δm/Δt across the five studies, highlighting the cluster (annotated 
with the number 1) with noticeably different Δm/Δt values. Note that we have computed Δm/Δt at 8, 16, 24, 32, and 40 h of the experiment (see 
Methods). + Fos, fosmidomycin-added RPMI medium; -Hxn, hypoxanthine-deprived RPMI medium; + Mev, mevalonate-added RPMI medium; Pure 
1, pure RPMI medium; Pure 2, pure RPMI medium; RPMI, Roswell Park Memorial Institute
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(Fig. 5, GAPD) to facilitate the synthesis of 2,3-bisphos-
phoglyceric acid (2,3-BPG) via diphosphoglyceromutase 
(Fig.  5, DPGM). The 2,3-BPG binds oxygenated and 
deoxygenated haemoglobin and facilitates the transport 
of oxygen to the tissues [24]. Eventually, lactate dehydro-
genase (Fig.  5, LDH) converts the glucose carbons into 
lactate, which is transported out of the RBC via a lactate 
transporter (Fig. 5, LACt2r).

To identify metabolic fluxes that vary substantially over 
time, the study focused on metabolic fluxes having flux 
differences between a pair of studies that is greater than 
flux differences in 95% of the corresponding metabolic 
fluxes. To this end, all unique combinations (5C2 = 10) 
of the five model simulations, corresponding to the five 
independent datasets, were compared to quantify vari-
ability in estimated metabolic fluxes (Additional file  4). 
It was determined that approximately 95% of the meta-
bolic fluxes varied less than 0.1 (millimole per hour per 
gram dry weight of RBC) between any pair of two stud-
ies. These results suggest that the majority of enzymatic 
fluxes do not vary substantially over time in each inde-
pendent experiment, an observation that is consistent 
with the metabolomic data (Figs.  2 and 3). Table  3 lists 
the metabolic enzymes that vary substantially over time. 
To quantify the intra-study variability in these meta-
bolic fluxes, the flux span of these enzymes in each study 
(Table  3) was computed. By performing this additional 

computation, it was established that these metabolic 
fluxes varied substantially within each and every study 
condition. 

To ascertain the significance of the variations identified 
in these metabolic fluxes, a cross-comparison of the top 
five high-magnitude fluxes in the RBCs with their values 
under each study condition and in the iRBC dataset was 
performed. Table  4 lists the average of absolute differ-
ences in GTHO fluxes between all possible unique pair-
wise comparisons (6C2 = 15). The absolute differences of 
GTHO fluxes between different uRBC studies were not 
as large as those within the iRBC study [11]. In fact, the 
absolute differences of all five high-magnitude fluxes 
between different uRBC studies were not as large as 
those within the iRBC study (Additional file 5: Tables S1–
S5). These results suggest that the variations occurring in 
metabolic fluxes of uRBCs over time do not overshadow 
the perturbations of parasite infection in the case of these 
high-magnitude fluxes; but in the case of RBC enzymes 
that vary substantially over time (Table 3), this may not 
be the case. Therefore, fluxes of the most variable RBC 
enzymes, listed in Table 3, were also compared with their 
fluxes in the iRBC study. An inter-study comparison, 
similar to Table 4, was performed, and it was determined 
that the influence of parasite infection on most of the 
enzyme fluxes, except inorganic diphosphatase (PPA), 
was substantial as compared to their inter-study flux 

Fig. 4  Metabolites with a noticeably different rate of change (Δm/Δt) in abundance in the five studies. We have categorized the metabolites in 
Cluster 1 of Fig. 3C based on their specific metabolite classes. + Fos, fosmidomycin-added RPMI medium; GPE, glycerophosphoethanolamine; -Hxn, 
hypoxanthine-deprived RPMI medium; + Mev, mevalonate-added RPMI medium; Pure 1, pure RPMI medium; Pure 2, pure RPMI medium; RPMI, 
Roswell Park Memorial Institute; TCA, tricarboxylic acid
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variability in the uRBC studies (Additional File 6). The 
model-predicted PPA flux varied substantially between 
different uRBC studies and was comparable with its flux 
in the iRBC study (Additional File 6: Table S15). There-
fore, during inter-study comparisons, the blood-batch 
variability in the PPA flux can obscure the effects of para-
site infection on the RBC-PPA activity.

