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Abstract

The development of high-throughput biotechnologies allows the collection of omics data to

study the biological mechanisms underlying complex diseases at different levels, such as

genomics, epigenomics, and transcriptomics. However, each technology is designed to col-

lect a specific type of omics data. Thus, the association between a disease and one type of

omics data is usually tested individually, but this strategy is suboptimal. To better articulate

biological processes and increase the consistency of variant identification, omics data from

various platforms need to be integrated. In this report, we introduce an approach that uses a

modified Fisher’s method (denoted as Omnibus-Fisher) to combine separate p-values of

association testing for a trait and SNPs, DNA methylation markers, and RNA sequencing,

calculated by kernel machine regression into an overall gene-level p-value to account for

correlation between omics data. To consider all possible disease models, we extend Omni-

bus-Fisher to an optimal test by using perturbations. In our simulations, a usual Fisher’s

method has inflated type I error rates when directly applied to correlated omics data. In con-

trast, Omnibus-Fisher preserves the expected type I error rates. Moreover, Omnibus-Fisher

has increased power compared to its optimal version when the true disease model involves

all types of omics data. On the other hand, the optimal Omnibus-Fisher is more powerful

than its regular version when only one type of data is causal. Finally, we illustrate our pro-

posed method by analyzing whole-genome genotyping, DNA methylation data, and RNA

sequencing data from a study of childhood asthma in Puerto Ricans.

Author summary

In this research, we developed a statistical approach using a modified Fisher’s method

(denoted as Omnibus-Fisher) to combine separate p-values of association testing for a

trait and SNPs, DNA methylation markers, and RNA sequencing, calculated by kernel
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machine regression into an overall gene-level p-value to account for correlation between

omics data. We further extended the method to an optimal version in order to consider all

possible disease models.

Introduction

Because of major advances in high-throughput biotechnologies, large amounts of omics data

have been collected to study the biological mechanisms underlying complex diseases at differ-

ent levels, such as genomics, epigenomics, and transcriptomics. Such different types of omics

data can help us understand a disease from several perspectives. However, each of the arrays or

sequencing technologies is designed to collect a specific type of omics data, such as SNPs,

DNA methylation markers, and RNA sequencing. Thus, the association between a complex

disease and one type of omics data is usually tested individually, but this strategy is suboptimal

and has some disadvantages. Researchers often find that only a small proportion of disease var-

iation can be explained by one type of omics (e.g., genetic) data, leading to “missing heritabil-

ity” [1]. Moreover, molecular variants identified by different studies usually suffer from poor

reproducibility [2, 3]. Most importantly, only partial information is used for each individual

analysis. Therefore, in order to better characterize biological processes and increase the consis-

tency of variant identification, omics data from separate platforms need to be integrated and

analyzed. Integrating information from different biological datasets has the potential to yield

better insight into causal mechanisms of complex diseases than that from individual omics

datasets.

Although integrative analysis of omics data is clearly needed, the complexity of disease

mechanisms, the large number of collected molecular variables, and relatively small datasets

can make such analysis quite challenging. Bersanelli et al. [4] summarized a list of existing sta-

tistical approaches for integrative analysis. When developing integrative analysis methods, two

inevitable issues are: 1. handling a large number of variables and 2. dealing with data from rela-

tively small studies. In genetic studies, to handle a large number of genetic variants in a gene,

gene-based approaches [5–15] have been developed to evaluate the joint effects of genetic vari-

ants in the same gene on the disease of interest. Of the existing methods, the sequence kernel-

machine-based associations test (SKAT) [16, 17] is a powerful, flexible, and computationally

efficient test. In this kernel machine (KM) approach, the test statistic follows a mixture of chi-

square distributions, and thus p-values can be computed analytically and quickly without

using resampling techniques. Although gene-based tests were originally developed for genetic

studies, the same concept can be applied to studies of multi-omics data. Another issue is small

sample size, especially for epigenomic or transcriptomic data. For example, large-scale genome

wide association studies (GWASs) have been widely conducted for genetic studies for many

years, so researchers usually have hundreds or thousands of genotyped samples. However,

genome- wide methylation studies are more recent, and thus researchers often have a small

number of samples. Moreover, incomplete samples may be wasted when using methods

requiring complete samples (e.g., methods incorporating multi-omics data variables into one

regression model). In this scenario, methods combining multiple p-values can be applied to

make full use of data. For example, the p-values for association testing of a disease and SNPs,

DNA methylation markers, and RNA sequencing data are be calculated separately, and then

these separate p-values can be appropriately combined into one final p-value.

