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Abstract: Vascular metabolic dysfunction presents in various diseases, such as atherosclerosis, hy-
pertension, and diabetes mellitus. Due to the high prevalence of these diseases, it is important to
explore treatment strategies to protect vascular function. Resveratrol (RSV), a natural polyphenolic
phytochemical, is regarded as an agent to regulate metabolic pathways. Many studies have proven
that RSV has beneficial effects on improving metabolism in endothelial cells (ECs) and vascular
smooth muscle cells (VSMCs), which provide new directions to treat vascular metabolic diseases.
Herein, we overviewed that RSV could regulate cell metabolism activity by inhibiting glucose up-
take, suppressing glycolysis, preventing cells from fatty acid-related damages, reducing lipogenesis,
increasing fatty acid oxidation, enhancing lipolysis, elevating uptake and synthesis of glutamine,
and increasing NO release. Furthermore, in clinical trials, although the results from different studies
remain controversial, we proposed that RSV had better therapeutic effects at high concentrations and
for patients with metabolic disorders.
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1. Introduction

The rising prevalence of obesity and diabetes mellitus in the world leads to various
metabolic disorders, among which vascular dysfunction is one of the major complica-
tions [1]. When the vascular homeostasis is perturbed, the endothelial cells’ function,
vascular metabolism, and vasodilation would be affected, subsequently leading to vascu-
lar metabolic diseases that include atherosclerosis, hypertension, and peripheral arterial
diseases, to name but a few [2]. Vascular metabolic diseases were regarded as vascular
metabolic dysfunction-caused diseases or metabolic disease-induced vascular complica-
tions. In recent years, small molecule compounds have drawn much attention because of
numerous advantages, such as non-invasion and stable drug concentration, for treating
these diseases.

Polyphenolic phytochemicals have various pharmacological effects. For example,
apigenin and naringin were identified as the drugs for treating diabetes, Alzheimer’s
disease, depression, and cancer [3,4]. Resveratrol (RSV), another potential therapeutic
compound, has drawn much attention in recent decades. In the 1990s, researchers found
that the intake of saturated fats of French people and their serum cholesterol concentration
were similar to British or American people, but their cardiovascular disease mortality
was much lower than that of British or American people, which is called the “French
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Paradox” [5]. It was speculated that moderate red wine consumption might be a reason.
RSV, a polyphenolic compound obtained from grapes, was regarded as the major compound
in red wine exerting a cardiovascular protective role. Many other studies also reported
RSV’s multiple beneficial functions, such as anti-oxidant, anti-inflammatory, anti-obesity,
and anti-diabetes effects [6]. From then on, RSV was regarded as a beneficial agent for
human health and widely tested in clinical trials.

In recent studies of animal models and humans, RSV represented a potential modulator
for vascular metabolic activities and had a beneficial effect on vascular metabolic diseases.
However, few reviews focused on the metabolism-improving effects of RSV in vascular
cells. Thus, in this review, we aimed to discuss the beneficial effects of RSV on metabolic
activities in vascular cells, the underlying mechanisms, and the clinical use of RSV, in order
to get a comprehensive understanding of this agent in treating vascular metabolic diseases.
Here, we used “resveratrol”, “vascular metabolism”, and “vascular metabolic diseases” as
keywords and performed the search in PubMed, Web of Science, and Science Direct. We
selected the articles which were relevant to our topic and further filtered them by reading
the full text.

