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INTRODUCTION

‘Prediction is very difficult, especially about the future’ 
is a very true quote from the Danish physicist Niels 
Bohr (1885-1962)1. Although Bohr used this statement 
in the context of quantum physics, it is highly 
applicable in the complex world of perioperative 
medicine, where data from different monitoring 
modalities, besides clinical examination(s) and 
events, are to be integrated and interpreted by the 
attending anaesthetist for guiding perioperative 
therapy, particularly haemodynamic management, 
in an attempt to ultimately reduce the incidence of 
major (postoperative) morbidity and mortality.

1Of note: although this citation is generally attributed to Niels Bohr, 

it is also attributed to fellow Danish country-men.

Intra-operative hypotension (IOH) has been associated 
with adverse outcomes[1] in terms of kidney[2-5] and 
myocardial injury,[3,4,6,7] as well as mortality,[8,9] and 
probably also stroke.[10,11] Therefore, prevention of IOH 
may be a key in further improving patient outcome.

Machine-learning algorithms, introduced in recent 
years also in clinical medicine, allow the analysis of 
complex data streams in order to associate these data 
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with outcome for its subsequent prediction. The use of 
such algorithms in perioperative medicine may make 
the future prediction of unwanted events, such as 
IOH, somewhat easier.

In this paper, we will discuss the relevance of 
predicting hypotension and how it may be predicted 
using machine-learning algorithms.

SEARCH METHODOLOGY

For performing this narrative review on intra-operative 
hypotension and its prediction, the electronic 
databases from PubMed and the Web of Science were 
used as source. Terms included in the search were: 
(‘blood pressure’ OR ‘hypotension’) AND (‘prediction’ 
OR ‘machine-learning’). The search was performed in 
August 2019 and was restricted to studies published 
in English, Dutch and German language between 
January 2000 and August 2019. Importantly, since this 
review focuses solely on intra-operative hypotension, 
studies that did not include this particular instance 
were rendered non-eligible.

INTRA‑OPERATIVE HYPOTENSION: INCIDENCE AND 
DEFINITION

The development of hypotension (or: intra-operative 
hypotension, IOH) at some point during or after 
surgery, is a commonly encountered problem[1] with an 
incidence estimated between 5-99%,[12,13] depending on 
the definition of IOH. The extremely varying incidence 
of IOH is secondary to substantial differences in the 
definition of IOH; some define IOH based on absolute 
threshold values of systolic blood pressure (SBP), 
while others use mean arterial pressure (MAP) 
instead. Likewise, the threshold value differs markedly 
between studies (e.g., MAP <65 mmHg versus SBP 
<100 mmHg). Others use relative decreases in blood 
pressure values compared to ‘baseline’ as a threshold 
for the definition of IOH, instead of using absolute 
values. Here, baseline is typically defined using either 
pre-induction blood pressure values or using (single) 
measurements at the pre-operative ward. Importantly 
though, these blood pressure values were only 
weakly correlated with mean daytime blood pressure 
measured using automated ambulatory monitoring 
pre-operatively[14] and may therefore not serve as an 
adequate reference value for defining IOH.

Despite the lack of consensus for the definition of IOH, 
a MAP <65 mmHg is, at least in terms of population 

harm, most frequently considered nowadays as 
appropriate threshold value for defining IOH.[15,16]

The incidence of IOH is probably even underestimated, 
since in the majority of cases blood pressure is only 
measured intermittently (every 3-5 min), so that short 
periods of IOH may go undetected. A recent study 
showed that the application of continuous non-invasive 
haemodynamic blood pressure monitoring could nearly 
halve the amount of intraoperative hypotension.[17]

Furthermore, the problem of hypotension extends to 
the postoperative period: a recent study in patients 
after major abdominal surgery, in which blood pressure 
was measured continuously and non-invasively in 
the initial 48 hours after surgery, revealed that 24% 
experienced an episode of MAP <70 mmHg for 
≥30	min,	 18%	 had	 an	 episode	 of	MAP	<65	mmHg	
for	≥15	min,	and	that	about	50%	of	these	events	were	
undetected by routine vital-sign assessments.[18] Most 
of these events are preventable, e.g., by continuous 
ward monitoring, which has led to the concept of 
‘failure to rescue’.[19]

INTRA‑OPERATIVE HYPOTENSION: WHY IS IT A 
PROBLEM?