In order to test for overall gene-level significance, we here present an approach to use a

modified Fisher’s method (denoted as Omnibus-Fisher) to combine separate p-values for

Integrative association method for omics data
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association testing of a disease or trait and SNPs, methylation markers, and RNA sequencing

data calculated by KM regression into an overall gene-level p-value accounting for correlation

between omics data. This method can be applied to either samples with all three types of omics

data or samples with one or two types. To account for all possible disease models, we further

extend the modified Fisher’s method to an optimal test by using perturbations. In our simula-

tion studies, we show that a usual Fisher’s method has inflated type I error rates when directly

applied to correlated omics data. In contrast, our Omnibus-Fisher test preserves the expected

type I error rates when employed in correlated omics data. Moreover, the Omnibus-Fisher

method has increased power compared to its optimal version when the true disease model

involves all of SNPs, methylation markers, and RNA sequencing data. On the other hand, the

optimal Omnibus-Fisher method is more powerful than its regular version when only one type

of data is causal. Finally, we illustrate our proposed methodology by analyzing whole-genome

genotyping, DNA methylation, and RNA sequencing data from a study of childhood asthma

in Puerto Ricans.

Results

Simulation of the Type I error rate

When applied to samples with independent SNPs (G), methylation markers (M), and RNA

sequencing data (E), all of the methods used (i.e., the Fisher’s methods with and without con-

sidering p-value covariance [Omnibus-Fisher and usual Fisher], and the optimal test with p-

values from Omnibus-Fisher as inputs [optimal Omnibus-Fisher]) had empirical Type I error

rates close to the nominal level (Fig 1A and Table 1). When the usual Fisher’s method without

considering covariance was applied to G and E correlated data, the Type I error rate was

inflated (Fig 1B and Table 1). In contrast, the optimal and regular Omnibus-Fisher methods

with considering covariance retained the desired Type I error rates as evidenced by the pat-

terns observed in the QQ plots shown in Fig 1B and Table 1. Similar results were observed

when extending to 100,000 datasets for evaluation (S1 Table).

Statistical power comparison

When we compared the power of the statistics on the samples with independent G, M and E

(Fig 2), the power of optimal Omnibus-Fisher was consistent higher than that of the regular

Omnibus-Fisher method when G was the only causal factor, but when G, M and E were all

causal factors, the optimal methods had lower power. This was expected because the optimal

methods automatically searched for the appropriate disease model; in contrast, the regular

Omnibus-Fisher assumed that G, M and E were all causal factors. Thus, when the simulation

matched the assumption of the regular version method, they performed better than the opti-

mal version and vice versa. However, when G and M were causal factors, no methods were

consistently better than another. Furthermore, similar patterns were observed, when evaluated

using the samples with G and E correlated (Fig 3). Since the causal SNPs in G were correlated

with E, GM causal was equivalent to G, M and E causal. Note that the usual Fisher’s method is

not included in Fig 3 because of its inflated Type I error rate with correlated data.

Results of childhood asthma in Puerto Ricans

We used the proposed optimal Omnibus-Fisher statistic and its regular version to analyze the

Puerto Rican childhood asthma data from WBCs for associations between asthma status and

14,808 genes with all SNPs, DNA methylation markers, and gene expression, with adjustment

for age, gender and first two principal components calculated based genotypes. In addition,

Integrative association method for omics data
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batch effect and cell type composition were also adjusted for DNA methylation and RNA

sequencing data. We found that ZPBP2 was the most significant gene from both optimal

(P = 1.40×10−5) and regular (P = 3.39×10−5) Omnibus-Fisher tests, although it didn’t reach a

Bonferroni corrected significance level (P = 3.38×10−6) (Fig 4). The ZPBP2 region from chro-

mosome 17q21 has been consistently replicated as an asthma-susceptibility locus across

diverse ethnic groups [18–28] including Puerto Ricans [29] and this region regulates its gene

Fig 1. QQ plot of the p-values. A 95% pointwise confidence band (gray area) was computed under the assumption that the p-values were drawn independently from a

uniform [0, 1] distribution. (A) Independent G, M and E; and (B) G and E correlated.

https://doi.org/10.1371/journal.pgen.1008142.g001

Table 1. Simulated Type I error rates based on 10,000 datasets.