2. The Protective Effects of RSV on Vasculature in Vascular Metabolic Diseases
2.1. Regulating Glucose Metabolism in Vascular Metabolic Diseases

The vasculature is mainly composed of endothelial cells (ECs), vascular smooth muscle
cells (VSMCs), and extracellular matrix. The metabolism of glucose flux in ECs includes
glycolysis and aerobic oxidation. Studies exploring the energy source in human umbilical
vein endothelial cells (HUVECs) showed that 85% of adenosine triphosphate in ECs was
produced by glycolysis [7]. Through this pathway, ECs could save more oxygen and deliver
it to other organs and tissue through trans-endothelial transfer [8], and protect cells from
oxidative stress damage by reducing the production of reactive oxygen species (ROS) [9].
Similar to ECs, VSMCs are also glycolysis-addicted [10]. The alteration of enzymes or
end products related to glycolysis, such as hexokinase, pyruvate kinase, pyruvate, and
lactate, affected the proliferation and viability of VSMCs [11–13]. For example, Lambert
and colleagues found that in vascular remodeling diseases, glycolysis is increased in
VSMCs by measuring the protein expression and activity of hexokinase 2, which could
promote proliferation and suppress apoptosis [11]. It is worth noting that hyperactivity of
glycolysis in VSMCs and proliferation of cells within the vessel wall are vital features for
vascular metabolic diseases such as atherosclerosis [14]. Therefore, regulating the glucose
metabolism of vascular cells is vital for maintaining vascular physiological function.

RSV is a potent agent for regulating glycolysis. The glycolysis feature of ECs and
VSMCs under aerobic conditions made them comparable to the tumor cells [7]. Glycoly-
sis provides energy and generates metabolic intermediates for tumor cellular biological
activities such as proliferation and migration. Thus, anti-glycolytic cancer therapy is an
effective method to suppress tumor growth [15]. In different tumor cell lines, RSV could
reduce glucose uptake and metabolism as well as further inhibit cellular proliferation and
migration by regulating the activity or expression of glycolysis-related enzymes.

In some studies, the investigators focus on the effects of RSV on vascular glucose
metabolism flux (Figure 1). In an experimental endometriosis model of Wistar rats, after
administrating 40 mg/kg RVS orally, the glycolysis and neovascularization were inhibited
by suppression of the expression levels of Glut-1, Glut-3, monocarboxylate transporter
(MCT)-1, and MCT-4 in ectopic endometrial tissue [16]. Similarly, in HUVECs, RSV reduced
the vascular endothelial growth factor-induced hyper levels of glycolysis-related mRNA
and protein such as Glut1, 6-phosphofructokinase-1, pyruvate kinase M2, and hexokinase
II in a dose-dependent manner [17].
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related damages by upregulating the expression of Bmal1, decreases lipogenesis by suppressing the 
expression of FASN, and activates fatty acid oxidation by suppressing the expression of ACC (mid-
dle). Resveratrol increases the uptake and synthesis of glutamine. It also upregulates NO release by 
elevating the expression of eNOS, suppressing the level of serum ADMA, and inhibiting the activity 
of arginase (right). AMPK: AMP-activated protein kinase; SIRT1: silent information regulator 1; 
PPARα: peroxisome proliferator-activated receptor-gamma coactivator-1α; PGC1α: peroxisome 
proliferator-activated receptor-gamma coactivator-1α; PI3K: Phosphoinositide 3-kinase; FoxO1: 
forkhead box protein O1; Glut: glucose transporter; MCT: monocarboxylate transporter; PFK: 6-
phosphofructo-1-kinase; PK: pyruvate kinase; HK: hexokinase; LDH: lactate dehydrogenase; Bmal1: 
brain and muscle arnt-like protein-1; FASN: fatty acid synthase; ACC: acetyl-CoA carboxylase; NOS: 
nitric oxide synthase; ADMA: Asymmetric dimethylarginine. 

