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Medulloblastoma is the most common malignant brain tumor of childhood and remains a major cause of cancer related mortality in 
children. Significant scientific advancements have transformed the understanding of medulloblastoma, leading to the recognition 
of four distinct clinical and molecular subgroups, namely wingless (WNT), sonic hedgehog, group 3, and group 4. Subgroup classifi-
cation combined with the recognition of subgroup specific molecular alterations has also led to major changes in risk stratification 
of medulloblastoma patients and these changes have begun to alter clinical trial design, in which the newly recognized subgroups 
are being incorporated as individualized treatment arms. Despite these recent advancements, identification of effective targeted 
therapies remains a challenge for several reasons. First, significant molecular heterogeneity exists within the four subgroups, mean-
ing this classification system alone may not be sufficient to predict response to a particular therapy. Second, the majority of novel 
agents are currently tested at the time of recurrence, after which significant selective pressures have been exerted by radiation and 
chemotherapy. Recent studies demonstrate selection of tumor sub-clones that exhibit genetic divergence from the primary tumor, 
exist within metastatic and recurrent tumor populations. Therefore, tumor resampling at the time of recurrence may become neces-
sary to accurately select patients for personalized therapy.
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INTRODUCTION

Medulloblastomas are heterogeneous, highly aggressive tu-

mors of the central nervous system and are the most frequent 

malignant brain tumors in children14,16,67). Most medulloblas-

tomas are sporadic and arise in the posterior fossa due to de-

regulation of cerebellar development34). In rare cases, medullo-

blastoma can be associated with inherited disorders such as Li-

Fraumeni, Turcot or Gorlin syndrome23,52).

Integrative genomic studies from several independent re-

search groups have shown that medulloblastoma is not a single 

disease but is comprised of at least four subgroups with spe-

cific demographic, genetic, transcriptional, clinical, and prog-

nostic characteristics31,43,62,66,76,85,89). The medulloblastoma sub-

groups are termed wingless (WNT), sonic hedgehog (SHH), 

group 3, and group 4 and were agreed upon by experts from 
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around the world during a consensus meeting in Boston in 

201085). 

The 5-year overall survival of medulloblastoma patients is 

60–70% under the current standard multimodal treatment 

consisting of maximal safe tumor resection, chemotherapy and, 

for non-infant (>3–5 years) patients, craniospinal irradiation20,87). 

Unfortunately, improved outcome has been associated with se-

rious long-term treatment sequelae such as neurocognitive im-

pairment, endocrine deficiencies, and secondary tumors32,39,40). 

During the last two decades, tumor staging of medulloblasto-

ma patients has been solely based on clinical factors (patient’s 

age, presence or absence of metastases at diagnosis, postopera-

tive residual tumor) and, in some studies, histopathological 

subtypes85). A recently proposed, refined risk stratification of 

non-infant medulloblastoma patients based on subgroup and 

outcome data allows a classification of patients into four groups 

with different prognoses : “low risk” (>90% survival), “standard 

risk” (75–90% survival), “high risk” (50–75% survival), and 

“very high risk” (<50% survival). This new approach to patient 

stratification opens the door for future clinical trials including 

treatment de-escalation for patients with favorable outcomes 

and development of urgently needed new therapies for patients 

with high-risk disease61).

Leptomeningeal dissemination occurs in up to 40% of pa-

tients at time of diagnosis and almost all patients present with 

metastases at time of recurrence96). Despite good progress in 

the clinical management of patients with medulloblastoma, re-

current and metastatic disease remain incurable and metastatic 

relapse is the primary cause of death in children with medullo-

blastoma. Thus, characterization of the molecular mechanisms 

of metastatic spread and survival in the metastatic niche, cou-

pled with the identification of targetable vulnerabilities in these 

processes is a key area of current and future investigation.

MOLECULAR SUBGROUPS

The four subgroups (WNT, SHH, group 3, and group 4) were 

identified based on integrated genomics studies and feature 

well-defined clinical, histopathological, genetic, transcriptional, 

and prognostic characteristics (Fig. 1)45,46,57,62,63,70,73,76,85,95). Re-

cent research suggests that, based on genetic, transcriptional and 

epigenetic data, medulloblastoma can be divided even further 

into molecularly-determined subtypes which may potentially 

improve patient stratification in future clinical trials6,42,50,74,75).