In recent years, evidence is growing that the 
development of IOH is associated with adverse 
postoperative outcomes in terms of both morbidity and 
mortality. In a large observational study in 104,401 adult 
patients undergoing non-cardiac surgery,[8] increased 
durations of IOH (defined by MAP thresholds between 
50 and 80 mmHg) were strongly associated with 30-day 
mortality. In another large retrospective cohort study 
in 18,756 patients undergoing non-cardiac surgery,[9] 
these findings were confirmed, as an increase in 
30-day mortality was found for patients with either 
SBP <70 mmHg, MAP <49 mmHg or DBP <30 mmHg 
for at least 5 minutes.

Multiple other studies have shown the association 
between IOH and postoperative morbidity in terms 
of myocardial[3,4,6,7] and acute kidney injury,[2-5] and 
possibly for the occurrence of ischaemic stroke[11] 
too. Importantly, these studies also demonstrated that 
even short instances of IOH (in some studies as short 
as one minute) were associated with adverse outcome. 
For example in one of these studies,[3] performed in 
33,330 patients that underwent non-cardiac surgery, 
the odds ratio (OR) of postoperative myocardial injury 
and kidney injury when MAP was lower than 55 mmHg 
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for only 1-5 minutes was still 1.30 (1.06-1.50, 95% 
confidence interval) and 1.18 (1.06-1.31), respectively. 
Moreover, even short periods of post-induction 
hypotension – before surgical incision – have been 
shown to be associated with postoperative acute 
kidney injury.[2]

It may be speculated that in patients with chronic 
hypertension, the attending anaesthesiologist should 
aim at higher intraoperative values of MAP to prevent 
the occurrence of adverse postoperative outcome. 
Unlike in critically ill patients requiring vasopressors 
during septic shock,[20] this assumption has not been 
well-funded in the literature concerning perioperative 
care in patients undergoing non-cardiac surgery and 
literature on beneficial effects on maintaining blood 
pressure above individualised is – at least until 
now – sparse.[21] Moreover, it is suggested that the 
association between IOH and adverse postoperative 
outcomes based on either absolute or relative values 
of MAP is comparable.[4]

In summary, it appears that not only the magnitude of 
hypotension but also its duration – the combination 
of which is frequently reflected by the time-weighted 
average – negatively affects postoperative outcome in 
perioperative patients. It may, therefore, sound highly 
reasonable to treat hypotension as early as possible, 
but it may even be better to prevent it from occurring.

INTRA‑OPERATIVE HYPOTENSION: AETIOLOGY AND 
TREATMENT

Development of IOH may be seen as a symptom rather 
than a disease itself, and reflects an imbalance in 
cardiocirculatory regulation. Hence, it may be caused 
either by (a combination of) a reduction in either 
cardiac preload or afterload, or by an impairment 
in cardiac contractility. In Table 1, some typical 
examples for causes of IOH are given, many of 
which are associated with anaesthesia and are easily 
modifiable. Importantly, pressure does not equal flow, 
but the essence of maintaining an ‘adequate’ blood 
pressure is, that it determines the inflow perfusion 
pressure of most organs. Some of these organs (brain, 
heart, kidney) adjust vascular tone so that perfusion 
is maintained (autoregulation), but within certain 
limits, and in extremis of these limits, inflow pressure 
of these organs becomes linearly dependent on blood 
pressure and will thus be critically endangered in 
case of hypotension. Furthermore, the perfusion of 
other organs, e.g., those depending on the splanchnic 

