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Abstract: Expanded polystyrene (EPS) concrete is commonly used as the core material of commercial
sandwich panels (CSPs). It is environmentally friendly and lightweight but has poor strength. Adding
fibers can improve the microstructure of EPS concrete and reduce the weakening effect of EPS beads
on the mechanical properties of concrete. An orthogonal experimental design (OED) was used in
this paper to analyze the influence of length and content of polypropylene fiber (PF), glass fiber
(GF), and carbon fiber (CF) on the physical and mechanical properties and micromorphology of
EPS concrete. Among them, CFs have the most apparent impact on concrete and produce the most
significant improvements in all properties. According to the requirements of the flexural performance
of CSPs, the splitting tensile strength was taken as the optimization index, and the predicted optimal
combination (OC) of EPS concrete with fibers was selected. The variations in the material properties,
mechanical properties, and microstructure with age were analyzed. The results show that with
increasing age, the dry density, compressive strength, and splitting tensile strength of concrete are
markedly improved relative to those of the CSP core material and the control case (CC), and even the
degree of hydration is improved.

Keywords: EPS concrete; fiber-reinforced concrete; orthogonal experimental design; mechanical
properties; microstructures

1. Introduction

Expanded polystyrene (EPS) beads are byproducts of petroleum engineering and have
the advantages of facility acquisition low densities, economical prices, low water absorp-
tion, and great thermal insulation performance. However, they still have the following
disadvantages: they are nondegradable, difficult to recycle and treat, and they have poor
mechanical strength. EPS beads can be used for the partial replacement of raw aggregates
and can be made into EPS concrete, which not only utilizes industrial waste but also saves
the usage of aggregates and reduces the density and weight of concrete. It is worth noting
that EPS concrete is fairly environmentally friendly.

Owing to the low density of EPS beads, which is generally lower than 20 kg/m3, the
density of concrete can be sharply reduced by adding EPS beads. As the proportion of EPS
increases, the density, compressive strength, splitting tensile strength, and elastic modulus
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of concrete present decreasing trends [1–5]. Moreover, the size of the EPS beads also has an
obvious effect on the material properties [6] under the same density of EPS concrete. As
the size decreases, the compressive strength performance of concrete and the binding force
between cement and EPS beads are both enhanced [1,7].

Fly ash (FA) is used as supplementary cementitious material, and it improves the
water absorption rate [8] and reduces the dry shrinkage of concrete. Silica fume (SF) is an
industrial byproduct that is suitable for filling cement pores [9] due to its small diameter,
and by this way, the durability could be improved [10]. In addition, the mechanical
properties of concrete can be properly improved by the gel that is formed by rehydration
with cement hydration products and SF. Similarly, the addition of SF not only improves the
durability of the concrete [11] but also enhances the compressive strength and reduces the
porosity. In particular, it can tightly connect the interfacial transition zone (ITZ) between
EPS beads and the interface of concrete, which improves the segregation of materials [12].

EPS beads have minimal mechanical strength. Thus, the strength of EPS concrete is
mainly determined by the strength of concrete without EPS beads and its microstructure.
The ordinary method for enhancing the mechanical strength of EPS concrete without
affecting its low density and lightweight design is to add fibers. Fibers have a significant
enhancement effect on the mechanical properties of concrete [13–16]. Typically, PF [17–19],
GF [20,21], and CF [22,23] are commonly used as reinforcing materials to enhance the
various properties of concrete. The addition of fibers has improved the anti-shrinkage,
splitting tensile strength, compressive strength, and flexural properties of EPS concrete
to varying degrees. As the proportion of fibers increases, the compressive strength also
increases. However, when the proportion of fibers exceeds 1% [24], the compressive
strength exhibits a downward trend with an increase in the proportion of fibers [25–29].
For EPS concrete, the peak value of the compressive strength is affected by the different
proportions of fibers, but the overall variation trend is the same [19]. Correspondingly, fibers
can upgrade the microstructure of concrete to a certain extent and improve the mechanical
properties accordingly. Therefore, it is a major tendency to use fibers to compensate for the
weakening effect of EPS on concrete.