Significance level Optimal Omnibus-Fisher Omnibus-Fisher Usual Fisher

Independent G, M and E with binary traits
0.05 0.0521 0.0516 0.0522

0.01 0.0100 0.0109 0.0108

0.001 0.0015 0.0015 0.0015

Independent G, M and E with continuous traits
0.05 0.0483 0.0472 0.0478

0.01 0.0088 0.0095 0.0095

0.001 0.0007 0.0009 0.0009

G and E correlated with binary traits
0.05 0.0488 0.0526 0.0675

0.01 0.0089 0.0107 0.0161

0.001 0.0010 0.0015 0.0029

G and E correlated with continuous traits
0.05 0.0525 0.0509 0.0655

0.01 0.0093 0.0096 0.0166

0.001 0.0005 0.0011 0.0029

https://doi.org/10.1371/journal.pgen.1008142.t001
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expression in Puerto Ricans [30]. In a meta-analysis of GWAS in Puerto Ricans [29], the only

region associated with asthma was the ZPBP2 locus and the current genotypic dataset was ana-

lyzed as a part of the data. This gene could be served as a positive control in asthma genetic

studies. In the optimal Omnibus-Fisher test, the significance of ZPBP2 as well as GSDMB was

mainly driven by their genetic effect (P = 2.89×10−6 for ZPBP2 and 2.36×10−6 for GSDMB).

Fig 2. Power comparison for the scenario of independent G, M and E. (A) Binary trait at α = 0.05; (B) Binary trait at α = 0.01; (C) Continuous trait at α =

0.05; and (D) Continuous trait at α = 0.01.

https://doi.org/10.1371/journal.pgen.1008142.g002
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Moreover, five additional genes (KAT2A, HIST1H1C, NFRKB, C14orf178 and ZNF213-AS1)

were suggestively associated with asthma (P< 0.0001 [Table 2]) from the regular Omnibus-

Fisher test. Of these genes, KAT2A had moderate effects for SNPs, DNA methylation, and

RNA expression separately, which could be overlooked by a single type of data analysis. The

Fig 3. Power comparison for the scenario of G and E correlated. (A) Binary trait at α = 0.05; (B) Binary trait at α =

0.01; (C) Continuous trait at α = 0.05; and (D) Continuous trait at α = 0.01.

https://doi.org/10.1371/journal.pgen.1008142.g003
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results also indicate that the optimal Omnibus-Fisher test was more powerful than its regular

version when the significance was driven by one type of data. Conversely, when statistical sig-

nificance was driven by two or three types of data, the regular Omnibus-Fisher had overall bet-

ter power than the optimal version. These observations were generally consistent with the

Fig 4. –log10(p-values) of the association between 14,808 genes and asthma status in WBCs. (A) The optimal Omnibus-Fisher test and (B) the regular

Omnibus-Fisher test. The blue line is the suggestive significance level, 1×10−4, and the red line is the stringent Bonferroni-corrected significance level,

P = 3.38×10−6.

https://doi.org/10.1371/journal.pgen.1008142.g004
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simulation results. Here, the optimal Omnibus-Fisher test does not outperform its regular ver-

sion that assumes all types of omics data are in the disease model. Since only three types of

omics data were analyzed in this study, it was still fine to assume they all were in the disease

model. However, when more omics data are analyzed, the optimal test could be more useful

than simply assuming all types of data are causal. We additionally output the p-value correla-

tion for each gene across the whole genome (S1 Fig): 1. between SNPs and DNA methylation

markers, 2. between SNPs and expression genes, and 3. between DNA methylation markers

and expression genes.

Analysis of the WBC genome-wide data with 1,116 samples and 14,808 genes took ~108.8

hours on a single computing node with a 3 GHz CPU and 4 GB memory. Using a computer

cluster with multiple nodes, we anticipate that genome-wide data analysis should be finished

within hours using our proposed methods.

Discussion

In this work, we developed an Omnibus-Fisher statistic using a kernel machine (KM) regres-

sion framework, which can be employed to test overall gene-level significance by combining

separate p-values of association testing for a disease and SNPs, methylation markers, and

expression genes, accounting for correlation between omics data. The separate p-values are

calculated by gene-based KM regression. The gene-based analysis methods can improve power

by testing a set of variants jointly and by reducing the multiple testing penalty. In addition, the

method using a gene as the unit can easily combine different types of omics data that are

mapped to the same gene and thus easily interpret the results. Since we do not know the exact

disease model in reality, the extended optimal Omnibus-Fisher test can account for all possible

disease models. Moreover, our proposed tests can be applied to either samples with all three

types of omics data or with one or two types. In other words, samples with incomplete data

can still contribute to the test statistic. The information about whether the different types of

omics data are from the sample can also be accounted.