circulation, may already be at risk of hypoperfusion 
when blood pressure is ‘normal’.[22] The exact aetiology 
of IOH is multifactorial and is based on patient-specific 
factors and procedure-related features. In a recent 
study,[23] predictors were defined for the development 
of post-induction hypotension – i.e., immediately after 
induction of general anaesthesia – and early IOH within 
30 minutes of surgery. A lower pre-induction SBP, 
older age and emergency surgery were independently 
associated with both post-induction hypotension 
and early IOH. In addition, supplementary neuraxial 
anaesthesia, male sex and ASA physical status IV were 
additionally associated with early IOH only. Obviously, 
other factors such as bleeding, (un)clamping of large 
arteries, may additionally lead to IOH in a later phase 
during surgery.

The treatment of IOH is usually reactive, i.e., it starts 
after hypotension has already ensued. A typical 
situation in which reactive treatment is initiated after 
hypotension has already ensued, is given in Figure 1. 
The treatment of hypotension is highly dependent on 
its cause. Simply stated, treatment of hypotension is 
a combination of administering either fluids (mainly 
optimising preload), vasopressors (mainly optimising 
afterload), or inotropes (optimising contractility and 
thus cardiac output), in combination with titrating the 
level of (general) anaesthesia, and compensating for 
surgery-related disturbances.

An important consideration in the treatment of 
hypotension is the methods by which haemodynamics 
are actually monitored. Blood pressure itself can be 

Table 1: Some examples of contributing factors to the 
development of intra‑operative hypotension

Reduction in preload:
Vasodilation/vasoplegia, e.g., induced by anaesthetic agents
Hypovolaemia secondary to haemorrhage
Venous pooling (e.g., patient positioning)
Other causes, e.g., surgical great vein manipulation/compression

Reduction in cardiac contractility:
Cardiac ischaemia
Side‑effect of anaesthetics

Blunted response to sympathetic activation (e.g., due to bleeding)
Reduction in afterload:

Anaesthetic agents (± ↓cardiac contractility and heart rate)
Neuraxial anaesthesia
Other, e.g., induced histamine‑release (including anaphylaxis)

Other (mixed) causes:
Pregnancy
Positive pressure mechanical ventilation
Pneumothorax
Fat/CO2 embolism
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monitored either non-invasively using automated 
cuff-oscillometry, or invasively using an indwelling 
arterial catheter, depending on the severity of patient 
co-morbidity and/or the type of surgical procedure 
performed. Monitoring other haemodynamic variables, 
e.g., heart rate, cardiac output and dynamic preload 
variables, may aid in choosing the right treatment 
modality for IOH.

While current monitoring modalities, whether basic 
or advanced, may provide in-depth knowledge on the 
current haemodynamic status of the patient – and will 
perfectly demonstrate the presence of hypotension – it 
will not provide a prediction whether or not 
hypotension is likely to happen while the patient is 
still haemodynamically stable. This issue was recently 
demonstrated in 255 patients undergoing major 
surgery, in which it was shown that conventional 
haemodynamic variables (e.g., pulse rate, MAP) and 
more advanced haemodynamic variables such as 
stroke volume and stroke volume variation, are not 
suitable to predict the occurrence of IOH.[24]

Given the substantial evidence that even short periods 
of IOH negatively affects outcome, its prediction 
and consequently prevention by proactive treatment 
[Figure 1] may prove beneficial for patients. Here, 
machine learning algorithms might come into play.

MACHINE LEARNING ALGORITHMS

Current monitoring modalities applied in patients under 
general anaesthesia undergoing (major) surgery, yield 
an enormous amount of data streams from different 

sources, of which continuous electrocardiography 
signals, invasive ABP monitoring-derived waveforms 
and (processed) EEG monitoring signals are examples. 
Many of these data are derived in a high frequency and 
may show ‘subtle’ changes, that are hardly visible by 
the human eye. These subtle signs may nevertheless 
have a physiologic meaning and relevance. Therefore, 
the use of ‘artificial intelligence’ by means of machine 
learning may be useful if such complex data were 
associated with clinically relevant outcome variables, 
both on the short- and long-term.

