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Characterizing epileptogenic zones EZ (sources responsible of excessive discharges) would assist a neurologist during epilepsy
diagnosis. Locating efficiently these abnormal sources among magnetoencephalography (MEG) biomarker is obtained by
several inverse problem techniques. These techniques present different assumptions and particular epileptic network
connectivity. Here, we proposed to evaluate performances of distributed inverse problem in defining EZ. First, we applied an
advanced technique based on Singular Value Decomposition (SVD) to recover only pure transitory activities (interictal
epileptiform discharges). We evaluated our technique’s robustness in separation between transitory and ripples versus
frequency range, transitory shapes, and signal to noise ratio on simulated data (depicting both epileptic biomarkers and
respecting time series and spectral properties of realistic data). We validated our technique on MEG signal using detector
precision on 5 patients. Then, we applied four methods of inverse problem to define cortical areas and neural generators of
excessive discharges. We computed network connectivity of each technique. Then, we confronted obtained noninvasive
networks to intracerebral EEG transitory network connectivity using nodes in common, connection strength, distance metrics
between concordant nodes of MEG and IEEG, and average propagation delay. Coherent Maximum Entropy on the Mean
(cMEM) proved a high matching between MEG network connectivity and IEEG based on distance between active sources,
followed by Exact low-resolution brain electromagnetic tomography (eLORETA), Dynamical Statistical Parametric Mapping
(dSPM), and Minimum norm estimation (MNE). Clinical performance was interesting for entire methods providing in an
average of 73.5% of active sources detected in depth and seen in MEG, and vice versa, about 77.15% of active sources were
detected from MEG and seen in IEEG. Investigated problem techniques succeed at least in finding one part of seizure onset
zone. dSPM and eLORETA depict the highest connection strength among all techniques. Propagation delay varies in this range
[18, 25]ms, knowing that eLORETA ensures the lowest propagation delay (18 ms) and the closet one to IEEG propagation delay.

Major feature that may predispose advantages of MEG
on EEG is the fact that MEG requires less detail about corti-

Diagnosis of neurologic disease is oriented now days, into
exploring noninvasive modalities as electroencephalography
(EEG) and magnetoencephalography (MEG) techniques [1].
In fact, EEG and MEG recordings allow high time and space
precision in featuring brain function and dysfunction espe-
cially in epilepsy diagnosis.

cal tissue in order to define sources and epileptic seizure [2].
Hence, and despite its cost, neurologist and biomedical
researchers are using MEG as a complementary way to diag-
nosis epilepsy. Especially, for pharmacoresistant one to
manage placement of intracranial EEG (as intracerebral
EEG), to overcome and limit surgical intervention [3].
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Pharmacoresistant epilepsy requires a highly space precision
to define epileptogenic zones (EZ) [4, 5] which would be
restricted through a surgical intervention. Alternatively, sev-
eral cerebral regions could be implicated, either as propaga-
tion areas or as generator of epileptic discharges [6].
Therefore, neurologists rely on network connectivity of
MEG hallmark signals (high frequency oscillations (HFO),
gamma oscillations [7], ripples, and transitory activities
[4]) in order to detect accurate EZ [8]. However, these activ-
ities (transitory and oscillatory) are mutually contaminated
due to overlap in time frequency plane [9]. Defining effi-
ciently, their spatiotemporal features is a fragile task, espe-
cially, using a classical band pass filter which generates
spurious oscillations and false ripples [9]. This would affect
obviously accurate definition of cortical malformation [10]
and build-up of a seizure. In a previous work, we proposed
and evaluated performances of several filtering techniques
in separation between transient and oscillatory activities
(matching pursuit (MP), finite impulse response filter
(FIR), and stationary wavelet transform (SWT)) [11, 12],
to recognize build-up seizure and EZ [5, 13].

Here, we suggest to evaluate robustness of an advanced
methods based on Singular Value Decomposition (SVD)
technique [14] in recovering pure epileptic transitory activi-
ties none contaminated by gamma oscillations among MEG
signals. An advanced method of rebuilding pure interictal
epileptiform discharges is based on a decomposition algo-
rithm of transitory events generating suited basis. We pro-
jected our studied signal on these transitory bases, followed
by a thresholding step (applied on resulting transitory com-
ponent). Finally, a recovery phase is applied that reassembles
only accurate selected components (transitory one) [15].