In the simulation studies, we showed that using a usual Fisher’s method on correlated

omics data results in an inflated Type I error rate, while the modified Fisher’s method, Omni-

bus-Fisher, had the correct Type I error rate because it considered the omics data correlation

in the model. The Omnibus-Fisher method achieves better power performance compared to

its optimal version when the true disease model involves all of SNPs, RNA expressions and

DNA methylations. On the other hand, the optimal Omnibus-Fisher method has better power

than its regular version assuming all types of data are causal when only one type of data is

Table 2. Genes with P< 1×10−4 from the optimal or regular Omnibus-Fisher tests for the asthma status analysis in WBCs.

P-values

Genes Chr

Optimal Omnibus-Fisher Regular Omnibus-Fisher Gene-level SNP Gene-level

Methylation

Gene-level RNA expression

ZPBP2 17 1.40×10−5 3.39×10−5 2.89×10−6 0.1071 0.6728

GSDMB 17 2.00×10−5 1.67×10−4 2.36×10−6 0.8816 0.6153

KAT2A 17 7.00×10−4 8.06×10−5 0.0102 0.0047 0.0127

HIST1H1C 6 1.90×10−4 5.65×10−5 0.2343 0.0109 2.00×10−4

NFRKB 11 4.00×10−4 9.25×10−5 0.0086 4.76×10−4 0.1779

C14orf178 14 7.00×10−5 5.13×10−5 0.1012 2.30×10−5 0.1757

ZNF213-AS1 16 0.0020 7.25×10−5 3.57×10−4 0.0688 0.0197

https://doi.org/10.1371/journal.pgen.1008142.t002
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actually causal. Our real data study also shows that the regular Omnibus-Fisher test has better

power than the optimal test, when two or three types of data contribute to the combined p-

value. Because we only consider three types of omics data in this study, assuming they all are

causal could be still acceptable. However, when more omics data are analyzed, we believe that

the optimal test would be more powerful for most genes than simply assuming all types of data

are causal. Nevertheless, both the optimal and regular Omnibus-Fisher tests are able to detect

genes with moderate separate effects, which could be overlooked by single type of data

analyses.

Although the optimal Omnibus-Fisher test uses perturbation to consider the correlation

between omics data and search for the optimal disease model, the genome-wide data analysis

could be completed within hours using multiple CPUs (e.g., one CPU for each chromosome).

We adapt a stepwise manner to implement perturbation (e.g., more iterations for smaller p-

values) so as to save computation times when calculating large p-values. Thus, the majority of

the computation time is used by genes with small p-values. However, if a large number of

genes are highly associated with the phenotype, the optimal test may be infeasible due to

computational intensity. In such case, the regular test is recommended. Although the regular

test also involves resampling technique to calculate covariances between different types of

omics data, it only requires a small number of resampling (e.g., the default setting is 200

times).

Our method framework is general and flexible. Both continuous and binary traits for inde-

pendent samples can be analyzed. Covariates can be easily incorporated into the model and

different covariates can be used for different omics data. The regular and optimal version of

Omnibus-Fisher algorithms were implemented in R (http://www.r-project.org) and the R

package (https://cran.r-project.org/web/packages/OmnibusFisher/index.html) is available.

Materials and methods

KM Regression for testing gene-level effects of SNPs, DNA methylation

and RNA expression

We used KM regression to calculate the gene-level p-values for association testing of a disease

and SNPs, methylation markers, and expression genes. First, we test the effect of SNPs. Let

there be n subjects with q genetic variants. The n × 1 vector of the continuous trait y follows a

linear model:

y ¼ Xβþ Gγþ ε;

when the phenotypes are binary, y follows a logistic model:

logit Pðy ¼ 1Þ ¼ Xβþ Gγ

where X is an n × p covariate matrix, β is a p × 1 vector containing parameters for the fixed

effects (an intercept and p– 1 covariates), G is an n × q genotype matrix for the q genetic vari-

ants of interest where an additive genetic model is assumed (i.e., coded as 0, 1, or 2 represent-

ing the copies of minor alleles) for illustration, γ is a q × 1 vector for the random effects of the

q genetic variants, and ε is an n × 1 vector for the random error. The random effect γj for vari-

ant j is assumed to be normally distributed with mean zero and variance τwj; thus, the null

hypothesis H0: γ = 0 is equivalent to H0: τ = 0, which can be tested with a variance component

score test [17] in the mixed model. The random variable ε is assumed to be normally
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distributed, and is uncorrelated with γ:

γ � Nð0; tWÞ

ε � Nð0; s2

EIÞ;

where W is a predefined q × q diagonal weight matrix for each variant and may use W = I

when lacking of prior information, and s2
E is the error variance.