Machine-learning entails a very different methodology 
in structuring and programming artificially intelligent 
algorithms than traditional rule-based programming. In 
general, in machine learning, an algorithm is developed 
that uses multiple input variables (features) to associate 
it with output variable(s). So, the algorithm can 
learn from observations and improve the recognition 
of features – and their interrelationship – with the 
subsequent output variables. Different types of 
machine learning algorithms exist, of which supervised 
machine learning may be the most well-known. 
Here, after a task for the algorithm has been assigned 
including the definition of both input and output 
variables, data will be collected upon which the 
algorithm will be trained and tested, which will be 
done by splitting the data into a training and validation 
cohort. In the training cohort, the features, as well as 
their interaction, will be mathematically coupled to 
the outcome variable. The most important step in this 
process is the actual training itself: repetitive testing 
of the association of features and outcome variable(s) 
will be done by the algorithm, aimed to optimise the 
overall model prediction. Finally, the model that has 
been built will be tested in the validation cohort of the 
data. Recently, the theoretical concepts on machine 
learning in medicine have been excellently described 
elsewhere,[25] just as its application in anaesthetic 
and critical care practice has been described in detail 
too.[26-28]

PREDICTION OF INTRA‑OPERATIVE HYPOTENSION 
BY MACHINE LEARNING ALGORITHMS

Currently, there are 2 machine learning algorithms 
developed that are aimed to predict either the 
occurrence of post-induction hypotension, or the 
occurrence of intraoperative hypotension.

The first algorithm, published recently,[29] was 
constructed to predict the development of 

Figure 1: Graph showing changes in mean arterial pressure over time 
before, during and after the onset of intraoperative hypotension (IOH), 
when conventional haemodynamic monitoring is applied. Usually, 
reactive therapy is applied (red dot) after hypotension has occurred. 
Yet, if hypotension were predicted in the respective timeframe 
(e.g., by using the hypotension prediction index), it may have been 
prevented  (green dotted line) by proactive treatment
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post-induction hypotension following institution 
of general anaesthesia. As input variables for the 
algorithm, a combination of variables, such as 
patient co-morbidity, pre-operative vital signs and 
medication(s). A training set of data from 13,323 patients 
from electronic health records was used, and outcome 
was defined as a MAP value <55 mmHg within 
10 minutes after induction of general anaesthesia. The 
authors used different machine learning techniques, 
and the best model was ‘tuned’ and used for validation. 
Post-induction hypotension developed in 8.9% of 
patients. The authors observed substantial differences 
in performance of these different machine learning 
techniques and observed that ‘gradient boosting’ 
had the highest area under the operating receiver 
curve (0.76), with associated negative and positive 
predictive values of 19% and 96%, respectively.

Although this (experimental) algorithm is not publicly 
available and data was gathered from one institution 
only, it elegantly demonstrates the feasibility and 
potential of machine learning algorithms in the 
perioperative management of patients undergoing 
surgery. Of note, this study shows some similarity 
to a recent, non-machine learning based study in 
patients undergoing spinal anaesthesia for caesarean 
section, in whom subsequent IOH could be predicted 
by analysing heart rate variability using dedicated 
software from the ANIscopeTM monitor.[30]