In summary, the mechanical properties of EPS concrete are severely weakened due to
the poor mechanical properties of the EPS beads added to concrete. Nevertheless, recent
research on fiber-modified EPS concrete is relatively limited, especially research on the
various properties at different ages. Therefore, it is necessary to investigate the influence of
various factors of fibers on the material and mechanical properties of concrete.

In this paper, the orthogonal test method is mainly used to investigate the influence of
the three factors of fibers, which are the type, length, and proportion, on the various proper-
ties of EPS concrete. The physical properties, mechanical properties, and micromorphology
of the specimens are investigated. On this basis, the application of sandwich panels is
taken as an example, and the mechanical properties and microscopic characteristics of EPS
concrete at various ages are discussed according to the requirements of improving the
splitting tensile strength.

2. Materials and Methods
2.1. Materials

In this paper, ordinary Portland cement (OPC) (manufactured by Yangchun Cement
Co., Ltd. from Weifang, China) according to the requirements of P. O. 42.5 in GB175-
2007 [30] and Type I in ASTM C150-20 [31] was used. The chemical composition and
performance indicators are shown in Table 1. SF with a particle size of 0.1~0.3 µm was
supplied, which met the requirements of GB/T 27690-2011 [32] and ASTM C1240-20 [33]
The chemical composition is shown in Table 2. Natural river sands (NRSs) were used as
fine aggregates and tested by the screening method and moisture proportion measurement
method specified in GB/T 14684-2011 [34]. The results are shown in Table 3. The NRSs
belonged to natural sand grade type I with a fineness modulus of 1.73, moisture content of
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9.61%, and a bulk density of 1664 kg/m3. A polycarboxylate-based superplasticizer (SP)
(S04B type) was adopted.

Table 1. Chemical composition and performance indicators.

SO3 MgO Cl− Slag Gypsum Ignition Loss Specific Surface Area

2.20% 3% 0.04% 12% 6% 4% 358 m2/kg

Table 2. Chemical composition of silica fume.

Composition SiO2 Al2O3 Fe2O3 MgO CaO Na2O

w/% 96.74% 0.32 0.008 0.1 0.11 0.09

Table 3. River sand sieving analysis.

Sieve Hole (mm) 9.5 4.75 2.36 1.18 0.6 0.3 0.15 <0.15

sand sieve
weight (g) 691.0 705.0 681.2 572.0 561.2 554.0 555.0 464.8

record weight (g) 691.0 705.0 688.4 625.8 643.2 673.0 684.4 572.0

sand sieve
allowance (g) 0.0 0.2 7.2 53.8 82.0 19.0 129.4 107.2

sieve allowance
percentage (%) 0.0 0.0 1.4 10.8 16.5 23.9 25.9 21.5

cumulative sieve
remainder percentage (%) 0.0 0.0 1.0 12.0 29.0 53.0 79.0 100.0

through percentage 100.0 100.0 99.0 88.0 71.0 47.0 21.00 0.00

fineness modulus 1.73

EPS beads with an apparent density of 25.1 kg/m3 and a bulk density of 11.31 kg/m3

were adopted and tested under the screening method and bulk density measurement
method specified in GB/T 17431-2010 [35] and ASTM C136-19 [36]. The fibers used in this
article included PF, GF, and CF, which had lengths of 6 mm, 9 mm, and 12 mm, respectively.
The macrostructure and main physical performance of the fibers are separately shown in
Figure 1 and Table 4.
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Table 4. Physical properties.

Type Density Tensile Strength Elastic Modulus Breaking Elongation

PF 0.91 g/cm3 360 MPa 4236 MPa 28.4%
GF 2.5 g/cm3 469 MPa 4286 MPa 21.6%
CF 1.80 g/cm3 4900 MPa 240,000 MPa 2.1%

2.2. Mix Design

An orthogonal experimental design (OED) was adopted to determine the optimal
indexes of the fibers, with three factors and three levels, as shown in Table 5. Thereinto, the
three factors are fiber type, fiber length, and fiber dosage, and the three levels correspond
to corresponding factors, respectively.