Discussion
Human RBCs have been used to culture blood-stage 
malaria parasites for the past few decades [25]. More 
recently, studies employed high-resolution metabo-
lomics to probe host-parasite interaction during blood-
stage malaria [6–9, 26, 27]. However, none of the studies 
probed the variability in RBC metabolites between dif-
ferent independent experiments. Identification of vari-
ability in RBC metabolite abundances is critical for 

making inter-study comparisons and understanding the 
true impact of parasite infection (or any other perturba-
tion) on RBC metabolism within a study. Here, metabo-
lomic data from five independent experiments were 
investigated to quantify variability in RBC metabolite 
abundances. In addition, metabolomic data were also 
included from a parallel culture of RBCs infected with P. 
falciparum [9] that served as a perturbation standard. It 
was determined that lipid metabolites (~ 60%) stood out 
as having ζ values smaller than the median ζ value of all 
metabolites. This suggests that lipid metabolites tend to 
change the least between different datasets. In fact, the 
internal standard metabolite (metabolite with the least 
variation) identified in this study is also a lipid metabo-
lite (PtdEth C18:0/20:4). The identified internal standard 
was used to minimize inter-study variations and facilitate 
dataset comparisons.

Fig. 5  Overview of estimated metabolic fluxes at 0 h in red blood cells (RBC) maintained under pure Roswell Park Memorial Institute culture 
medium. A Model-predicted RBC fluxes at 0 h have been overlaid on a drawing of the RBC metabolic network [21] using the Escher web tool 
[22]. The shaded boxes highlight glycolysis, bicarbonate buffering, nucleotide metabolism, and glutathione synthesis in the RBC. B Detailed 
view of RBC enzyme fluxes at 0 h converting glucose into lactate. The shaded boxes highlight the pentose phosphate pathway and remnant 
reactions of the tricarboxylic acid (TCA) cycle. The orange circles denote metabolites, and thick/thin lines represent enzymes. The line thickness is 
proportional to the magnitude of enzymatic flux. DPGM, diphosphoglyceromutase; DGPase, diphosphoglycerate phosphatase; ENO, enolase; FBA, 
fructose bisphosphate aldolase; GAPD, glyceraldehyde 3-phosphate dehydrogenase; gDW, gram dry weight of RBC; glc-D(e), medium d-glucose; 
GLCt1r, glucose transporter; HEX1, hexokinase; lac-L(e), medium l-lactate; LACt2r, l-lactate reversible transport via proton symport; LDH, l-lactate 
dehydrogenase; PFK, phosphofructokinase; PGI, glucose 6-phosphate isomerase; PGK, phosphoglycerate kinase; PGM, phosphoglycerate mutase; 
PYK, pyruvate kinase; TCA, tricarboxylic acid; TPI, triose-phosphate isomerase
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Metabolic abundances that vary significantly over time 
and consistently between the five datasets were the focus 
of the study. It was determined that the abundance of 

glycolysis metabolites increased up to two-fold over time. 
RBCs transport oxygen via haemoglobin, which under-
goes autoxidation and produces superoxide radicals [19]. 

Table 3  Model-predicted metabolic enzymes that vary substantially over time

A metabolic enzyme with a flux value that differs by more than 0.1 mmol per hour per gram dry weight (gDW) of red blood cell (RBC) for at least four time points 
between two studies is considered a substantially variable metabolic flux. Approximately 95% of the metabolic fluxes had a standard deviation of less than 0.1 mmol 
per hour per gram dry weight of RBC between two study conditions. ‡The absolute difference between the maximum and minimum metabolic flux value for the 
simulated duration of the experiment. We have provided the maximum and minimum values of each metabolic enzyme in Additional file 4