The second algorithm is another good example of 
the evolution of (supervised) machine learning 
algorithms in perioperative medicine. The 
commercially available Hypotension Prediction Index 
(HPI; Edwards Lifesciences, Irvine, USA) algorithm[31] 
is a variable that represents a unitless number, ranging 
from 0 to 100, and indicates the likelihood that 
hypotension will occur in the next 5–15 minutes while 
the patient is still haemodynamically stable. The HPI 
algorithm was based on a supervised machine learning 
algorithm with the arterial pressure waveform as input 
and occurrence of hypotension (MAP <65 mmHg) 
and non-hypotension (MAP >75 mmHg) for at least 
1 minute, as output variables. The algorithm has been 
developed using data from a mixed OR/ICU population 
(n = 1334 patients),[31] partly from the Multiparameter 
Intelligent Monitoring in Intensive Care II database and 
contained a total of 25461 episodes of hypotension. 
Using this database, the algorithm was set up to detect 
waveform characteristics that were associated with 
the defined time phrases in which either hypotension 
or non-hypotension was present. The algorithm 

first uses the FloTrac algorithm for the detection of 
individual pulse waves and elimination of artefacts 
and splits incoming data in time frames of 20 seconds. 
Then, the algorithm divides the recognised individual 
beats in 5 distinct phases and detects multiple 
characteristics of the pulse wave that will be used as 
features later on, such as time(s) and amplitude(s) of 
the waveform morphology, but also other features like 
baroreflex and variability variables. This way, a total 
of 3022 individual characteristics of the waveform 
were identified, of which 51 were selected as ‘base 
features’ based on their ability to predict the outcome 
variables. Data from 5, 10 and 15 minutes before the 
occurrence of hypotension was used for developing 
the model. The sensitivity and specificity of predicting 
hypotension was 92% and 92% at 5 minutes, 89% and 
90% at 10 minutes, and 88% and 87% at 15 minutes 
before the onset of hypotension. In the subsequent 
external validation cohort (n = 204 patients from the 
OR, with a total of 1923 episodes of hypotension), 
sensitivity and specificity were 87%/89%, 84%/84% 
and 84%/83%, respectively, at 5, 10 and 15 minutes 
before onset of hypotension.

Hence, it was shown that a (supervised) machine 
learning, based on a retrospective, offline analysis of 
complex arterial pressure waveform signals was able 
to predict occurrence of hypotension. Importantly, the 
algorithm obviously does not take factors into account 
such as the administration of relevant anaesthetic 
drugs and the sometimes (imminent) influence of 
surgical manipulations. Also, MAP values between 
65 mmHg and 75 mmHg were treated as a ‘grey zone’ 
and therefore excluded from analysis in order to create 
a binary model with increased precision.

The clinical performance of the HPI algorithm has 
been further evaluated in two studies. In one of 
these studies,[24] the HPI algorithm analysed arterial 
pressure waveform data from 255 patients offline. 
This cohort of patients underwent major surgery, 
and the ability of HPI to predict hypotension 
(MAP <65 mmHg for >1 min) was compared with that 
of more conventional haemodynamic variables such as 
MAP,	the	change	in	MAP	(∆MAP)	and	stroke	volume.	
Interestingly, HPI performed superior at 5, 10 and 
15 minutes in comparison to all other variables; the 
associated values of sensitivity and specificity were 
86%/86%, 82%/82% and 81%/81%, respectively. For 
example,	 ∆MAP	 only	 had	 sensitivity	 and	 specificity	
values between 55% and 60%.
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In another recent study,[32] HPI performance was 
investigated in patients (n = 23) undergoing vascular 
or cardiac surgery. The authors determined an optimal 
threshold value of HPI for predicting hypotension 
5–7 minutes prior to the event. It was found that a 
HPI value of 56 provided the highest cumulative 
sensitivity and specificity (79% and 63%, respectively). 
Interestingly, a HPI value of 85 – which is preset by 
the manufacturer to provide the clinician a warning 
on the monitoring screen – provided a sensitivity of 
62% and specificity of 78%, with only an associated 
13% positive predictive value. Hence, the authors 
suggested to determine HPI values <85 as ‘safe’, and 
further suggest that indeed, higher HPI values give a 
warning of potentially developing hypotension, but 
might not (yet) require further therapeutic actions.