Table 5. OED table.

Level
Factor

A-Type B-Length (mm) C-Proportion (%)

1 PF 6 0.5
2 GF 9 1.0
3 CF 12 1.5

EPS concrete without fiber was added as the control case (CC) based on the OED. The
naming rules are as follows: the first letter is fiber type, the first two digits are fiber length,
and the last two digits are fiber content. For instance, P0605 means choosing PF with a
length of 6 mm and a dosage of 0.5%. The mixed number of other contents such as cement,
SF, water, NRS, SP [37], and EPS, was decided by the previous test study. The mix design is
shown in Table 6. The concrete mixing process is as follows. First of all, the cement, silica
fume (SF), fly ash (FA), and river sand are dry mixed for 1 min. After the solid mixture is
mixed evenly, the liquid superplasticizer (SP) and water are added stirring for 5 min; then
the expanded polystyrene (EPS) beads are added to the mixture continue stirring for 2 min,
forming a stable and uniform fresh concrete mixture. Finally, adding various types of fibers
are stirred for another 2 min, and loaded into the concrete standard mold.

Table 6. Mix design.

Mix
Desig-
nation

Cement
(kg/m3)

SF
(kg/m3)

Water
(kg/m3)

NRS
(kg/m3)

SP
(kg/m3)

EPS
(kg/m3)

Fiber

Type Length
(mm)

Proportion
(kg/m3)

CC 508.91 127.23 152.67 407.12 4.07 10 - - -
P0605 508.91 127.23 152.67 407.12 4.07 10 PF(A1) 6 (B1) 4.55 (C1)
G0905 508.91 127.23 152.67 407.12 4.07 10 GF(A2) 9 (B2) 12.50(C1)
C1205 508.91 127.23 152.67 407.12 4.07 10 CF(A3) 12(B3) 9.10 (C1)
C0910 508.91 127.23 152.67 407.12 4.07 10 CF(A3) 9 (B2) 18.20(C2)
G0610 508.91 127.23 152.67 407.12 4.07 10 GF(A2) 6 (B1) 25.00(C2)
P1210 508.91 127.23 152.67 407.12 4.07 10 PF(A1) 12(B3) 9.10 (C2)
P0915 508.91 127.23 152.67 407.12 4.07 10 PF(A1) 9 (B2) 13.65(C3)
G1215 508.91 127.23 152.67 407.12 4.07 10 GF(A2) 12(B3) 37.50(C3)
C0615 508.91 127.23 152.67 407.12 4.07 10 CF(A3) 6 (B1) 27.30(C3)

2.3. Experimental Methods

Slump and dry density tests were performed according to GB/T 50080-2016 [38], and
the water absorption test was related to JG/T 266-2011 [39]. To prevent the EPS particles in
the concrete from being in a molten state due to high temperatures, a thermostatic drying
oven at 60 ◦C was used. The dry shrinkage test was measured by a concrete shrinkage
expansion machine HSP 540 (manufactured by ZKLD from Beijing, China), according to
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GB/T 50082-2009 [40], for the ages of 1 day, 3 days, 7 days, 14 days, 28 days, 45 days, 60 days,
90 days and 120 days, and the size of the specimen was 100 mm × 100 mm × 515 mm.
In addition, the ultrasonic pulse velocity (UPV) test was carried out using a ZBL-U520
nonmetallic ultrasonic detector according to ASTM C597-16 [41] and ACI 228.1R-03 [42].
The compressive strength, splitting tensile strength, uniaxial compressive strength, and
static elastic modulus tests were by GB/T 50081-2019 [43].

A KYKY-EM6200 (manufactured by KYKY from Beijing, China) scanning electron
microscope (SEM) and SmartLab-9 (manufactured by Rigaku from Japan) diffractometer
for X-ray diffraction (XRD) were used to analyze the microstructure and various diffraction
phases of concrete. The scanning voltage, electric current, speed, and scanning 2θ range
were 45 kV, 200 mA, 12◦/min (step size was 0.02◦), and 5–60◦, respectively.