In this study, we simulated a signal with five different
time transitory occurrences, depicting intermingled tran-
sient and ripple events for different frequency and signal to
noise ratio. Our simulated data present both epileptic bio-
markers (separated, overlapped, and fully overlapped) in
respect with morphological and spectral features of realistic
data. These simulated data will be an efficient solution to
evaluate the separation between epileptic biomarkers and
recognizing pure cortical generators.

We calculated reconstruction’s goodness of fit GOF on
behalf of the frequency range of ripples, transitory time
occurrence, and SNR. We evaluated robustness of our
advanced technique, through recognition and automatic
detection of pure interictal epileptiform discharges using
topography maps and precision measures among MEG sig-
nals. After validating our proposed separating technique’s
robustness in detecting and recovering pure epileptic transi-
tory events, we proceeded in defining their network connec-
tivity and confronting with IEEG networks.

The second aspect is about locating actual generators of
pure interictal epileptiform discharges with source localiza-
tion methods. Reconstructed temporal dynamics of cerebral
regions of interest ROI (epileptic generators) is an efficient
way to inspect dynamics of epileptic network activations.
Thus, measuring connectivity using correlation, coherence,
and Directed Transfer Function (DTF) would estimate inter-
actions between different epileptic cortical regions [5]. In
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fact, MEG source connectivity is extensively studied to delin-
eate functional brain networks at cortical level and epileptic
networks (locate EZ by investigating neural networks of
excessive discharges). We proceed firstly, with a source local-
ization step by resolving forward and inverse problem. Sev-
eral methods of inverse problem are proposed in the
literature; each has its own advantages and disadvantages
that suit a specific situation and case of study. Indeed, there
are several solutions such as linear, distributed, instanta-
neous, and discrete solutions, which are able to locate active
sources. Here, we suggested studying and evaluating four
distributed inverse problem methods: MNE (Minimum
norm estimation), dSPM (Dynamical Statistical Parametric
Mapping), eLORETA (Exact low-resolution brain electro-
magnetic tomography), and cMEM (Coherent Maximum
Entropy on the Mean) to distinguish neural networks
involved in genesis of pure interictal epileptiform discharges.
MNE and eLORETA proved an excellent accuracy in locat-
ing deep sources. dSPM presented good timing and spatial
extent of language processes in epilepsy [16-18]. cMEM
demonstrated a high precision in spatially spread of epileptic
sources [19].

Finally, MEG epileptic networks are confronted to intra-
cerbral networks by nodes in common, connection strength,
distance of common nodes, recognition of seizure onset zone
SOZ, and average propagation delay.

Three keys component are investigated in our study:
capacity of recognition of pure transitory hallmark, evalua-
tion of 4 inverse problem methods using network connectiv-
ity, and confrontation of scalp effective connectivity to
intracerebral one. Three substudies are presented where we
describe in the first substudy the automatic detector of pure
transitory activities (pure neural epileptic transitory genera-
tor). In the second substudy, we applied 4 inverse problem
techniques to compute network connectivity of MEG transi-
tory events using cross-correlation measures. In the last part,
we investigated inverse problem performances by confront-
ing MEG network connectivity to invasive network connec-
tivity. Our obtained results could be considered a prognosis
to assist a neurologist during epilepsy diagnosis to recognize
EZ.

2. Materials and Methods
2.1. Materials

2.1.1. Simulation. We simulated a dataset inspired from real
preprocessed MEG signals, validated by an experienced clin-
ical neurophysiologist, with a sampling frequency equal to
1024Hz. We produced patterns with a mixture between
transitory and gamma oscillatory activities (both epileptic
biomarkers), intermingled with a noncortical brain artefacts
(ocular blink). Transitory activities are generated as a sum of
two gamma functions, applying the gampdf (x, g, b) function
in Matlab. Time variable in samples was adjusted as (a, b) to
(9.8, 3.9) in channel 1, (7.8, 2) in channel 2, (11.7, 3.9) in
channel 3, (11.7, 2) in channel 4, and (12.7, 2) in channel
5. Transitory amplitudes were equal to 10, with a uniform
distribution of fluctuation (from 10% to 25%). Oscillations
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TasBLE 1: Patient’s clinical background.