RSV is a specific activator of silent information regulator 1 (SIRT1) (Figure 1). In a 
recent study, Huang et al. found that the RSV-mediated phosphorylated activation of 
SIRT1 is dependent on another enzyme, liver kinase B1 [18]. RSV promoted the binding 
of liver kinase B1 and SIRT1, and then liver kinase B1 phosphorylated SIRT1 at three res-
idues (Ser615, Ser669, and Ser732). The phosphorylated SIRT1 enhanced the intramolecu-
lar interaction and further exerted deacetylase activity [18]. The effects of SIRT1 on glucose 
metabolism are on the transcriptional level. It promotes the deacetylation of many meta-
bolic transcriptional regulators in vitro and in vivo [19,20]. Although the specific mecha-
nism of SIRT1 maintaining glucose homeostasis in vascular cells remains elusive, it is de-
ducible that SIRT1 decreased glycolysis via activating peroxisome proliferator-activated 
receptor-gamma coactivator-1α (PPARα) and suppressing hypoxia-inducible factor-1α 
(HIF-1α) in muscle, white adipose tissue, liver, and pancreas [21,22]. 

Figure 1. Resveratrol improves glucose, lipid, and amino acid metabolism in vascular cells by
regulating different pathways and targets. Resveratrol reduces glucose uptake and glycolysis by
inhibiting the expression of Glut, MCT, PFK, PK, HK, and LDH (left). Resveratrol improves fatty
acid-related damages by upregulating the expression of Bmal1, decreases lipogenesis by suppressing
the expression of FASN, and activates fatty acid oxidation by suppressing the expression of ACC
(middle). Resveratrol increases the uptake and synthesis of glutamine. It also upregulates NO
release by elevating the expression of eNOS, suppressing the level of serum ADMA, and inhibiting
the activity of arginase (right). AMPK: AMP-activated protein kinase; SIRT1: silent information
regulator 1; PPARα: peroxisome proliferator-activated receptor-gamma coactivator-1α; PGC1α:
peroxisome proliferator-activated receptor-gamma coactivator-1α; PI3K: Phosphoinositide 3-kinase;
FoxO1: forkhead box protein O1; Glut: glucose transporter; MCT: monocarboxylate transporter; PFK:
6-phosphofructo-1-kinase; PK: pyruvate kinase; HK: hexokinase; LDH: lactate dehydrogenase; Bmal1:
brain and muscle arnt-like protein-1; FASN: fatty acid synthase; ACC: acetyl-CoA carboxylase; NOS:
nitric oxide synthase; ADMA: Asymmetric dimethylarginine.

RSV is a specific activator of silent information regulator 1 (SIRT1) (Figure 1). In a
recent study, Huang et al. found that the RSV-mediated phosphorylated activation of SIRT1
is dependent on another enzyme, liver kinase B1 [18]. RSV promoted the binding of liver
kinase B1 and SIRT1, and then liver kinase B1 phosphorylated SIRT1 at three residues
(Ser615, Ser669, and Ser732). The phosphorylated SIRT1 enhanced the intramolecular
interaction and further exerted deacetylase activity [18]. The effects of SIRT1 on glucose
metabolism are on the transcriptional level. It promotes the deacetylation of many metabolic
transcriptional regulators in vitro and in vivo [19,20]. Although the specific mechanism of
SIRT1 maintaining glucose homeostasis in vascular cells remains elusive, it is deducible
that SIRT1 decreased glycolysis via activating peroxisome proliferator-activated receptor-
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gamma coactivator-1α (PPARα) and suppressing hypoxia-inducible factor-1α (HIF-1α) in
muscle, white adipose tissue, liver, and pancreas [21,22].

Interestingly, in diabetes mellitus model mice or hyperglycemic conditions, RSV could
improve glucose metabolic disorders. In a recent study, Zheng and colleagues found
that RSV (mixed with the powdered high-fat diet to a concentration of 0.2%, 18 days
consecutively administration) reduced plasma glucose significantly in the high-fat diet-
induced gestational diabetes mellitus mice model [23]. They also established an insulin-
resistant adipocyte model and found that RSV (0.1 µM) enhanced glucose intake, miR-
23a-3p expression, and PI3K/Akt pathway activation. Moreover, it was reported that
RSV (10 µM) could improve hyperglycemia-induced endothelial dysfunction and enhance
glycolysis by activating SIRT1-FoxO1-c-Myc pathway [24]. One of the possible reasons for
the opposite regulating effects of RSV on glucose metabolism under different conditions is
that RSV could enhance glucose uptake and metabolism at relatively low concentrations
and had reversed the effects on glucose metabolism at relatively high concentrations.
Although the regulation effect of RSV on glucose metabolism may be different at various
concentrations, choosing the appropriate concentration can significantly improve glucose
metabolism disorders under different pathological conditions. Thus, for treating glucose
metabolism dysfunction in vascular metabolic diseases, RSV is a potent candidate.