3. Results and Discussion

The test results of the material and the mechanical properties with the curing age of
28 days of concrete are shown in Table 7.

Table 7. Material and mechanical properties.

Mix
Designation

Slump
(mm)

Dry
Density
(kg/m3)

Water
Absorption

(%)

UPV
(km/s)

Compressive
Strength

(MPa)

Splitting Tensile
Strength (MPa)

Uniaxial
Compressive

Strength (MPa)

Static Elastic
Modulus (GPa)

CC 196 1036.60 5.5 2.86 8.58 0.91 7.68 6.97
P0605 115 1043.71 6.1 2.83 9.41 0.88 6.63 7.51
G0905 10 1083.38 3.5 3.02 9.19 1.17 9.98 8.48
C1205 7 1045.44 5.4 2.91 12.35 2.04 11.11 3.92
C0910 1 1151.20 4.5 3.02 12.16 2.04 8.86 11.32
G0610 12 1069.16 4.4 3.01 10.08 1.23 10.09 9.91
P1210 72 1118.93 4.4 2.90 8.41 1.30 8.78 8.09
P0915 11 986.42 5.9 2.74 7.53 1.06 10.61 9.17
G1215 2 1085.07 9.5 3.00 6.12 0.89 3.24 4.35
C0615 1 1097.71 5.7 2.92 8.43 2.35 4.06 9.29

3.1. Properties of Fresh Concrete

Table 6 shows that the slump ranges from 1 mm to 115 mm. The minimum value
of C0615 and C0910 was 1, the maximum value of P0605 was 115, and the value of CC
was 196 mm.

The results show that the addition of fibers can greatly enhance the consistency and
reduce the flowability of concrete, resulting in a decrease in workability. The mean response
analysis of the slump values is shown in Figure 2.
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For the type of fiber factor, the maximum is level 1, and the minimum is level 3. For
the length factor, the minimum value appears at level 2, and the maximum value appears
at level 1. The slump has strong negative correlations with the proportion of fibers; namely,
the minimum value is at level 3 and the maximum value is at level 1.

3.2. Dry Density

The dry density ranges from 986.42 kg/m3 to 1151.2 kg/m3. P0915 has the minimum
dry density value, P1210 has the maximum dry density value, and the dry density of CC is
1036.6 kg/m3. The results show that the addition of fibers can influence the dry density to
some degree. The mean response analysis of the dry density is shown in Figure 3.
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For the type of fiber factor, the minimum is level 1, and the maximum is level 3. The
dry density has significant positive correlations with the lengths of fibers; namely, the
minimum value is at level 1 and the maximum value is at level 3. For the proportion factor,
the minimum value appears at level 3, and the maximum value appears at level 2.

3.3. Water Absorption

The water absorption rate ranges from 3.5% to 9.5%. G0905 has the minimum value,
G1215 has the maximum value, and the water absorption of CC is 5.5%. The results show
that the addition of fibers has a certain effect on water absorption. The mean response
analysis of water absorption is shown in Figure 4.
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The minimum value of the type factor appears at level 3, and the maximum value
appears at level 2. For the length factor, the minimum value appears at level 2, and the
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maximum value appears at level 3. The minimum value of the proportion factor appears at
level 2, and the maximum value appears at level 3.

3.4. Ultrasonic Pulse Velocity

The UPV ranges from 2.74 km/s to 3.02 km/s. P0515 has the minimum value, G0905
and G0910 have the maximum values, and the UPV of CC is 2.86 km/s. The results show
that the addition of fibers has an influence on the UPV to a certain extent. The mean
response analysis of the UPV is shown in Figure 5.
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Figure 5. Mean UPV response.

For the type of fiber, the minimum value of the type factor appears at level 1, and
the maximum value appears at level 2. The UPV is positively correlated with the lengths
of fibers, where the minimum value is at level 1 and the maximum value is at level 3.
The minimum value of the proportion factor appears at level 3, and the maximum value
appears at level 2.