Nevertheless, these studies demonstrate that the 
analysis of high-fidelity data such as delivered by an 
arterial pressure waveform, can be associated with 
clinically relevant outcome variables (hypotension), 
and outperform both static (e.g., MAP) and dynamic 
(e.g.,	 ∆MAP)	 haemodynamic	 variables	 that	 are	
usually to be interpreted by the attending clinician. 
In an ongoing, prospective randomised study,[33] the 
influence of using HPI in the context of intraoperative 
haemodynamic management will be assessed in 
213 patients undergoing major non-cardiac surgery. 
This study may show whether HPI monitoring – and 
acting upon it – actually reduces the duration of IOH.

HPI AND THE CAUSE OF HYPOTENSION

The cause of a hypotensive event may have 
(one or several) different origins [Table 1], which 
must be identified in order to deliver the appropriate 
treatment. Along with the commercially available 
HPI comes a secondary screen that will help finding 
the most probable reason underlying the (upcoming) 
hypotensive event. As stated earlier in this review, 
the development of IOH should be seen as a symptom 
rather than as a disease, and requires optimising 
either preload, afterload or cardiac contractility. Many 
of these factors can be modified by the attending 
anaesthetist, yet in order to do this properly, this 
requires the monitoring of more haemodynamic 
variables than blood pressure alone. The EV1000 
monitor helps in directing treatment by providing 
a decision tree in case HPI exceeds 85 [Figure 2] to 
determine (surrogates of) preload, afterload, and 
cardiac contractility. In case cardiac output (CO) is 
also low, CO can be optimised either by optimising 

preload or by increasing cardiac contractility. First, to 
determine preload, fluid responsiveness is assessed 
using stroke volume variation (SVV; lower left side of 
the decision tree, Figure 2), which is a well-established 
dynamic (preload) variable. In essence, SVV relies 
on the heart-lung interaction during mechanical 
ventilation and reflects the ventilation-induced 
changes in venous return (and thus, stroke volume) 
over time.[34] If the patient is preload-dependent 
(and SVV is high, i.e., >12%), the administration of 
fluids will likely increase CO. Consequently, circulating 
volume can be optimised, assuming all requirements 
are met for a valid interpretation of dynamic preload 
variables, such as sinus rhythm and the application 
of volume-controlled positive pressure mechanical 
ventilation with tidal volumes >7 ml kg-1.[35]

Another variable that is proposed by the decision 
tree is dP/dtmax, a variable that is assumed to help 
in a further optimisation of CO by estimating 
cardiac contractility (middle lower arm of decision 
tree, Figure 2). In short, dP/dtmax represents the 
maximal change in pressure over time in the left 
ventricle and represents the state of inotropy of 
the left side of the heart. Unfortunately, measuring 
dP/dtmax requires left ventricular catheterisation, 
making it not feasible for daily clinical practice. The 
arterial pressure waveform, however, also permits 

Figure  2: Screenshot of the “secondary screen” that is shown in 
case HPI exceeds 85. Here, a decision tree is provided in order to 
treat the underlying cause of  (impending) hypotension, either by 
optimising preload  (volume administration), by optimising cardiac 
contractility (inotropic support) or by optimising afterload (administration 
of vasopressors). These factors are reflected either by stroke volume 
variation (SVV), by dP/dtmax, or by dynamic arterial elastastance (Eadyn). 
Additionally, given is cardiac output  (CO), systemic vascular 
resistance (SVR), pulse rate (PR) and stroke volume (SV)
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measuring dP/dtmax in a minimally invasive fashion, 
as the ‘steepness’ of the upslope, systolic part of the 
pressure waveform was shown to correlate highly 
with invasive measurement of dP/dtmax, not only in 
animal studies[36,37] but also in anaesthetised patients 
undergoing coronary artery bypass surgery.[38] Hence, 
dP/dtmax may, at least theoretically, help the clinician 
in guiding the administration of inotropes for the 
correction of hypotension, mainly by assessing 
relative changes in dP/dtmax (from individual baseline) 
as there is no true absolute value that should be 
targeted. Importantly, further studies are warranted 
to demonstrate benefits on patient outcome, but 
simply because most of our anaesthetic drugs have 
negative inotropic effects, dP/dtmax guided care 
may prove highly beneficial in further optimising 
perioperative haemodynamic care.