2.2. Regulating Lipid Metabolism in Vascular Metabolic Diseases

Lipid metabolism in vasculatures is also vital for maintaining vascular homeostasis.
The synthesis of fatty acids was reported to participate in the process of vessel sprouting,
permeability, and endothelial nitric oxide synthase (eNOS) palmitoylation in ECs [25,26].
However, in vascular metabolic diseases, the transportation and metabolism of fatty acids
are disrupted. It was reported that in pigment epithelial-derived factor (an important regu-
lator in lipid metabolism) deficiency ApoE−/− mice, the atherosclerotic plaque formation
was aggravated and the capacity of fatty acid uptake was upregulated, which resulted in
fatty acid accumulation in the peripheral tissues [27]. In in vitro experiments, the pigment
epithelial-derived factor could downregulate the protein expression of fatty acid trans-
port proteins 3/4, and protect HUVECs by reducing fatty acid uptake and accumulation.
Palmitic acid (PA), a saturated long-chain fatty acid with a 16-carbon backbone and the
first fatty acid produced during lipogenesis, is considered to have adverse effects on the
metabolism of vasculature in adults. In ECs and VSMCs, PA stimulated the production of
ROS and caused oxidative stress damage via the activation of protein kinase C-mediated
nicotinamide adenine dinucleotide phosphate oxidation [28]. As well as PA, other fatty
acids, such as stearic acid and linoleic acid, were reported to induce inflammation and
insulin resistance by reducing the AMP-activated protein kinase (AMPK)/PI3K/Akt/eNOS
pathway [29,30].

RSV could improve fatty acid-related damage (Figure 1). Two independent studies
showed that RSV reverses the detrimental effects of PA by activating AMPK signal pathway
in skeletal muscle [31,32]. Subsequently, Li et al. used a mixture of fatty acids (oleic acid:
PA = 2:1) to induce glycolipid metabolic disorders in hepatocytes [33]. They found that
RSV could ameliorate these disorders by upregulating the expression of brain and muscle
arnt-like protein-1. In this study, when knocking down the brain and muscle arnt-like
protein-1 by small interfering RNAs, RSV-stimulated phosphorylation and activation of
AMPK was blunted. However, though a few studies reported similar protective effects of
RSV in ECs or VSMCs, it remains necessary to further investigate the effects of RSV on fatty
acid accumulation-induced vascular impairment.
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In addition to fatty acid transportation and metabolism dysfunction, other lipid
metabolism pathways are also perturbed in vascular metabolic diseases. It is reported
that although a low dose of oxidized low-density lipoprotein (LDL) increased the efflux of
cholesterol and the expression of the ATP-binding cassette subfamily A member 1 and ATP
binding cassette subfamily G member 1 (two cholesterol efflux transport proteins) in en-
dothelial cells, these alternations were reversed as the dose of oxidized LDL increased [34],
which suggested that the function of cholesterol efflux was impaired in cells. To date,
there is a lack of direct evidence that RSV improves lipid metabolism in vascular cells, but
RSV could regulate lipid metabolism in lipid metabolic tissues such as adipose tissue and
liver, which might reduce plasma lipids and the adverse effects of lipids on vessel walls
in the body. In the studies of adipocytes, RSV decreased lipogenesis, promoted lipolysis,
and inhibited preadipocyte differentiation, which contributed to reducing lipid accumula-
tion [35–37]. In hepatocytes, RSV suppressed lipid accumulation through a SIRT1-mediated
decrease in fatty acid synthesis by elevating phosphorylation and inhibiting the activity
of acetyl-CoA carboxylase (a de novo fatty acid synthesis-related enzyme) and downreg-
ulating the protein expression of fatty acid synthase [38]. RSV is also a potent agent to
regulate plasma lipid components. In the KKAy mice, a model of obesity and metabolic
disorders, RSV could significantly reduce plasma triglyceride (TG), fatty acid, and mal-
onaldehyde, and increase high-density lipoprotein cholesterol (HDL-C) and superoxide
dismutase. More importantly, these effects are dose-dependent [39].