3.5. Dry Shrinkage

The drying shrinkage values of CC and other specimens were tested, and the curing
ages were from 1 day to 120 days (9 age stages). Correspondingly, the changing trend of
CC was used as the reference baseline to evaluate the improvement degree of the fiber for
dry shrinkage, and the relationship between the change rate of dry shrinkage and curing
time was drawn, as shown in Figure 6.
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It can be seen from the figure that the dry shrinkage value increases with curing
age, and the curve of CC is in the middle of the overall ranges for all cases. The results
indicate that the addition of fibers has a significant effect on dry shrinkage. In particular,
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the dry shrinkage values of C1205, C0615, C0910, and G1215 were improved significantly.
Correspondingly, CF has a greater influence on dry shrinkage than GF and PF.

The mean response of dry shrinkage at the standard age (28 days) is shown in Figure 7.
For the type of fiber, the minimum and maximum values appear at level 3 and level 1,
respectively. The dry shrinkage value has a negative correlation with the length factor;
namely, the minimum value is at level 3 and the maximum value is at level 1. The minimum
value of the proportion factor is level 3, and the maximum value is level 2.
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3.6. Compressive Strength

The compressive strength ranges from 6.12 MPa to 12.35 MPa. G1215 has the minimum
value, C1205 has the maximum value, and the compressive strength of CC is 8.58 MPa. The
results show that the addition of fibers has an apparent effect on compressive strength. The
mean response analysis of the compressive strength is shown in Figure 8.
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Figure 8. Mean compressive strength response.

For the type of fiber factor, the minimum value is level 1, and the maximum value is
level 3. For the length factor, the minimum value appears at level 3, and the maximum
value appears at level 2. There is a negative correlation between the compressive strength
and the proportion of fibers, where the minimum is at level 3 and the maximum is at level 1.

3.7. Splitting Tensile Strength

The splitting tensile strength ranges from 0.88 MPa to 2.35 MPa. P0605 has the
minimum value, C0615 has the maximum value, and the splitting tensile strength of CC is
0.91 MPa. The results show that the addition of fibers has a great influence on the splitting
tensile strength. The mean response analysis of the splitting tensile strength is shown
in Figure 9.
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Figure 9. Mean splitting tensile strength response.

The minimum value of the type factor appears at level 1, and the maximum value
appears at level 3. The fiber length factor is negatively correlated with the fiber length
factor, where the minimum appears at level 3 and the maximum appears at level 1. For the
proportion factor, the minimum value appears at level 1, and the maximum value appears
at level 2.

3.8. Uniaxial Compressive Strength

The uniaxial compressive strength ranges from 3.24 MPa to 11.11 MPa, G1215 has
the minimum value, C1205 has the maximum value, and the axial compressive strength
of CC is 7.68 The results show that the addition of fibers significantly influences the axial
compressive strength. The mean response analysis of the uniaxial compressive strength is
shown in Figure 10.
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Figure 10. Mean axial compressive strength response.

For the axial compressive strength, the minimum value of the type factor appears at
level 2, and the maximum value appears at level 1. The minimum value of the length factor
appears at level 1, and the maximum value appears at level 2. The uniaxial compressive
strength is negatively correlated with the proportion, where the minimum value appears at
level 3 and the maximum value appears at level 1.

3.9. Static Elastic Modulus

The static elastic modulus ranges from 3.92 GPa to 11.32 GPa. C1205 has the minimum
value, C0910 has the maximum value, and the static elastic modulus of CC is 6.79 GPa. The
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results show that the addition of fibers has an obvious effect on the static elastic modulus.
The mean response analysis is shown in Figure 11.
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Figure 11. Mean static elastic modulus response.

The minimum value of the type factor appears at level 2, and the maximum value
appears at level 1. The minimum value of the length factor appears at level 3, and the
maximum value appears at level 1. For the proportion factor, the minimum value appears
at level 1, and the maximum value appears at level 2.