WNT
This represents the rarest subgroup and accounts for ap-

proximately 10% of all medulloblastomas. Children and ado-

lescents are the most commonly affected age groups27). WNT 

medulloblastomas are thought to arise from progenitor cells 

of the dorsal brain stem in the lower rhombic lip and typically 

present with somatic mutations in the CTNNB1 gene which en-

codes beta-catenin and leads to an overexpression of the sub-

group-defining WNT signaling pathway16,44). Monosomy of 

chromosome 6 is characteristic of this subgroup42,46). TP53, 

DDX3X, and SMARCA4 mutations have also been described 

in patients with WNT tumors24,42,55,67,101). WNT medulloblas-

tomas are rarely metastatic and have a favorable outcome 

compared to the other subgroups76).

SHH
A bimodal age distribution is typical for SHH tumors, with 

a peak incidence during infancy and adolescence27). About 30% 

of all medulloblastomas are classified as SHH tumors which are 

frequently located laterally in the cerebellar hemispheres27,54). 

There is evidence, that SHH medulloblastoma originates from 

cerebellar granule precursor cells of the external granule lay-

er8,16,44). Hyperactivation of the SHH signaling pathway is char-

acteristic of this subgroup and is often due to mutations in the 

tumor suppressor genes PTCH1, SMO and SUFU, or amplifi-

cations of GLI2 or MYCN26,84,86). TP53 mutations can be found 

in about 20% of all patients with SHH medulloblastoma and 

define a “very high risk” group of patients with poor out-

come61,101). About 20% of patients with SHH tumors present 

with metastases at time of diagnosis.

Group 3
This subgroup represents about 25% of all medulloblasto-

mas and affects almost exclusively infants and children. A male 

predominance is typical for this highly aggressive subgroup27). 

A commonly overexpressed pathway has not been identified, 

however, MYC amplification and isochromosome 17q are fre-

quently observed alterations in these tumors76,90,99). In addition, 

amplification of OTX2, mutation of SMARCA4 and enhancer 

activation of GFI1 and GFI1B are recurrent genetic alterations47,77). 

Patients with group 3 tumors have the worst outcome and pres-

ent with leptomeningeal dissemination at time of diagnosis in 
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40–45% of cases.

Group 4
These medulloblastomas affect patients of all age groups and 

account for approximately 35% of all medulloblastomas27). Al-

though this subgroup is the most common, the underlying 

pathogenesis is poorly understood and the cells of origin have 

not been identified. Isochromosome 17q can be found in almost 

all group 4 tumors, however, there is no association with poor 

outcome in contrast to that described for group 3 medulloblas-

tomas76). Mutation of KDM6A, amplification of MYCN and 

CDK6, loss of chromosome X in females and duplications of 

SNCAIP are also frequently detected cytogenetic alterations in 

this subgroup44,49,77,79,85). Despite the frequent presence of metas-

tases at diagnosis, the overall outcome of patients with group 

4 medulloblastoma is intermediate.

RISK STRATIFICATION

Traditionally, medulloblastoma patients have been classified 

into two risk groups, “average risk” and “high risk”, using three 

clinical criteria : age at diagnosis, presence or absence of lepto-

meningeal dissemination (based on magnetic resonance imag-

ing and cerebrospinal fluid [CSF] analysis), and extent of resid-

ual tumor after resection. “Average risk” patients are older 

than 3 years of age and present with non-metastatic disease 

(no macroscopic metastasis on imaging scans and no micro-

Fig. 1. Molecular subgroups of medulloblastoma16,24,26,42,44,47,49,54,67,76,77,85,101). WNT : wingless, SHH : sonic hedgehog, M : male, F : female.
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scopic tumor cells found in CSF) and a residual tumor size 

<1.5 cm2. The presence of metastases and/or a postoperative 

tumor size >1.5 cm2 defines “high risk” disease46). Infants (<3 

years) are generally considered high risk and are treated using 

radiation-sparing protocols to reduce neurocognitive side ef-

fects.