Structural magnetic resonance imaging

Patients Gender Age (brain anatomy and pathology)

Epilepsy surgery Treatment at the time of MEG recording

Right lateral occipitotemporal

! Female 17 Focal cortical dysplasias
2 Female 26 Normal
Left premotor
3 Female 25 Focal cortical dysplasias
4 Male 25 Right basal gcapltotemporal
Focal cortical dysplasias
5 Female 31 Right parietal ischemia

Right occipitotemporal

Right anterior temporal

Right parietal cortectomy

Phenytoin+lamotrigine+gabapentin

cortectomy
. Phenytoin+clobazam
Left occipitotemporal (20 mg/day)+carbamazepine+phenobarbital
cortectomy
(50 mg/day)

Left premotor cortectomy  Phenytoin+carbamazepine+levetiracetam

lobectomy Lamotrigine+pregabalin

Carbamazepine+levetiracetam+clonazepam
(1.5mg/day)

were procured as oscillatory pulses obtained by the gaus-
spuls (t, fc, bw) function of Matlab; with ¢ time, fc frequency
of oscillations which is set to 45, 55 65, 75, and 85 Hz; bw
fractional bandwidth equal to 0.15; and amplitude fluctua-
tions of 25% in channel 3 and 15% in channel 4. On the
other hand, we imposed a translation of ripple window
across transitory window with equal steps. Hence, our simu-
lation depicts transitory and ripples separated in time, over-
lapped, and fully overlapped [9]. We added a noise with a
physiologically plausible 1/f spectrum, from a neural mass
model [4]. SNR was calculated as 10xlog 10 (signal
energy/noise energy); then, we varied SNR in this range
[-5, 15, 20] dB. For each SNR value, we generated 100 reali-
zations. We simulated five channels where we varied transi-
tory time occurrences within equal steps across ripple time
window (between 200 and 250 ms).

Each channel presents a mixture of transitory and rip-
ples for a frequency range of [45, 55, 65, 75, 85] Hz. SNR
values, transitory time occurrence, and frequency ranges
affect directly the performances of reconstruction and auto-
matic detection of pure transitory events. To address this
issue, we evaluated the rate of pure epileptic transitory activ-
ities rebuilding in terms of SNR, transitory time occurrence,
and frequency range. In total, by changing these parameters,
we studied 7500 realizations (3 = SNR # 5 transitory time
occurrence * 5 frequency * 100 realizations). In these simu-
lated data, we produced signals respecting the same mor-
phological, time series, and spectral proprieties as MEG
signal, with 5 channels and 7500 trials of 300ms in order
to study robustness of our proposed advanced technique in
defining pure epileptic transitory generators.

2.1.2. Real Signal. Real explored signals were both MEG and
IEEG for five pharmacoresistant subjects. Acquisition and
preprocessing steps were applied in Clinical Neurophysiol-
ogy Department of La Timone hospital in Marseille, France.

Five pharmacoresistant patients are selected by an expert
neurologist (M.G.) depicting stable and frequent epileptic
transitory activities (interictal epileptiform discharges).
MEG signal was recorded on a 151-gradiometer system
(CTF Systems Inc., Port Coquitlam, Canada), with eyes
closed, no activation procedure nor movement. Sampling
frequency was set to 1025Hz, and 20 epochs of 5s were

recorded. Abundant transitory activities were registered that
predispose studying pure transitory activities as a biomarker
for epilepsy diagnosis as in [5]. Intracerebral EEG signals
were gathered as Talairach stereoscopic method [20], sam-
pled at 512Hz. Seven to 16 multicontact depth electrodes
(Alcis, Besancon, France) were implemented. Each electrode
has 0.8 mm of diameter and 10 to 15 contacts of 2 mm long.
Depth electrodes provide in total 70 to 128 measures. Clini-
cal, neurophysiological, and anatomical features of each
patient as in [5] were taken into consideration to designate
cerebral marks.

An Optima CT 660 system of the General Electric
Healthcare was used for the cerebral CT images, with
120kV, 230-270 FOV, 512 x 512 matrix, and 0.6 mm slice
thickness, without injection of contrast agents. Each CT scan
was reconstructed using the standard (H30) reconstruction
kernel to limit the level of streaks or flaring. For the MRI
examinations, a 1.5 T system (Siemens, Erlangen, Germany)
during the weeks before SEEG implantation was performed.
Used MRI protocol included at least T1-weighted gradient-
echo, T2-weighted turbo spin-echo, FLAIR images in at least
two anatomic planes, and a 3D-gradient echo T1 sequence of
4min, 16 seconds after gadolinium based contrast agents
(GBCA) injection.

Promptly, a postoperative computed tomography scan
and MRI were performed during the removal of depth elec-
trode to double check accurate coordinate.

Interpretation and time series analysis of IEEG recording
are achieved using bipolar montage. Patients signed informed
consent, and the Institutional Review board (IRB00003888)
of INSERM (IORG0003254, FWAO00005831) approved
the study. In Table 1, we gathered the patient’s clinical
background.