3.10. Scanning Electron Microscope

The situation of the surface may be alterative during the mixing and forming processes
of concrete. Hence, a rougher fiber surface is favorable for combining the concrete matrix
and fibers [44]. Figure 12a,c,e show the apparent morphology of the fiber before being
mixed into EPS concrete, and Figure 12b,d,f show the surfaces of the fibers added into
EPS concrete.

As shown in Figure 12a,b, the surface of PF is quite smooth, but its surface presents
relatively regular vertical microcracks after being mixed in concrete.

Although a small number of hydration crystals is visibly attached to its surface, it
looks smoother compared with the surface of GF and CF in EPS concrete. Therefore, the
boundary between PF and concrete is inferior to that of the others, which accounts for the
general lower mechanical properties of EPS concrete mixed with PF.

As shown in Figure 12c,d, a relatively smooth GF surface was observed. However, the
surface of GF became extremely rough, and lamellar spalling damage appeared, resembling
fish scales after it was mixed in EPS concrete. This probably accounts for the alkaline
environment of the cement matrix and the chemical etching caused by Ca(OH)2 [45,46].
However, the mechanical properties of GF are weakened by damage to its surface. The
roughness of the surface is conducive to the attachment of massively hydrated crystals and
the synergistic bonding between fibers and the cement matrix. The mechanical properties
of EPS concrete mixed with GF are generally better than those of concrete mixed with PF,
but the overall improvement is not obvious.

As shown in Figure 12e,f, some regular fine strips on the surface of CF emerged. The
diameter and contact area with the cement matrix of CF are smaller and larger, respectively
than those of PF and GF. The formation and adhesion of the hydration crystals are pro-
moted by the increase in the fine strips on the surface of CF after it is mixed in concrete.
Furthermore, it can be observed that massive crystals are attached to the surface of CF,
making it more efficient for the bonding and adhesion of hydration crystals. Moreover, the
mechanical properties of EPS concrete are favorably improved, which is confirmed by the
compressive strength and splitting tensile strength results in the OED.
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4. Application

Commercial sandwich panels (CSPs) are a common type of prefabricated concrete
panels that commonly use EPS concrete as their core material. The tensile strength of EPS
concrete becomes the controlling factor [47–49] for the safety guarantee of sandwich panels
when they encounter moments of flexure. Hence, as the core material of CSPs, the optimal
combination (OC) of EPS concrete was selected according to the splitting tensile strength.

In addition, other performance tests were performed on OC and compared with CC
and the CSP core [50] material. The results are shown in Figure 13. It can be seen from the
test results that the dry density, splitting tensile strength, and compressive strength of OC
compared to the CSP material increased by 31%, 591%, and 536%, respectively. For CC, the
dry density, splitting tensile strength, and compressive strength are higher than those of
OC and are 14%, 172%, and 13%, respectively.
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Hence, the mechanical properties of CSPs are predominantly improved after modifica-
tion by adding fibers. The density of the core material is increased by approximately 30%,
but there is a 600% increase in the mechanical properties.

Tests of dry density, compressive strength, and splitting tensile strength under OC
at different curing ages and the influence of age on its properties were obtained. The age
stages of this test were 7, 14, 28, 56, and 90 days. Three samples of each age stage were
tested to obtain the dry density, compressive strength, and splitting tensile strength. The
average value of each test result is shown in Table 8.

Table 8. Effect of age (7 to 90 days) on OC.

Name Age
(days)

Dry Shrinkage
(kg/m3)

Compressive Strength
(MPa)

Splitting Tensile
Strength (MPa)

OC-7 d 7 1161.28 9.43 1.73
OC-14 d 14 1173.80 9.44 1.80
OC-28 d 28 1187.78 9.68 2.48
OC-56 d 56 1197.55 11.90 2.54
OC-90 d 90 1200.95 11.98 2.63

4.1. Dry Density

As shown in Table 8, the dry density of OC at different ages ranges from 1161.28 kg/m3

to 1200.95 kg/m3. The curve fitting of the dry density is shown in Figure 14.
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The dry density continues to improve with increasing curing time, and the rate of
increase gradually slows down as the age increases. When the age increases from 7 days
to 28 days, 14 days to 28 days, 28 days to 56 days, and 28 days to 90 days, the dry density
increases by 1%, 2%, 0.8%, and 1%, respectively. Although increasing age has an impact on
the dry density, the improvement is not significant compared to that at the standard age;
the improvement is only approximately 1% to 2%.