Following the same rationale as in the derivation of the SKAT score statistic [31–33], the

test statistic is:

Q ¼ ðy � Xβ̂Þ0GWG0ðy � Xβ̂Þ=ŝ2

E;

when phenotypes are continuous, and

Q ¼ ðy � μ̂Þ0GWG0ðy � μ̂Þ

when phenotypes are binary, where β̂ is the vector of estimated fixed effects of covariates

under H0 and μ̂ ¼ logit� 1ðXβ̂Þ.
Under the null hypothesis, the linear model is y = Xβ + ε, and the estimates are

Σ̂ ¼ ŝ2

EI ¼ varðy � Xβ̂ÞI

β̂ ¼ ðX0XÞ� 1X0y

P0 ¼ I � XðX0XÞ� 1X0;

the logistic model is logit P(y = 1) = Xβ, and the estimates are

Σ̂ ¼ diagðμ̂ � ð1 � μ̂ÞÞ

β̂ ¼ ðX0Σ̂ � 1XÞ� 1X0Σ̂ � 1y

P0 ¼ Σ̂ � Σ̂XðX0Σ̂XÞ� 1X0Σ̂:

The statistic Q is a quadratic form and follows a mixture of chi-square distributions under

H0. Thus,

Q �
Pq

i¼1
liw

2

1;i;

where λi are the eigenvalues of the matrix P0
1
2GWG0P0

1
2 [34] for both continuous and binary

traits. The p-values can be calculated by numerical algorithms, such as Davies’ method [35]

and Kuonen’s saddlepoint method [36], which are both included in the R package.

Analogously, the gene-level effects of DNA methylation markers and expression genes can

be tested by replacing Gγ with Mρ and Eη, M is an n × k matrix for the k methylated loci, ρ is a

k × 1 vector for the random effects of the k methylated loci, E is an n × g matrix for the RNA

expression, and η is a g × 1 vector for the random effects of the RNA expression. When using

microarray platform, multiple probes could map to the same gene and each probe has an

expression value, which result in more than one expression value for one gene. Here, g is the

number of probes for one gene. When using RNA sequencing platform, one gene can always

have one expression value (i.e., E is an n × 1 vector and η is a scalar), although it is also possible

to obtain the transcript (i.e., isoform) level expression values. The null hypothesis is ρ = 0 for
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testing DNA methylation markers and η = 0 for testing expression genes. It is worth to note

that all three models can have the same or different null models.

Modified Fisher’s method (Omnibus-Fisher) for combining gene-level

effects of SNPs, DNA methylation and RNA expression

In order to have one single p-value to represent the significance of a gene, we propose an

approach to test if the trait is associated with any SNP, DNA methylation marker, and RNA

sequencing variant. This could help researchers to screen out potentially interesting genes.

Thus, after obtaining the three p-values for SNPs, DNA methylation markers, and expression

genes, respectively, we used a modified Fisher’s method [37] to combine the three p-values to

one. In Fisher’s method, let pi (i = 1, 2,. . ., w) be independent p-values obtained from n
hypothesis tests. Under the null hypothesis that p-values follow a Uniform(0, 1) distribution,

the combined test statistic is equal to T ¼ � 2
Pw

i¼1
lnðpiÞ that follows w2

2w. However, within a

gene, these p-values are correlated, thus the generalized Fisher’s method cannot be used

directly. To address this issue, we consider a Satterthwaite approximation by approximating a

scaled T statistic with a new chi-square distribution [38].

cT � w2

v; where c ¼
v

EðTÞ
; v ¼ 2

½EðTÞ�2

VarðTÞ
;

EðTÞ ¼ Eð� 2
Pw

i¼1
lnðpiÞÞ ¼ 2w and

VarðTÞ ¼ varð� 2
Pw

i¼1
lnðpiÞÞ ¼ 4wþ 2

P
i<jcovð� 2lnðpiÞ; � 2lnðpjÞÞ

where w = 3 for SNPs, DNA methylation markers, and expression genes. The covariance part

takes the correlations of p-values into account and can be empirically estimated by perturba-

tions. The perturbation details are described in the following section.