2.2. Methods. All simulated signals and signal processing
were applied using the MATLAB (MathWorks, Inc.) soft-
ware, Brainstorm, EEGlab [21], Fieldtrip toolbox, and LOR-
ETA software (free academic) [22].

2.2.1. Detection of Transitory Shapes. To detect transitory
activities among simulated and MEG signal, we proceeded
as in [21]. We applied, for each channel separately (since
transitory shape can change from a captor to another), a



high and a low thresholding step on amplitude distribution
Q, of 0.5, 0.75, and 0.25 percentile, as explained in

thry, = Qy5 +d(Qy75 — Qo.s)> (1)

thr; = Qp 5 — d(Qp 75 — Qps)- (2)

We imposed a 10 ms distance between two consecutive
peaks (inspired from trigging MEG epileptic transitory).
Hence, we obtained local peaks of transitory among simu-
lated and real data. We created transitory epochs around
peaks with respect to distance constraints between two con-
secutive activities (10 ms).

2.2.2. SVD. After automatic detection of transitory, we seg-
mented our database (simulated and MEG signal) in events
lasting 200 ms around detected peaks. Then, we performed
SVD on these epochs and for each channel consecutively
[14]. SVD is a preprocessing technique that creates a new
signal through a specific number of components [23] (gener-
ators of transitory and oscillatory shapes). We covered
thresholding steps to select only transitory components from
oscillatory ones. SVD of a given signal X is ¢ that verifies

X*xV=0U,

(3)

XxU=0V,

where X is a matrix with (m, n) dimension, U is n left singu-
lar vector, and V is m right singular vector. SVD of X is a
reduction of X to a bidiagonal matrix obtained through a
product between 2 orthogonal columns U, V. ) is a diagonal
matrix with a nonnegative value as defined in

X=UXV. (4)

Hence, we created a new basis by exploring only the first
three sum product of time U(t) and space V (s) components
as in Equation (5) (first three components have a transitory
shape that disappears from the fourth component and trans-
forms into oscillatory events).

T(t)= le Zuivi. (5)

The last step of transitory recovering is projecting our
original signal (simulated and MEG signal) on the new
obtained suited transitory basis [5].

2.2.3. GOF of Simulated Data. Goodness of fit (GOF) is a
measure that reflects our advanced filtering technique
robustness in reconstructing of pure transitory among orig-
inal signal composed of a mixture of oscillations (ripples,
HFO) and transitory [11, 24] events. GOF is a ratio between
pure transitory activities energy per original signal energy as
defined in Equation (6).

cop. 20050

= Y 6
Xx(t)* ©
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where x(t) is the original signal and x(t) is the recovered
pure transitory activity.

We computed GOF for 7500 realizations in order to
evaluate our advanced filtering technique efficiency in sepa-
ration between ripples and transitory for different SNR,
shapes, and frequency range.

For MEG signal, we added another preprocessing step
before applying our advanced filtering technique, which is
classification of epileptic transitory events based on its mor-
phology and guided by an expert neurologist.

2.2.4. Clustering MEG Transitory Activities. Epileptic transi-
tory events were selected from first run of MEG signal by an
expert neurologist (M.G.). Almost 50 events per patient were
detected; however, these epochs did vary in shape from one
channel to another as in [11]. Hence, we applied a clustering
step to classify these transitory events sharing the same spa-
tiotemporal shape (same active generators). A temporal
translation was applied to align transitory peaks; then, the
k-means algorithm was used for clustering [24]. An expert
neurologist imposed 2 clusters [25]. We proceeded in the
same way for the 5 studied patients as in [11].

2.2.5. Precision of Pure Transitory Automatic Detector. As in
[5, 11], an expert neurologist made a visual marking of epi-
leptic transitory activities on MEG signal. Then, we per-
formed automatic detection by our advanced technique
[25] on local peaks (Section 2.2.1). Finally, we calculated
precision P (see equation (7) to evaluate automated detector
performances).

P TP )
- TP+FP’

where TP is true positive, FP is false positive, and P is preci-
sion measure of a deviation between true and false values
[26]. To push ahead effectiveness of automatic epileptic
transitory recognition and detection, a second precession P
[27] was calculated on behalf a second guided human detec-
tion as in [13].

2.2.6. Topography of Recovered MEG Transitory Events. To
evaluate the capability of pure epileptic MEG transitory
reconstruction, we averaged all selected transitory activities
that belong to each cluster. Then, we compared topography
of original signal versus detectable pure transitory. Topogra-
phy maps were calculated on transitory event peaks. In fact,
topography maps illustrate two-dimensional representations
of multichannel on a scalp. Dipolar topography implies a
cerebral activity. However, a random activity could be a
result of noisy or induced noncortical activity depicting a
random phenomenon [28].