Finally, afterload should be optimised in case of 
hypotension, and this is also reflected in the HPI 
decision tree (right lower corner, Figure 2) using 
another novel variable, dynamic arterial elastance 
(Eadyn). Eadyn is constituted from two different dynamic 
preload variables, i.e., pulse pressure variation (PPV) 
and SVV, and is calculated by the quotient of the 
two (i.e., PPV/SVV). While for the prediction of 
fluid responsiveness these two variables can be 
used interchangeably,[39] their origin is different. 
SVV is mainly a flow-based variable, originating 
from changes in stroke volume, and may thus be 
considered a ‘true’ measure of fluid responsiveness. 
PPV instead, is a pressure-based variable, and 
originates from changes in pulse pressure, i.e., the 
differences between systolic and diastolic pressure. 
The distinction between SVV and PPV is mainly 
from different effects of aortic compliance on stroke 
volume and pulse pressure.[40] Therefore, changes 
in aortic elastance result in differential changes in 
the ratio between PPV and SVV. Importantly, it is a 
functional variable, representing the actual position 
on the pressure-volume curve, not a direct measure of 
afterload or SVR. In preload-dependent patients,[41] it 
may predict whether blood pressure will increase along 
with cardiac output following fluid administration, 
or it may predict whether vasopressors may be 
reduced whilst maintaining blood pressure.[39,42] 
As such, it may guide in functionally assessing 
afterload and may discriminate between hypotension 
secondary to either hypovolaemia (Eadyn high, fluids 
probably beneficial), or hypovolaemia secondary 
to vasoplegia (Eadyn low), requiring vasopressor(s). 
Figuratively, we might consider Eadyn the SVV of 

the pressure world. For this, an ‘optimal’ cut-off 
value is around 1.0 with a ‘gray zone’ of possible 
inconclusive values between 0.8 and 1.2, for which a 
decision on whether or not fluid(s) or vasopressor(s) 
should be given is at the discretion of the attending 
anaesthetist.[39,43-47]

As with dP/dtmax, the value of Eadyn in optimising patient 
outcome is to be established and requires further 
prospective studies in various patient population(s). 
Nevertheless, the “secondary” screen of HPI, allows 
the clinician to treat the symptom of (impending) 
hypotension according to its cause by identifying the 
probable causes as a prerequisite for optimising the 
three cardinal features of cardiocirculatory physiology 
effectively.

Together with advances in other parts of anaesthesia, 
e.g., the digital data analysis on the recognition of a 
difficult airway[48] and the prediction of bispectral 
index during target-controlled propofol-remifentanil 
anaesthesia,[49] these studies on the prediction 
of hypotension – and treating it according to its 
cause – will only the first from many to follow that 
use novel machine learning approaches to associate 
clinically relevant outcome with a multitude of 
complex variables and characteristics of the many 
data we are faced with in our daily clinical life.

SUMMARY

Intraoperative hypotension is common, and of 
relevance to the attending anaesthetist given its 
association with adverse outcome and the possibility 
to prevent or treat it appropriately. Hypotension is 
usually a late sign and is preceded by alterations in 
cardiocirculatory state, that may be used as input 
for machine-learning algorithms in order to predict 
the development of hypotension. The hypotension 
prediction index, which reliably predicts hypotension 
up to 15 minutes before its actual occurrence, has 
the potential to change our practice from reactive to 
proactive blood pressure management [Figure 1]. The 
secondary screen variables offered with this index 
may help identifying the probable cause underlying 
the hypotensive event and finding the appropriate 
treatment. The value of such novel algorithms in 
optimising postoperative patient outcome remains to 
be established.
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