RSV could elevate fatty acid oxidation via SIRT1-mediated activation of PPARα and its
coactivator peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC1α) [40],
which made cells switch to the hypermetabolic state. However, VSMCs are prone to prolif-
erate at a hypermetabolic state, which is identified in several pathological situations such as
vascular damage, vascular inflammation, and metabolic stresses [41]. Interestingly, many
studies presented that RSV suppressed VSMC proliferation [42,43]. In in vivo experiments,
RSV inhibited intimal hyperplasia in a wire-injured femoral artery mouse model by a heme
oxygenase-1-dependent pathway [44]. The underlying mechanism of this contradiction
needs to be further explored. In conclusion, although RSV has benefits on lipid metabolism
in vascular metabolic diseases, such as atherosclerosis by reducing serum lipid profiles
and improving the lipid metabolic pathways in the liver and adipose tissue, the direct
effects and mechanism of RSV on lipid metabolism in ECs/VSMCs remain elusive. Thus,
future studies should focus more on the effects of RSV on disrupted lipid metabolism in
vascular cells.

2.3. Regulating Amino Acid Metabolism in Vascular Metabolic Diseases

Amino acids and amino acid metabolism are also vital for the vascular cell biological
process. Glutamine is the most abundant non-essential amino acid in circulation and the
effects of glutamine metabolism on vascular cell proliferation have been reported in many
studies [45]. In ECs, glutamine deprivation or glutaminase 1 (an enzyme metabolizing
glutamine to glutamate) deficiency could reduce protein synthesis, imbalance redox home-
ostasis, and inhibit the mechanistic target of the rapamycin (mTOR) signaling pathway,
which might impair vessel sprouting [45]. In VSMCs, overexpressing the solute carrier
family 1 member 5, a sodium-dependent amino acids transporter for multiple amino acids,
could promote glutamine uptake, mTORC1 activation, and further enhance VSMC pro-
liferation [46]. Arginine is the main source to produce NO which serves as a vascular
protective molecule regulating vasodilation via inhibiting mitochondrial respiration [47].
It was reported that a low level of arginine in ECs might lead to ECs dysfunction and
inhibition of arginase or supplementation of arginine could reverse ECs function [48–50].
The NOS, catalyzing arginine to NO, has different isoforms in different cell types. The main
NOS is eNOS in ECs, while in VSMCs the NOS consists of eNOS, neuronal (nNOS), and
inducible (iNOS) [51]. Therefore, regulating the activity of NOS is of great significance for
arginine metabolism.
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In a diabetic rat retina model, RSV could protect retinal function in high glucose-
induced retinal dysfunction via elevating glutamate uptake, enhancing glutamine syn-
thetase activity, and increasing glutamine synthetase and glutamate transporters expres-
sion [52]. RSV also regulated glutathione (a tripeptide composed of three amino acids
including glutamate, cysteine, and glycine) metabolism in vascular cells. It is reported that
RSV could increase the level of glutathione in the culture medium supernatant of VSMCs
treated with high glucose, which enhanced cell total antioxidant capacity [53].