During a consensus meeting in Heidelberg in 2015, a new 

risk stratification protocol based on molecular and prognostic 

criteria was proposed for patients between 3 and 17 years of 

age60,61). The refined classification has four risk groups, mainly 

defined by outcome, and takes disease heterogeneity and molec-

ular subgroup information into account. The protocol defines 

patients as “very high risk” (<50% survival), “high risk” (50–

75% survival), “standard risk” (75–90% survival), and “low 

risk” (>90% survival)61). Patients with metastatic group 3 me-

dulloblastoma as well as patients with TP53 mutated SHH tu-

mors have a poor prognosis and should be considered very 

high risk58,65,80). High risk patients are patients with metastatic 

or MYCN amplified SHH tumors as well as group 4 medullo-

blastoma patients with leptomeningeal dissemination28,56,61). 

Patients with non-MYCN amplified, non TP53-mutated SHH 

medulloblastoma, non-MYC amplified group 3 tumors and 

group 4 tumors without chromosome 11 loss are considered 

standard risk61). Low risk are non-metastatic WNT patients as 

well as patients with non-metastatic group 4 tumors and whole 

chromosome 11 loss (Fig. 2)61).

The new patient risk stratification allows for evaluation of 

treatment de-escalation for patients with favorable outcomes 

and improves the ability to identify and test new rational, tar-

geted therapies in patients in “high risk” and “very high risk” 

groups61).

CURRENT THERAPIES

The current treatment protocols are largely based on the tra-

ditional risk stratification and the age of the patient at the time 

of diagnosis64). Patients initially undergo tumor resection at the 

Fig. 2. Patient risk strati cation based on molecular and outcome criteria61). WNT : wingless, SHH : sonic hedgehog, M : male, F : female.
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time of diagnosis, regardless of risk group29,64). Recent re-analy-

sis of the prognostic value of extent of resection with subgroup 

taken into account, demonstrates that there is no benefit for 

gross total resection over subtotal resection in overall survival 

for patients, regardless of subgroup, and no overall survival or 

progression-free survival benefit for patients who underwent 

near-total versus gross-total resection88). Thus, maximal safe sur-

gical resection represents the standard of care for medulloblas-

toma and there is no apparent clinical benefit of surgical re-

moval of small volume residual disease that carries a high risk 

of neurological morbidity88).

Subsequently, “average risk” patients over the age of 3–5 (age 

cutoffs vary depending on the cooperative group performing 

the clinical trials) are treated with 23.4 Gy craniospinal irradi-

ation with a boost of 55 Gy to the tumor bed in the posterior 

fossa and adjuvant cytotoxic chemotherapy30). “High risk” pa-

tients undergo craniospinal radiation using a dose of 36–39 Gy, 

a boost of 55 Gy to the tumor bed, and adjuvant chemothera-

py21). Typical chemotherapy regimens consist of cisplatin/car-

boplatin-vincristine-cyclophosphamide combinations.

Infants below the age of 3–5 years are currently treated with 

radiation sparing approaches because of the devastating neu-

ro-cognitive side-effects of craniospinal radiation on the devel-

oping nervous system7,15,17,21,71). Various chemotherapy regimens 

have been studied, such as vincristine, cyclophosphamide, et-

oposide, and cisplatin followed by autologous hematopoietic 

cell rescue (CCG-99703) and methotrexate (intravenous and 

intraventricular), vincristine, cyclophosphamide, and carbopl-

atin (HIT-SKK’92)7,71). Survival rates in patients with non-des-

moplastic histology and macroscopic metastatic disease at the 

time of diagnosis in this age-group continue to have dismal 

outcomes64).

BIOLOGICALLY INFORMED TREATMENT  
STRATEGIES

The understanding of the heterogeneity that exists within 

tumors that are broadly classified as medulloblastoma is allow-

ing molecularly stratified trials to be carried out based on both 

molecular subgroups and an improved understanding of risk 

stratification49,61). The advanced understanding of key molecu-

lar alterations within different subgroups (and subtypes) of me-

dulloblastoma provides a basis for the development of risk-adapt-

ed treatment protocols and novel targeted therapies specific to 

molecular events within a particular patient’s tumor12,21,64,91). 

Numerous pre-clinical and clinical trials are underway to de-

velop and test small-molecular inhibitors, antibody-based ther-

apies, and immunotherapies that exploit molecular vulnerabil-

ities in these tumors2,10,11,21,33).