2.2.7. Source Localization of MEG Signal

(1) Forward Problem. Forward problem is a way to model
the head, obtained through analytical or numerical methods
as finite element method (FEM), boundary element method
(BEM), and finite difference method (FDM). As our skull
thickness is not homogeneous across the head, MRI is
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FIGURE 2: Detection of transitory activities: in blue simulated data: a mixture between transient and ripples, red circle is low and high

thresholding results to detect local peaks.

required to describe local conductivity properties. We
resolved forward problem as in [5], shaping a multiple-
sphere head model per subject. We used BrainVisa software,
for segmentation and meshing of cortex and scalp surfaces.
Finally, we adopted Brain storm toolbox on Matlab to regis-
ter MRI and sensors of each studied subject [29].

(2) Inverse Problem. In order to understand cerebral func-
tion and dysfunction, we should define accurate sources that
generate scalp measurement (MEG in our case) [30]. For
epilepsy, we identify responsible regions of excessive dis-
charges and build-up of a seizure (damaged cerebral tissue),
by solving the inverse problem of localization sources. Since
an inverse problem is a badly posed problem (different
sources may generate identical potential field), there is no
single solution. Hence, to reconstruct an efficient solution,
we have to test and apply different assumptions (neurophys-
iological, biophysical, and anatomical) and regularization
methods too. Dipolar source localization was explored as a
solution, but assumption about the number of used dipole
encourages researchers toward distributed techniques. These

methods mainly concern a configuration of 3D current
source solution grid with fixed positions. Moreover, distrib-
uted methods require only regularization parameters to limit
noise effect and balance obtained source configuration. We
choose to evaluate distributed inverse techniques since dipo-
lar solution is penalized by the null hypothesis of source
number. Moreover, it has been proved that MNE, dSPM,
eLORETA, and cMEM are quite efficient in studying epi-
lepsy and defining epileptogenic zones [31]. Next, we will
describe briefly four distributed inverse problem methods
(MNE, dSPM, eLORETA, and cMEM).

Minimum norm estimation (MNE) is proposed by [32];
it provides a unique solution of 3D current configuration
which matches studied signal within a minimum intensity
(smallest L2-norm). This assumption drowns deeper sources
since MNE emphasizes superficial sources. The MNE for-
mula is depicted in Expression 8.

Synp- GT (GGT +1C) ™' G, (8)
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and 20 dB (end of bars).

C is the noise covariance matrix, and A displays the reg- Dynamical Statistical Parametric Mapping (dSPM) is
ularization parameter. proposed by Dale et al. as another solution of the inverse
It is to remind that dSPM, eLORETA, and cMEM could  problem. Inspired from MNE, Dale et al. suggest a normali-
be considered as weighted solution of MNE (their formulais  zation based on a minimum norm estimate of the noise
based on MNE sources (Syng))- (obtained from MNE noise covariance matrix) of each
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source [33, 34]. dSPM is considered a least-squares or
weighted minimum norm solution, presented as

Sasem = WaspmSmne,

WﬁSPM = diag (SMNE CS{/INE)'

©)

Exact low-resolution brain electromagnetic tomography
(eLORETA) is proposed by Pascual-Marqui who introduced

eLORETA as a zero error localization inverse problem solu-
tion [35]. The eLORETA method is a standard type of MNE
with particular weights that use high space correlation
between active neurons. eLORETA is efficient in the pres-
ence of structured noise and in finding superficial and deep
sources too, considered an improvement over proposed
tomographies LORETA and sLORETA.

Coherent Maximum Entropy on the Mean (cMEM) is
demonstrated to be capable of finding hidden sources within
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FIGURE 7: Line 1 shows channel 25: a mixture of activities and rhythms and line 2 presents pure recovered transitory activities.

a spatial extent. cMEM is a standard MEM with a stable
location of clustering source in time domain, obtained by
an optimal single patch of cortex as a spatial front. MEM
is based on a probabilistic method approximating current
source intensities from studied data. Grova et al. and
Chowdhury et al. have extensively studied cMEM behaviour
in presence of realistic simulations of EEG and MEG data;
they assessed cMEM sensitivity to spatial generators extent.
cMEM has shown good precision and robustness in recon-
structing MEG sources of different sizes and depth [36, 37].