Optimal test for the gene-level effects of SNPs, DNA methylation and RNA

expression, using perturbations with p-values from the Omnibus-Fisher

method as inputs

If the disease risk only depends on SNPs and the model with SNPs, DNA methylation markers,

and expression genes is used, then the testing power will lose. Since in reality we do not know

the underlying true disease model (e.g., only SNP effect, both SNP and RNA variant effects, or

all SNP, RNA variant, and DNA methylation marker effects; totally 7 combinations), it is diffi-

cult to choose the correct model. Thus, it is desirable to develop a method accommodating all

possible disease models to maximize power. This can be achieved by using the minimum p-

value of all possible models (7 combinations) as a new test statistic. Then, perturbation can be

used to calculate the final p-value.

The perturbation-based approach was described in Wu et al. [39]. For continuous pheno-

types, with large n, under H0 the ðy � Xβ̂Þ=ŝE are approximately standard normal. Then each

Q ¼ ðy � Xβ̂Þ0GWG0ðy � Xβ̂Þ=ŝ2
E is essentially comprised of a vector of standard normal var-

iables sandwiching a square matrix. Thus, we can perturb each Q by replacing ðy � Xβ̂Þ=ŝE

with a new, common vector of normal values to generate new score statistics. Following a simi-

lar procedure as described in Urrutia et al. [40]:

1. Calculate the p-values for SNPs (G), DNA methylation (M) and RNA expression (E) sep-

arately (i.e., pð0ÞG ; p
ð0Þ

M , and pð0ÞE ) by KM regression.
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2. For l 2 {G, M and E}, compute Λl = diag(λl,1,� � �,λl,ml), and Vl = [vl,1,� � �,vl,ml] where λl,1�

λl,2�� � �� λl,ml are the ml positive eigenvalues of P0l
1
2DlWlD

0

lP0l
1
2 with corresponding eigenvec-

tors vl,1,� � �,vl,ml, where Dl 2 {omics data matrices G, M and E}. For example, the aforemen-

tioned P0
1
2GWG0P0

1
2 is for G.

3. Generate rðbÞ ¼ ½rðbÞ1 ; � � � ; rðbÞn �
0
with each rðbÞj � Nð0; 1Þ. This indicates that one subject

has one rðbÞj . If the subject has all G, M and E, the same rðbÞj will be used for G, M and E, respec-

tively. Thus, whether G, M and E come from the same subjects or different subjects are

considered.

4. For l 2 {G, M and E}, rotate r(b) using the eigenvectors to generate rðbÞl ¼ V0lr
ðbÞ.

5. Compute QðbÞl ¼ rðbÞ
0

l Λlr
ðbÞ
l for each l and obtain a corresponding p-value, pðbÞl .

6. Repeat (3)-(5) B times to obtain pð1ÞG ; p
ð2Þ

G ; � � � ; p
ðBÞ
G ; p

ð1Þ

M ; p
ð2Þ

M ; � � � ; p
ðBÞ
M and pð1ÞE ; p

ð2Þ

E ; � � � ; p
ðBÞ
E

for some large number B.

7. Calculate the covariance between pG, pM and pE by using pðbÞG ; p
ðbÞ
M , and pðbÞE for b 2 {0,

1,. . ., B}.

8. Calculate the joint p-values of SNPs, DNA methylation and RNA expression (i.e., for b 2
{0, 1,. . ., B}, pðbÞGM; p

ðbÞ
GE; p

ðbÞ
ME, and pðbÞGME) by Omnibus-Fisher considering p-values covariance.

9. For l� 2 {G, M, E, GM, GE, ME, and GME}; b 2 {0, 1,. . ., B}, set pðbÞ ¼ min1�l��L�p
ðbÞ
l� .

10. The final p-value for significance is estimated as

p ¼ B� 1
XB

b¼1

IðpðbÞ � pð0ÞÞ

Simulation studies

Pools of haplotypes, DNA methylation markers, and expression genes. For the pool of

haplotypes, we simulated 10,000 haplotypes over a 200-kb region generated by the calibrated

coalescent model [41], mimicking the European ancestry linkage disequilibrium (LD) struc-

ture. For the pool of DNA methylation, 689 samples with 8,557 CpG sites in chromosome 22

were extracted from an epigenome-wide association study of rheumatoid arthritis [42]. The

DNA methylation data were generated using the Illumina 450K methylation array. For the

pool of RNA expression, 142 samples with 327 genes in chromosome 22 were extracted from

an expression continuous trait loci (eQTL) study [30]. The RNA expressions were assessed

using the Illumina HT-12 microarray.