WNT subgroup
A key strategy being introduced in several active phase II and 

phase III studies is de-escalation of first-line treatments in low-

risk (non-metastatic) WNT medulloblastoma21,64). These trials 

are designed to reduce (SJMB12, PNET 5 MB) or eliminate cra-

niospinal irradiation (NCT02212574) and implement reduced 

dose regimens of chemotherapy (PNET 5 MB). Given the excel-

lent overall survival historically noted in these patients (>90%), 

these studies aim to reduce treatment-related morbidity in these 

patients with biologically favorable outcomes19,59,61).

SHH subgroup
Numerous preclinical studies identified hedgehog signaling 

pathway activation in medulloblastoma and demonstrated ev-

idence of in vitro efficacy of hedgehog pathway inhibitors in me-

dulloblastoma4,68,81,82). Vismodegib and sonidegib, competitive 

antagonists of the smoothened receptor, were among the first 

targeted therapies to advance to early stage clinical trials in me-

dulloblastoma patients33,68). Notably, adult and pediatric me-

dulloblastoma patients treated with vismodegib (PBTC-025B 

and PBTC-032) exhibited improved progression free-survival 

in recurrent SHH medulloblastoma, but not non-SHH medul-

loblastoma68). Response to smoothened (SMO) inhibition is 

highly dependent on the presence of Hedgehog pathway alter-

ations downstream of SMO, including SUFU negative regula-

tor of hedgehog signaling (SUFU) mutations and GLI family 

zinc finger 2 (GLI2) or MYCN amplifications, which infer resis-

tance to SMO inhibitors26,51). SMO inhibition monotherapy has 

been associated with selection of treatment-resistant subclones, 

via novel mutations affecting SMO inhibition or upregulation 

of alternate survival pathways, suggesting that SMO inhibitors 

will need to be accompanied by additional agents to achieve a 

durable treatment response5,69,97).

Alternative agents targeting downstream components of the 

Hedgehog signaling pathway include arsenic trioxide and itra-

conazole, inhibitors of the GLI transcription factor, which may 

be effective in the subset of patients with hedgehog activation 
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independent of SHH-PTCH1-SMO25,70,83).

Further pre-clinical work has identified additional pathways that 

may represent targetable vulnerabilities in this subgroup11,35,36). 

For example, in a functional genomic mouse model of SHH 

medulloblastoma, metastatic populations were enriched for 

clones with PI3K pathway insertions, suggesting this pathway 

may be an essential pathway for SHH medulloblastoma metas-

tasis41,78,96). Recurrent TP53 mutations are observed in a subtype 

of SHH medulloblastomas and may represent another targeta-

ble pathway to overcome the radiation resistance associated with 

these mutations80,100). Further pre-clinical work is necessary to 

clarify the ideal candidate therapies and drug combinations to 

be tested in the next generation of clinical trials.

Group 3 and group 4
Group 3 and 4 tumors currently lack specific targeted thera-

pies in existing clinical trials. However, trial SJMB12 contains a 

treatment arm for high risk patients, defined as those with me-

tastases at diagnosis, incomplete resection, and/or MYC or 

MYCN amplified, which will be treated with an additional, 

novel combination of cytotoxic chemotherapy agents (peme-

trexed and gemcitabine)21). However, no current clinical trials 

exclusively enrolling medulloblastoma patients are investigat-

ing targeted therapies in these subgroups. Patients with group 

3 medulloblastoma currently have the worst prognosis and need 

to be prioritized for novel treatments10). 

Group 3 and group 4 tumors appear to demonstrate hetero-

geneity in terms of activated signaling pathways, with MYC 

amplification being the most common cytogenetic alteration 

in group 3 tumors53,92). Promising pre-clinical agents in group 3 

MYC-driven medulloblastoma include combination treatment 

using PI3K and histone deacetylase inhibitors and BET-bro-

modomain inhibitors3,53). Epigenetic alterations are common 

in these subgroups, meaning epigenetic targeting may be a 

promising area for further preclinical investigation1,9,22,33,48).

METASTATIC MEDULLOBLASTOMA

Medulloblastoma typically metastasizes to the leptomenin-

ges and disseminated leptomeningeal disease represents a for-

midable treatment challenge. The incidence of metastasis in 

medulloblastoma at diagnosis is approximately 40% across all 

subgroups, although each subgroup varies in terms of frequen-

cy at diagnosis (Fig. 1)96,98). The presence of metastatic disease 

at the time of diagnosis is a poor prognostic sign in non-WNT 

subgroups of medulloblastoma61).