(3) Evaluation and Comparison of Inverse Solutions. After
head modelling of each patient, we applied four inverse
problem methods using Brainstorm toolbox solution. We
implemented investigated inverse methods on averaged pure
transitory events. Averaged pure transitory are obtained by
realigning events compared to global field power (GFP).
Then, we proceeded as in [5] to define active region as local
peaks of source activation film. We explored all resulted
local peaks as regions of interest ROI and nodes of connec-
tivity networks graphs. Inversion was resulted as a single sig-
nal for each considered active region ROL

Functional connectivity was estimated using cross-
correlation coefficients as in [5]. We imposed lags in this
range [-50, 50] ms, then we kept only the lag corresponding
to a maximum correlation; the lag sign is used to define link
directionality. Moreover, we applied a non-parametric
method (Surrogate data) to threshold graphs. 1000 surrogate
correlations realizations are generated and we retained only
the maximum across pairs for each realization. Finally we

TABLE 2: Precision of automatic detection and reconstruction of
pure epileptic transitory events.

Channels TP FP P

MLC14 194 28 87%
MLC15 187 32 85%
MLC33 201 46 81%
MLC43 198 38 83%

picked the threshold value from resulting histogram corre-
sponding to p=0.05. However, obtained ROI by MNE,
dSPM, eLORETA and cMEM proved differences in ampli-
tude and spatial extend and hence obtained functional con-
nectivity too. An essential question arises at this level:
which network connectivity is the most significant to assist
neurologists in designation of EZ or during pre-surgical
evaluation?

Simulation of brain connectivity could evaluate these
results, but it remains non-sufficient, in epilepsy due to com-
plexity of correlation and distribution between neurons.
Remain; intracerebral network connectivity of pure epileptic
transitory could be more decisive to validate epileptic MEG
network connectivity. Since IEEG can offer an exclusive
sequence of high spatiotemporal resolution and causal corti-
cal information essential in defining EZ.

We measured cross-correlation between epileptic transi-
tory sources (ROI as a node) for MEG connectivity. How-
ever, for IEEG connectivity graphs, we selected visually
exact contact of pure epileptic transitory. Then, we mea-
sured cross-correlation (as in MEG) between these contacts
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FiGURE 8: (a) Topography map on the peak of average original transitory; (b) topography map on the peak of average pure detected and
reconstructed transitory activity (patient 1). A dipolar configuration for second map reflects a cerebral source.

as nodes of IEEG graphs. We obtained networks depicting 7
to 15 nodes (depending on studied subject), illustrating
selected ROI (as potential source of pure epileptic transi-
tory). Each node could be connected to one or more nodes
within a link obtained from cross-correlation measure. Node
degree presents number of connections of actual node
toward the rest of nodes. Connection Strength illustrates
the amplitude of connection between nodes (cross-correla-
tion measures between active regions/nodes). Average Prop-
agation delay depicts average amount of time required for
excessive discharges to travel from a node to another one.

3. Results

3.1. Recovered Simulated Pure Transitory Events. In Figure 1,
we depict one realization for SNR = 10 dB of simulated data.
There is a mixture between transitory and ripples for differ-
ent levels of overlap and time occurrence of epileptic transi-
tory activities. We obtained 5 noisy channels; each one
presents an overlap between transient and ripples (with fre-
quency of 45Hz, 55Hz, 65 Hz, 75Hz, and 85Hz).

In Figure 2, we present transitory activity detection using
local peaks.

In Figure 3, we illustrate recovered pure transitory
among ripples of 85 Hz by projecting original signal on tran-
sitory basis obtained by our proposed advanced filtering
technique.

In Figure 4, we depict robustness of recovering noncon-
taminated transitory activities among ripples of 45, 55, 65,
75, and 85 Hz and for three SNR values of -5, 10, and 20 dB.

GOF is computed between original simulated transitory
and recovered pure transitory (noncontaminated by ripples).
Increasing frequency and SNR values improved the perfor-
mance of GOF. For low gamma, GOF is about 80%, which
reaches 90% of resemblance for 85Hz oscillations. For low
SNR, GOF would not exceed 60% of reconstruction; how-
ever, for 20 dB of SNR, the GOF reach 93% of resemblance.

These results (effect of frequency range and SNR on the
capacity of separation between transient and ripples activi-
ties) were in agreement with a previous work for other type
of electrophysiological signals [8, 11, 24, 38].

3.2. Recovered and Detected Pure Transitory among MEG
Signals. In Figure 5, we illustrate studied MEG signal
recorded on 151 captors (we highlighted only 31 captors).
MEG signal depicts three kinds of activity: oscillations (for
different rhythms), transitory, and patterns made-up of a
mixture between transitory and ripples (selected by an
expert neurologist).