RSV affects the production of NO (Figure 1). It was reported that RSV could decrease
the cigarette smoke-induced eNOS acetylation in HUVECs by activating SIRT1 and further
lead to NO release which exerts vasoprotective and cardioprotective effects [54]. In another
in vivo experiment, RSV could significantly elevate the expression of eNOS in the aorta
of ApoE−/− mice treated with high cholesterol diet, which contributed to the prevention
of dyslipidemia-induced endothelial dysfunction and atherosclerosis [55]. Asymmetric
dimethylarginine (ADMA) is an endogenous NOS inhibitor. It mainly exists in plasma to
inhibit the production of NO in vessels [56]. Many studies reported the increased level of
ADMA in different vascular metabolic diseases [57]. Interestingly, the result from a clinical
double-blind randomized trial showed that RSV (1000 mg/day, 8 weeks) could significantly
decrease the level of ADMA in patients with diabetes [58]. Moreover, RSV exhibited
arginase inhibitory activity in VSMCs, which led to the accumulation of arginine and the
augment of NO production in vascular cells [59]. Together, RSV could improve amino acid
metabolism dysfunction and protect vasculatures from metabolic vascular diseases.

3. Clinical Trials of RSV in the Treatment of Vascular Metabolic Diseases

RSV is a potential agent for maintaining cell metabolic homeostasis. Thus, for the
purpose of exploring the clinical transformation value of RSV, researchers performed a large
number of clinical studies to confirm the therapeutic effects of RSV on vascular metabolic
diseases. Here, these clinical researches will be reviewed as follows.

3.1. The Effect of RSV on Atherosclerosis

In preclinical research, RSV could modify the lipid profile by decreasing the serum TG
and LDL, as well as increasing HDL in Wistar rats [60], streptozotocin-induced gestational
diabetes model rats [61], KKAy mice [39], ApoE−/− mice [62], high-fat-diet-fed mice [63],
and healthy crossbred pigs [64] (Table S1). Thus, researchers performed various clinical
trials to explore the lipid-lowering effects of RSV in different population cohorts (Table 1).
However, the lipid-regulating effects of RSV in human subjects remain controversial. In
a randomized double-blind crossover study of healthy obese human subjects, after being
treated with RSV at 150 mg/day for 30 days, RSV significantly reduced the plasma TG
level (2.16 ± 0.21 vs. 2.29 ± 0.23 mmol/L in RSV vs. placebo) and lowered intrahepatic
lipid content compared to placebo [65]. Similarly, in another randomized, double-blind,
crossover trial, RSV (500 mg/day) treatment for 30 days significantly reduced the level of
plasma TG in healthy adult smokers [66]. In people at high risk for cardiovascular diseases
and under statin treatment for prevention, RSV (8 mg/day, 6 months, in RSV-enriched
grape extract) significantly decreased oxidized LDL by 20% and decreased LDL-C by
4.5% [67]. In a prospective randomized study, 57 patients with type 2 diabetes were divided
into two groups (28 in the RSV intervention group, and 29 in the control group). After
3 months of RSV (250 mg/day) or a placebo supplement, plasma cholesterol (4.70 ± 0.90 vs.
4.33 ± 0.76 mmol/L) and LDL-C (2.58± 0.83 vs. 2.26± 0.65 mmol/L) reduced significantly
in the RSV intervention group, while these parameters increased in the control group
(4.89 ± 0.89 vs. 5.07 ± 0.90 mmol/L and 2.80 ± 0.80 vs. 2.98 ± 0.79 mmol/L) [68].
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Table 1. Summary of clinical trials involving the use of RSV in atherosclerosis.

Cohort (No.) Dose and Duration
of RSV

Main Outcome after RSV
Administration

First Author,
Year, Reference

Healthy, obese men (n = 11) treated with
placebo and RSV 150 mg/day, 30 days

plasma TG ↓ (2.16 ± 0.21 vs.
2.29 ± 0.23 mmol/L in RSV vs.
placebo); intrahepatic lipid content
↓; non-esterified fatty acids→.