Simulation settings. We simulated two main settings: 1. G, M and E are independent

with each other and 2. G and E are correlated, but independent with M. In each of the two

main settings, we considered both continuous and binary traits. We evaluated the type I error

rate by assuming the simulated phenotypes were independent with G, M and E, and evaluated

the power performance by assuming the simulated phenotypes were dependent with (1) G; (2)

G and M; or (3) G, M and E. Thus, we had the scenarios for G, M and E are independent: (1.1)

continuous traits and no causal factors (denoted as null-c-ind), (1.2) continuous traits and G is

causal (denoted as causal-G-c-ind), (1.3) continuous traits and G and M are causal (denoted as

causal-GM-c-ind), (1.4) continuous traits and G, M and E are causal (denoted as causal-GME-

c-ind), (1.5) binary traits and no causal factors (denoted as null-b-ind), (1.6) binary traits and

G is causal (denoted as causal-G-b-ind), (1.7) binary traits and G and M are causal (denoted as

causal-GM-b-ind), and (1.8) binary traits and G, M and E are causal (denoted as causal-GME-

b-ind); and we had the scenarios for G and E are correlated: (2.1) continuous traits and no

Integrative association method for omics data
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causal factors (denoted as null-c-cor), (2.2) continuous traits and G is causal (denoted as

causal-G-c-cor), (2.3) continuous traits and G and M are causal (denoted as causal-GM-c-cor.

When the causal SNPs in G are correlated with E, GM causal is similar to GME causal), (2.4)

binary traits and no causal factors (denoted as null-b-cor), (2.5) binary traits and G is causal

(denoted as causal-G-b-cor), and (2.6) binary traits and G and M are causal (denoted as

causal-GM-b-cor). As shown in S2 Fig, we first simulated the scenarios of binary traits with

causal factors.

Simulation of (1.6) causal-G-b-ind, (1.5) null-b-ind, (1.2) causal-G-c-ind and (1.1) null-

c-ind. First, we simulated the scenario of (1.6) causal-G-b-ind. Following the flow in S3 Fig,

we simulated 50 SNPs, 5 methylated sites and 1 RNA expression for one sample. Then, the

phenotype for sample i was generated via the model:

logit Pðyi ¼ 1Þ ¼ � 2:94þ 0:001Xi1 þ 0:001Xi2 þ
X5

j¼1
0:3Gij

where -2.94 = log(0.05/0.95) indicates the disease prevalence is 0.05; Xi1 is a continuous covari-

ate generated from a normal distribution with a mean of 20 and a standard deviation of 1; Xi2

is a binary covariate generated from a Bernoulli distribution with a probability of 0.5; Gi1,

Gi2,. . .,Gi5 are the genotypes of randomly selected causal SNPs. We saved the first 500 cases

and 500 controls to form a dataset, and we simulated 1,000 such datasets (S3 Fig).

After obtaining (1.6), we permuted the binary traits 10 times for each of the 1,000 (1.6) data-

sets to get 10,000 datasets for the scenario of (1.5) null-b-ind (S2A Fig). Furthermore, we used

the same G, M and E data as generated in (1.6) to simulate 1,000 sets of continuous phenotypes

for (1.2) causal-G-c-ind (S2A Fig) via the following model:

yi ¼ 0:001Xi1 þ 0:001Xi2 þ
X5

j¼1
0:3Gij þ εi

where Xi1, Xi2 and Gij are the same as described above; εi follows a standard normal distribu-

tion. We further permuted the continuous traits 10 times for each of the 1,000 (1.2) datasets to

get 10,000 datasets for the scenario of (1.1) null-c-ind (S2A Fig).