In Figure 6, we present transitory activity clustering
results among MEG signals; two groups of transitory activi-
ties are eclectic. The first group is made of transitory events
from epochs 1 to 14; and the second cluster includes transi-
tory events from epochs 24 to 34. The first cluster has initi-
ated its start by a discharge state; however, the second cluster
has finished by a discharge.

In Figure 7, we delineate reconstructing pure epileptic
transient activities by projecting real signal on our suited
transitory basis. All transitory activities were successfully
recovered without oscillatory events: noncontaminated
interictal epileptiform discharges.

In Table 2, we gathered precision of automatic detection
and reconstruction of pure transient activities among four
channels (these MEG channels depict high occurrence of
epileptic transitory events according to expert neurologist).

Precision of automatic detection and reconstruction of
pure transient varies from 81% to 87%. These results are
very promising, in defining efficiently epileptogenic zone
EZ. In agreement with a null hypothesis, which supposes
epileptic transient, within a specific generators or sources.

In Figure 8, we depict topography map of averaged tran-
sitory events in the peaks timing (channel 25 presented in
Figures 7) before and after applying our routines of auto-
matic detection and reconstruction. Averaged pure epileptic
transitory shows dipolar topography that reflects an accurate
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eLORETA

FIGURE 9: Source localization of averaged pure epileptic MEG transitory using 4 inverse problem methods (cMEM, dSPM, MNE, and

eLORETA).

cerebral source responsible of excessive discharges. However,
topography map of averaged mixed transitory and ripples
display much random and complex activities that turned
the definition of responsible sources as a difficult and hard
task to explain physiologically. Hence, our advanced tech-
nique improved the characterization of excessive discharges
sources, since topography map of reconstructed-transitory
activities illustrates a dipolar activity (no further activation).
This result will lead to a better recognition and delineating
of accurate EZ.

3.3. Results of MEG Source Localization. In Figure 9, we
depict active region (local peaks of source activation film)
of pure transitory activities using MNE, dSPM, eLORETA,
and cMEM inverse problem methods.

eLORETA shows the highest number of active regions
ROI (about 15 ROI for patient 2) and the most spatially
extended ROI followed by MNE and dSPM (the order
between MNE and dSPM depends of studied patient). The
lowest active regions are obtained by cMEM. Moreover,
cMEM results were totally in concordance with MEM
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TaBLE 3: Nodes in common per patient and inverse problem methods.

11

Number of nodes

% of MEG nodes

% of IEEG nodes

Average propagation

Methods Patient in common $0Z confirmed by IEEG confirmed by MEEG delay in ms
1 2 Yes 22
2 0 No 21
MNE 3 2 Yes 74.6% 79.8% 20
4 0 Yes 25
5 1 No 22
1 2 Yes 20
2 1 Yes 19
eLORETA 3 3 Yes 78% 80.2% 23
4 2 Yes 18
5 4 Yes 21
1 1 No 22
2 2 No 25
dSPM 3 1 Yes 71.4% 75.4% 25
4 2 Yes 23
5 2 Yes 22
1 1 Yes 25
2 1 Yes 23
cMEM 3 1 Yes 70% 73.2% 23
4 1 Yes 19
5 1 Yes 21
MNE eLORETA
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F1GURE 10: Mean of connection strength between MEG and IEEG concordant nodes. The blue box illustrates the mean of MEG connection
strength, and the green box depicts the IEEG mean of MEG connection strength, for studied inverse problem methods and per subject. MEG
connection strength is higher than IEEG one; eLORETA and dSPM provide the highest connection strength. The red line defines the median
of connection strength that varies from one patient to another and through inverse techniques.
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and finally MNE methods.

performances studies [36, 37] that proved efficiency of MEM
techniques in detecting deepest sources.

After computing network connectivity of pure MEG epi-
leptic transitory and intracerebral EEG, we collect several
information in order to confront MEG networks with IEEG
ones. We detail common nodes as similar selected cortical
region or ROI obtained by both MEG and IEEG. We deter-
mine the ratio of detected IEEG nodes conformed in MEG
and vice versa. Finally, we checked if MEG nodes recognize
the region of Seizure On set Zone (SOZ) (from clinical
report).

In Table 3, we gathered concordant nodes, SOZ, and
nodes ratio detected by one modality and checked by second
modality of registration and vice versa and average propaga-
tion delay.