Given the near-universal treatment failure encountered in the 

setting of relapsed metastatic disease the treatment of the met-

astatic compartment is now a key focus of investigation64). An 

essential discovery has been that medulloblastoma undergoes 

significant clonal selection and evolution during the course of 

the disease, meaning that tumor cells from the metastatic com-

partment harbor unique genetic and epigenetic alterations not 

present in the primary tumor37,93). Evidence for this includes in-

tegrated genomic profiling (copy number, DNA methylation, 

and whole exome sequencing) of matched tumors from prima-

ry and metastatic tumors from human patients and supportive 

data from a murine transposon-driven SHH-medulloblastoma 

model, in which common transposon insertion sites were sig-

nificantly different between the primary and metastatic tu-

mors37,96). Thus, metastatic medulloblastoma cells are depen-

dent on molecular pathways for survival in the metastatic niche 

that are different from the primary tumor, and will likely re-

quire specific targeted treatments37). Pre-clinical work in this 

area should focus on identifying mechanisms of medulloblas-

toma metastasis, while future clinical trials need to account for 

the unique molecular profile of metastatic medulloblastoma; 

biopsy of the metastatic compartment to confirm the presence 

of a treatment target may be necessary to optimize patient se-

lection for experimental therapies.

RECURRENT MEDULLOBLASTOMA

Recurrent medulloblastoma remains extremely refractory to 

existing therapies, with response rates to various treatment ap-

proaches (repeat surgery, re-irradiation, additional chemothera-

py regimens, and targeted therapies) at relapse under 10%13,64,72). 

Recent studies have provided significant advances in our un-

derstanding of clonal selection events in medulloblastoma from 

the time of initial diagnosis to recurrence, which is important 

for biologically informed design of future clinical trials38).

Tumors of each subgroup have a predilection for specific pat-

terns of spatial and temporal recurrence37,38,62). WNT tumors re-

cur in both the primary tumor site and the metastatic compart-

ment, although recurrence rates in this subgroup are low62). SHH 

tumors have a predilection for local recurrence, while group 3 
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and 4 tumors typically recur with metastatic dissemination62). 

Functional genomic mouse models combined with sequencing 

of human primary and recurrent samples have demonstrated 

that the dominant clone at recurrence is present as a minor 

clone in the primary tumor, and that treatment pressures in-

duce clonal selection and evolution, and lead to the acquisition 

of novel somatic mutations not present in the primary tu-

mor38,96). Design of future clinical trials for recurrent disease 

should recognize this process and base decisions on resam-

pling and profiling of the recurrent tumor, for proper patient 

selection for novel therapies.

FUTURE DIRECTIONS 

A refined understanding of the molecular underpinnings of 

medulloblastoma offer significant promise to improve survival 

of patients with medulloblastoma, and reduce treatment relat-

ed adverse events, particularly in low risk subgroups. Current 

work is focusing on defining the heterogeneity within tumor 

subgroups, this has been most recently demonstrated by multi-

ple groups proposing a refined classification system that identi-

fies new subtypes within each subgroup6,42,74). These subtypes 

can provide further clarity in terms of recurrent molecular al-

terations and could aid in improved selection of patients for tar-

geted therapies, however, there is currently no defined consen-

sus definition of medulloblastoma subtypes.

Significant challenges remain in translating these findings to 

realize clinical benefit18). Accrual of sufficient patients for a clin-

ical trial in medulloblastoma requires multicenter collabora-

tion, and this challenge will be intensified as patients with par-

ticular genetic alterations are recruited for trials with targeted 

therapies94). International collaboration will be necessary to de-

termine the ideal design and goals of future clinical trials, to 

maximize the translation of advances in the molecular under-

standing of this cancer into improved survival and quality of 

life for medulloblastoma patients. Neurosurgeons have an im-

portant role to play in these endeavors, and given the spatial het-

erogeneity and evolution of medulloblastoma from the time of 

treatment to recurrence, biopsies of metastatic and recurrent 

tumors will likely be necessary to effectively match patients to 

an optimal targeted therapy.
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