Simulation of (1.7) causal-GM-b-ind and (1.3) causal-GM-c-ind. To simulate (1.7)

causal-GM-b-ind, we followed a similar procedure to simulating (1.6) causal-G-b-ind via the

model:

logit Pðyi ¼ 1Þ ¼ � 2:94þ 0:001Xi1 þ 0:001Xi2 þ
X5

j¼1
0:2Gij þ

X2

j¼1
0:9Mij

where Xi1, Xi2 and Gij are the same as described above; Mi1 and Mi2 are the randomly selected

causal methylated sites. We further used the same G, M and E data as generated in (1.7) to sim-

ulate 1,000 sets of continuous phenotypes for (1.3) causal-GM-c-ind (S2A Fig) via the follow-

ing model:

yi ¼ 0:001Xi1 þ 0:001Xi2 þ
X5

j¼1
0:2Gij þ

X2

j¼1
0:9Mij þ εi

Simulation of (1.8) causal-GME-b-ind and (1.4) causal-GME-c-ind. Similarly, (1.8)

causal-GME-b-ind and (1.4) causal-GME-c-ind were simulated via the following models for
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binary and continuous traits respectively:

logit Pðyi ¼ 1Þ

¼ � 2:94þ 0:001Xi1 þ 0:001Xi2 þ
X5

j¼1
0:2Gij þ

X2

j¼1
0:9Mij þ 1ðEi � 7:45Þ

yi ¼ 0:001Xi1 þ 0:001Xi2 þ
X5

j¼1
0:2Gij þ

X2

j¼1
0:9Mij þ 1ðEi � 7:45Þ þ εi

where Xi1, Xi2, Gij and Mij are the same as described above; Ei is the RNA expression and 7.45

is the global mean of RNA expression in the pool.

Finally, all the scenarios in the setting of assuming G and E are correlated (i.e., (2.1) ~ (2.6))

were simulated in the analogous ways to the first setting and used the same models. The only

difference is that one causal SNP in the gene is correlated with its RNA expression:

E�i ¼ Ei þ Gi1

where Ei is the aforementioned RNA expression used in the setting of G, M and E indepen-

dent, Gi1 is the first causal SNP in the simulated gene, and E�i is the RNA expression used in

the setting of G and E correlated. We compared the optimal test (optimal Omnibus-Fisher) of

G, M and E with the Fisher’s method combing G, M and E either considering covariance

(Omnibus-Fisher) or not (usual Fisher’s method).

Studies of childhood asthma in Puerto Ricans

Genetic variants. Subject recruitment and study procedures have been described in detail

[43, 44]. In brief, 449 children ages 6–14 yrs were recruited from schools in Hartford (CT)

from 09/03 to 07/08. From 03/09 to 06/10, 678 children ages 6–14 yrs were recruited in San

Juan (Puerto Rico) using a multistage probabilistic sampling design [45]. At each study site,

Fig 5. The omics data distribution in the Puerto Rican childhood asthma dataset.

https://doi.org/10.1371/journal.pgen.1008142.g005
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there were no significant differences in age, sex, or area of residence between eligible children

whose parents did or did not agree to participate. At both sites, the main recruitment tool was

a screening questionnaire on the child’s respiratory health and PR ancestry. We selected case

children with physician-diagnosed asthma and wheezing in the prior year. All children had

four PR grandparents. The genotypes were coded as 0, 1 and 2 indicating the number of rare

allele copies. The imputation was performed on Michigan Imputation Server [46] with HRC

r1.1 2016 [47] as the reference genome.

Epigenetic variants. Children with and without asthma (aged 9–20 years) were recruited

in San Juan (PR) from February 2014 to May 2017, using a similar approach to that used in a

previous study [48]. Whole-genome methylation assays were performed using HumanMethy-

lation450 BeadChips (Illumina, San Diego, CA), and M-values were used in all downstream

analyses. RNA-Seq was performed with the Illumina NextSeq 500 platform, paired-end reads

at 75 cycles, and 80M reads/sample; reads were aligned to reference human genome (hg19)

[49] and TPM (Transcripts Per Kilobase Million) were used as proxy for gene expression level.

In summary, we acquired multiple-dimensional data from microarray platforms for SNP

genotyping and DNA methylation from white blood cells (WBCs), and RNA sequence data

from WBCs in PR children. 10,994,111 imputed and genotyped SNPs with no missing geno-

types were selected and they were assigned to 22,332 genes. 368,529 methylated sites with M

values were selected and they were assigned to 20,596 genes. 16,188 genes with average TPM

value greater than 0.05 were included for RNA expression. In the final analysis, we used the

14,808 genes with all SNP, DNA methylation and RNA expression information, and 1,116 sub-

jects. Note that 471 out of the 1,116 subjects have all three types of omics data (Fig 5).
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