Number of nodes in common among MEG and IEEG
network connectivity of pure transitory clearly varies from
0 to 4. These common nodes define also a part of seizure
onset zone. eLORETA and cMEM provide with 100% of effi-
ciency at least one node of SOZ, followed by MNE and
dSPM, with only 60% of robustness in recognition of SOZ.
These concordant sources are an effective way to match non-
invasive modalities versus invasive-ones (IEEG versus
MEG). Furthermore, entire inverse techniques provided in
an average of 73.5% for nodes detected in depth and con-
firmed by MEG and vice versa about 77.15% of node
detected from MEG and seen in IEEG. We computed con-
cordant node mean of connection strength using mean of
absolute cross-correlation values represented in Figure 10.

There is 100% resemblance of concordant MEG and
IEEG node connection strength obtained by MNE for 2
patients, dSPM, eLORETA, and cMEM for 1 patient. These
results would reach four patients, when we analyze only con-
nection strength. Hence, dSPM and eLORETA promote the
propagation power of interictal epileptiform discharges due
to its high connection strength. MNE proved a better char-
acterization of connection strength between MEG and IEEG
concordant Sources of Interictal epileptiform discharges.

In Figure 11, we depict the median distance between
common MEG and IEEG nodes per studied inverse tech-
niques and per subjects.

In addition, eLORETA and cMEM offer the closet
sources to SOZ, since these concordant nodes define at least
one part of SOZ for entire studied patients. eELORETA pro-
vides the most accurate position of EZ.

4. Discussion and Conclusions

Our first assumption in illustrating EZ with high accuracy is
to study and source localize pure hallmark (pure transitory).
In fact, transitory events may be generated by specific
sources [9]. Hence, we validated firstly an advanced prepro-
cessing technique based on SVD to separate transitory from
ripples. Our evaluation of capability of separation on simu-
lated data was based on GOF, which reached 93% of resem-
blance for 85Hz and 20dB. For MEG signal, we used
topography maps to assess capacity of recognition and auto-
matic detection of transient using our advanced methods.
Our results were in concordance with previous works [8,
11, 24, 38]. In the second time, we proposed to estimate
robustness of four distributed inverse problem methods:
MNE, eLORETA, dSPM and cMEM in characterization
and recognition of unhealthy cortical tissue: regions of
excessive discharges. Hence, we applied MEG source local-
ization on pure transitory events for 5 patients. We com-
puted network connectivity among MEG and confronted
to IEEG. We determined MEG and IEEG concordant nodes;
we computed connection strength and distance between
MEG and IEEG concordant nodes, their cooperation in
recognition of seizure onset zone, and the average delay
propagation of excessive discharge to travel from a ROI to
another. MNE has the closet connection strength of networks
comparing to IEEG ones. dSPM and eLORETA promote
propagation power of interictal epileptiform discharges.
c¢MEM proved a high matching between MEG network con-
nectivity and intracerebral networks based on the distance
between sources, followed by eLORETA, dSPM, and MNE.
The closet sources to IEEG electrodes are obtained by dSPM
about 18 mm. Average delay propagation of MEG is ranging
in [18, 25]ms and for IEEG is between 12 to 22 ms. The entire
method results were consistent with patient lesion. However,
the size of networks, connection strength, degree,
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widespread, distance between sources obtained from a non-
invasive technique versus IEEG, and average delay propaga-
tion vary from one inverse problem to another and from
one patient to another. It is also, to mention, that no inverse
problem network was identical to the IEEG network. This
could be justified by the fact that several regions were not
explored in IEEG. Furthermore, patients are still not seizure
free yet, even after surgery intervention, which could be a
positive clue of detected MEG ROI, that reinforces the
MEG role in planning IEEG electrodes. Our obtained results
could be considered a prognosis tool for distributed inverse
problem of source localization. Nevertheless, it remains quite
difficult to delineate accurate cerebral generators involved in
excessive discharges and build-up of a seizure from only scalp
MEG signal. The possibility to combine several registration
techniques with functional MRI scanning (fMRI) may ame-
liorate recognition of epileptogenic zones. In addition, com-
bining inverse problem methods or even making extra
assumption in inverse method principle [39] can also be
more effective in assisting a neurologist during epilepsy diag-
nosis. Another fertile track is to incorporate several hall-
marks to transient activities, like ripples and high-frequency
oscillations (HFOs) [40]. Potential strategy may be applied
through merging network connectivity of different: modali-
ties, hallmarks, and inverse problem techniques using firstly
simulated data generators [41] (for hallmark and cortical
sources), then realistic databases to enhance the definition
and recognition of EZ.
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