Metabolic pathway Metabolic reaction name Absolute flux span (mmol h−1 gDW−1)‡

Pure 1 -Hxn  + Mev  + Fos Pure 2

Bicarbonate buffer system Bicarbonate transport ( Cl−/HCO−

3
 exchange) 0.45 0.53 0.65 0.27 0.81

Carbonic anhydrase 0.45 0.53 0.65 0.27 0.81

Glutamate metabolism Glutathione oxidoreductase 0.91 1.06 1.30 0.53 1.61

Glycolysis Enolase 1.19 0.53 0.87 0.60 1.57

Glyceraldehyde-3-phosphate dehydrogenase 1.19 0.53 0.87 0.60 1.57

Glucose transport (uniport) 0.46 0.28 0.55 0.27 0.87

l-Lactate reversible transport via proton symport 1.19 0.53 0.87 0.60 1.57

l-Lactate dehydrogenase 1.19 0.53 0.87 0.60 1.57

Phosphoglycerate kinase 1.19 0.53 0.87 0.60 1.57

Phosphoglycerate mutase 1.19 0.53 0.87 0.60 1.57

Pyruvate kinase 1.19 0.53 0.87 0.60 1.57

Hexokinase (d-glucose:ATP) 0.46 0.28 0.55 0.27 0.87

Triose-phosphate isomerase 0.73 0.25 0.35 0.27 0.68

Ion transport K+-Cl– cotransport 0.45 0.53 0.65 0.27 0.81

H+ exchange 0.36 0.13 0.71 0.27 1.41

Na+/K+ ATPase 0.92 0.25 0.45 0.25 0.85

Oxidative phosphorylation Inorganic diphosphatase 0.29 0.15 0.32 0.14 0.30

Pentose phosphate pathway Glucose 6-phosphate dehydrogenase 0.46 0.53 0.65 0.27 0.81

Phosphogluconate dehydrogenase 0.46 0.53 0.65 0.27 0.81

6-Phosphogluconolactonase 0.46 0.53 0.65 0.27 0.81

Ribulose 5-phosphate 3-epimerase 0.31 0.35 0.42 0.20 0.56

Table 4  Average (SD) of absolute differences in glutathione oxidoreductase (GTHO) fluxes over time between different conditions and 
parasite infection

a We used the published value of GTHO flux estimated in parasite-infected RBC (iRBC) [11] to perform this comparison. –Hxn hypoxanthine-deprived RPMI 
medium, + Mev mevalonate-added RPMI medium, + Fos fosmidomycin-added RPMI medium, SD standard deviation

Pure 1 -Hxn  + Mev  + Fos Pure 2 iRBCa

Pure 1 0.00 0.34 0.46 0.20 0.43 2.54

(0.00) (0.24) (0.34) (0.21) (0.38) (0.31)

−Hxn 0.00 0.20 0.24 0.54 2.62

(0.00) (0.22) (0.19) (0.39) (0.37)

 + Mev 0.00 0.26 0.50 2.66

(0.00) (0.24) (0.38) (0.49)

 + Fos 0.00 0.34 2.67

(0.00) (0.37) (0.21)

Pure 2 0.00 2.45

(0.00) (0.58)

iRBC 0.00

(0.00)
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The study’s model simulations revealed that the glycolysis 
flux primarily enters the PPP (Fig. 5B), the main pathway 
for producing NADPH. Antioxidant enzymes, such as 
glutathione peroxidase (GPx), require NADPH to man-
age low levels of oxidative stress in RBCs [19]. The func-
tion of GPx also depends on the availability of glutathione 
that is synthesized from glutamine or α-ketoglutarate in 
RBCs [18]. There was an approximate two-fold increase 
in abundance over time of metabolites (5-oxoproline and 
α-ketoglutarate) that are involved in glutathione syn-
thesis, suggesting that glutathione synthesis is active in 
RBCs under all experimental conditions. The model also 
predicted that GTHO carried substantial flux in the RBC, 
which also utilizes NADPH to produce glutathione [28], 
further suggesting active production of glutathione dur-
ing the experiment.

There was an approximately two-fold increase 
in the abundance of three dipeptides, namely 
γ-glutamylisoleucine, γ-glutamylleucine, and 
γ-glutamylthreonine. RBCs contain an ATP-independent 
pathway for degrading oxidized haemoglobin [20]. There-
fore, the increase in these dipeptides and haem (Table 2) 
is likely a result of oxidized haemoglobin degradation. 
The metabolic network analyses of the data also con-
firmed that glycolysis, PPP, and glutathione metabolism 
are highly active in the RBCs (Fig.  5A). In addition, the 
analysis also identified substantial flux through the bicar-
bonate buffering system. Bicarbonate ions ( HCO−

3  ) are 
responsible for transporting most of the carbon dioxide 
with the help of carbonic anhydrase activity [19]. The 
model suggests that carbonic anhydrase activity is highly 
variable between different study conditions (Table  3). 
Since carbonic anhydrase performs reversible hydration 
of carbon dioxide [29], these results raise the possibility 
that pH is also variable in the RBCs. Interestingly, the 
malaria parasites need to maintain a pH that is higher 
than the host RBCs [30]; thus, the acid load experienced 
by parasites invading the RBCs would be different for 
each independent experiment.