4.2. Compressive Strength

The compressive strength of OC at different ages ranges from 9.43 MPa to 11.98 MPa.
The curve fitting of dry density is shown in Figure 15.
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The compressive strength continues to improve with increasing curing time, and the
rate of increase gradually slows down as the age increases. When the age increases from
7 days to 28 days, 14 days to 28 days, 28 days to 56 days, and 28 days to 90 days, the dry
density increases by 2.5%, 2.5%, 23%, and 24%, respectively. It shows that the compressive
strength of OC at an early age is approximately 98% of that at the standard age and is higher
than the compressive strength of CC at the standard age. The compressive properties of
OC increase significantly after reaching the standard age, but the growth rate slows down
after 56 days. As shown in Figure 15, compared with the previous study [51,52] and the
prediction curve of ordinary concrete [53,54], it was found that the compressive strength
increased with increasing age. At an early age (within 14 days), the compressive strength
of OC concrete is markedly superior to that of ordinary concrete. For instance, compared
with P105, the compressive strength of OC at 7 days increased by nearly 110%. The ITZs
between CF and the cement matrix significantly improved at the early age stage due to the
high hydration degree, which enhanced the mechanical properties of the concrete material.

4.3. Splitting Tensile Strength

The splitting tensile strength of OC at different ages ranges from 1.73 MPa to 2.63 MPa.
The fitting curve of the dry density is shown in Figure 16.

When the age increases from 7 days to 28 days and from 14 days to 28 days, the splitting
tensile strength increases by 0.75 MPa and 0.68 MPa, namely, 1% and 2%, respectively. When
the age increases from 28 days to 56 days and 90 days, respectively, the tensile strength
increases by 0.06 MPa and 0.15 MPa, which are improvements of 2% and 6%, respectively.
However, after reaching the standard age, the splitting tensile strength continues to increase,
but the improvement is not substantial. The splitting tensile strength continues to improve
with increasing curing time, and the rate of increase gradually slows down as the age
increases. When the age increases from 7 days to 28 days, 14 days to 28 days, 28 days
to 56 days, and 28 days to 90 days, the dry density increases by 1%, 2%, 2%, and 6%,
respectively. After reaching the standard age, the splitting tensile strength continues to
increase, but the rate of increase is not sharp.
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4.4. Scanning Electron Microscope

The OC material at four ages (7, 14, 28, and 120 days) was analyzed by SEM. As shown
in Figure 17a–d, there is no obvious gap near the ITZ between the cement matrix and the
roots of CF at all ages. The ITZs at the roots of PF and GF are shown in Figure 17g,h and are
more apparent than those in CF. Compared with the curing conditions at the standard age,
the bonding strength between the fiber and matrix is already tight at an early age, which
explains why the mechanical properties of OC at an early age are significantly higher than
those of CC at a standard age.

Clustered and thickened hydrated crystals are attached to the matrix and fibers of
the surface and increase with age. Moreover, the overall mechanical properties are further
enhanced, which may be attributed to the large number of hydration crystals observed on
the surface of CF in the SEM micrographs, making the connection between the fiber root
and the cement matrix closer.

As shown in Figure 17e,f, partial micropores attached to denser acicular ettringite
hydrated crystals are visible in the cement matrix at a prolonged age (120 days) and account
for the enhancement of the mechanical properties.

4.5. X-ray Diffraction

The OC material at ages 7, 14, 28, and 120 days was characterized by XRD, as shown
in Figure 18.

The various phases of the different ages are roughly the same. The main phases are
the calcite and portlandite phases, as well as the nonahydrate alite and belite phases.