Aside from their usage in studying blood-borne patho-
gens, RBCs are used for transfusion to treat conditions, 
such as symptomatic anaemia or acute blood loss [31]. 
Approximately 85 million RBC units are transfused per 
year [31]. However, RBC transfusion requires storage 
leading to storage lesions, which may have unintended 
consequences for the transfusion. The duration of RBC 
storage, which is between 14 and 21  days at 4  °C, is 
typically a measure of RBC quality [31]. Although not 
directly comparable with the storage conditions, it was 
found that typical consequences of storage lesions, such 
as haem or oxidative stress, increased two-fold within a 
two-day experiment at 37  °C. In addition, three dipep-
tides increased two-fold across all the independent 

experiments. These results suggest that metabolic mark-
ers, such as γ-glutamylleucine and γ-glutamylthreonine, 
may provide better metrics of RBC quality than storage 
time for monitoring storage lesions.

Limitations of the study
By necessity, blood-stage malaria investigators culture P. 
falciparum in human RBCs that originate from different 
donors in independent studies. In this report, inter-study 
and time-dependent variability in abundances of robustly 
detected (> 1000 raw counts) RBC metabolites were char-
acterized. Metabolomic data obtained under in  vitro 
culture conditions, containing nutrient-rich medium 
(RPMI) and a lipid supplement (AlbuMAX), were used. 
This culture medium composition facilitates in  vitro P. 
falciparum growth, but may also contribute to the time-
dependent variation in RBC metabolite abundances 
(Table  2) because the in  vivo RBC environment in the 
bloodstream is not similar to these in  vitro conditions. 
Regardless of the medium used, the RBC metabolism 
of the donor would always contribute to time-depend-
ent adjustments in RBC metabolism due to the in  vitro 
incubation. The RPMI-based medium was chosen since 
it is used for essentially all experiments with cultured P. 
falciparum parasites. To mitigate inter-study variability 
associated with donor metabolism, an internal standard 
metabolite was identified to normalize raw metabolomic 
data from the five independent studies. The normaliza-
tion method proposed in this study would be useful for 
making any inter-study comparisons; however, the inter-
nal standard metabolite may (or may not) be PtdEth 
(C18:0/20:4) because of the limited number of independ-
ent datasets (N = 5) analysed in this work.

Conclusions
High-resolution metabolomic data were analysed from 
five independent experiments, maintaining uninfected 
RBCs under near-identical culture conditions for two 
days and using the identical experimental protocols 
originally designed for P. falciparum blood-stage stud-
ies. These culture systems provide the ex  vivo human 
host background environment for laboratory studies 
of P. falciparum and other blood-borne pathogens. To 
facilitate comparison between metabolites in different 
studies, an internal standard metabolite was identi-
fied (PtdEth C18:0/20:4) that had minimal inter-study 
and time-dependent variability. Based on normaliza-
tion with this standard, approximately 200 metabo-
lites were selected that were robustly (metabolite raw 
count > 1000) detected across all replicates at all sam-
pled time points for the five independent experiments 
and determined their intrinsic variability in this culture 
system. This set provides a broadly applicable standard 
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variability benchmark for the most commonly detect-
able metabolites. Overall, alterations in metabolite 
abundances over time were consistent between inde-
pendent experiments. Time-dependent metabolite 
changes were mainly detected for metabolic processes 
related to RBC glycolysis and stress responses that 
occur over the course of the 48-h culture time period. 
A smaller set of metabolites that vary substantially in 
uninfected RBCs between the different studies was also 
identified; these changes reflect non-specific metabolite 
variability due to unknown factors, such as differences 
in the metabolic status of blood donors. This latter set 
of metabolites can be useful in identifying culture con-
ditions that affect RBC metabolism itself and, thus, 
potentially obscuring changes caused by blood-borne 
pathogens.
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