Similarly, the diffraction peaks of alite and belite (Ca3SiO3 and Ca2SiO4) at 7 days and
14 days are more significant than those at 28 days, especially the peaks at 7 days. The above
shows that the longer the curing period is, the more sufficient the hydration degree is SiO2
continuously reacts with the cement matrix for secondary hydration, which is the main
component of SF mixed in concrete. Ca(OH)2 is consumed continuously, which sufficiently
promotes the secondary hydration of OC as the curing age increases. Accordingly, this is
corroborated by the phenomenon observed by SEM.

The diffraction peak of Aft, namely, ettringite, was observed in the XRD pattern at
the age of 120 days, accounting for the long curing period and the greater the degree of
hydration. In fact, the adhesion between the fibers and the cement matrix is also improved
when the hydration crystals are increased. Consequently, the mechanical properties of
concrete are more effectively improved by the above two effects, hydration, and adhesion,
whose effects are amplified when they are used together.
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Figure 17. Microscopic morphological analysis: (a) OC in 7 days; (b) OC in 14 days; (c) OC in 28 days;
(d) OC in 120 days; (e) Aft in 120 days; (f) Aft in 120 days; (g) P0605 in 28 days; (h) G0905 in 28 days.
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5. Conclusions

To investigate the effect of fibers on EPS concrete under the factors of the fiber type,
length, and proportion, an OED with three factors and three levels was designed. The
material, mechanical properties, and microstructure of EPS concrete with fibers were tested.
Furthermore, based on the CSP in the practice project, taking the splitting tensile strength
as the selection criterion, OC was predicted. The dry density, the splitting tensile strength,
the compressive strength, SEM, and XRD of the specimens at various ages were analyzed,
and the following conclusions were obtained.

The addition of fibers reduced the fluidity and workability of EPS concrete to a great
extent. For the dry density, water absorption rate, and UPV, the addition of fibers had little
effect. However, the dry shrinkage rate was considerably altered after the fibers were mixed,
and the overall modification effect of CF was better than that of PF and GF. The compressive
strength, splitting tensile strength, uniaxial compressive strength, and static elastic modulus
of EPS concrete with fibers were significantly improved. Among them, the improvement in
CF was the most remarkable. The microscopic analysis showed that the mixing of fibers
promotes the hydration of concrete. Correspondingly, with increasing curing time, the
hydration effect is also better. Furthermore, the hydration crystals considerably enhance the
connection between the fibers and cement matrix, thereby improving the overall mechanical
properties of the concrete. CF has the most marked improvement in mechanical properties
due to its large contact area with the cement matrix and the large number of hydration
crystals attached to its surface.

Compared with CC, the dry density, splitting tensile strength, and compressive
strength of OC increased by 14%, 172%, and 13%, respectively. Similarly, compared with the
CSP, the dry density, splitting tensile strength, and compressive strength of OC increased
by 31%, 591%, and 536%, respectively. That is, the mechanical properties are notably
enhanced. The compressive strength increased rapidly at an early age and reached 98%
of the compressive strength at the standard age. There was no obvious gap near the ITZ
between CF and the cement matrix at all ages, which was observed by SEM and XRD
analyses. Moreover, with increasing curing age, the abundant hydrated crystals on the
surface of CF also multiplied, which is conducive to the further enhancement of mechanical
properties. Moreover, the appearance of ettringite was observed at 120 days, which also
proved that the addition of fibers can promote the hydration of concrete.
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Abbreviations

EPS Expanded polystyrene
FA Fly ash
SF Silica fume
ITZ Interfacial transition zone
OPC Ordinary Portland cement
NRS Natural river sand
PF Polypropylene fiber
GF Glass fiber
CF Carbon fiber
SP Superplasticizer
CC Control case
OED Orthogonal experimental design
UPV Ultrasonic pulse velocity
SEM Scanning electron microscope
XRD X-ray diffraction
CSP Commercial sandwich panel
OC Optimal combination
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