Timmers, 2011 [65]

Healthy smokers (n = 50) treated with
placebo and RSV 500 mg/day, 30 days plasma TG ↓; plasma TC and

HDL-C→. Bo, 2013 [66]

Patients at risk for cardiovascular disease
randomized into placebo (n = 25), grape
extract (n = 25) and RSV-enriched grape
extract (n = 25) groups

containing ~8 mg
RSV/day, 6 months

plasma ox-LDL and LDL-C ↓
(decreasing oxidized-LDL by 20%
and decreasing LDL-C by 4.5%);
plasma TG, TC and HDL-C→.

Tomé-Carneiro,
2012 [67]

Type 2 diabetes mellitus patients
randomized into control (n = 29) and RSV
intervention (n = 28) groups

250 mg/day, 3 months

plasma TC and LDL-C ↓
(4.70 ± 0.90 vs. 4.33 ± 0.76 mmol/L
and 2.58 ± 0.83 vs. 2.26 ± 0.65
mmol/L after RSV intervention,
respectively); plasma TG and
HDL-C→.

Bhatt, 2012 [68]

Patients with nonalcoholic fatty liver
disease randomized into placebo (n = 25)
and RSV (n = 25) groups

600 mg/day, 12 weeks plasma ox-LDL, LDL-C/HDL-C
and LDL-C/ox-LDL→. Farzin, 2020 [69]

Nonobese women randomized into
placebo (n = 14) and RSV (n = 15) groups 75 mg/day, 12 weeks

intra-abdominal fat volume,
intrahepatic triglyceride content,
plasma lipids, and insulin
sensitivity in the liver, skeletal
muscle and adipose tissue→.

Yoshino, 2012 [70]

Healthy participants randomized into
RSV (n = 24) and caloric restriction
(n = 24) groups

500 mg/day, 30 days
plasma TG, HDL-C, LDL-C, and
apolipoprotein A1→, plasma TC
and non-HDL cholesterol ↑.

Mansur, 2017 [71]

Patients with carotid stenosis >70% and
in a surgical intervention request
randomized to Cardioaspirin® and
Aterofisiol® (n = 107) and Cardioaspirin®

and placebo (n = 107) groups

containing 20 mg
RSV/day, 25 days

dry weight of lipid and cholesterol
in removed plaques ↓ (0.232 ± 0.018
vs. 0.356 ± 0.022; 0.036 ± 0.006 vs.
0.053 ± 0.007 mg/mg dry
weight, respectively).

Amato, 2015 [72]

Patients with type 2 diabetes mellitus and
coronary heart disease randomized into
placebo (n = 28) and RSV (n = 28) groups

500 mg/day, 4 weeks
plasma HDL-C ↑; plasma
TC/HDL-C ↓; plasma TG, TC and
LDL-C→.

Hoseini, 2019 [73]

Patients with stable coronary artery
disease randomized into placebo (n = 20)
and RSV (n = 20) groups

10 mg/day, 3 months plasma LDL-C ↓; FMD ↑; plasma
TG, TC and LDL-C→. Magyar, 2012 [74]

Patients with stable coronary artery
disease randomized into placebo (n = 25),
grape extract (n = 25) and RSV-containing
grape extract (n = 25) groups

containing ~8 mg
RSV/day for 6 months
and ~16 mg RSV/day
for following 6 months

plasma TC and non-HDL-C ↓;
inflammation ↓.

To-mé-Carneiro,
2013 [75]

Patients with stable coronary artery
disease (n = 10) treated with placebo
and RSV

330 mg/day, 3 days

FMD in patients who had
undergone coronary artery bypass
grafting ↑; FMD in those who had
undergone percutaneous coronary
intervention→.

Diaz, 2020 [76]

TG: triglyceride; TC: total cholesterol; HDL-C: high-density lipoprotein cholesterol; ox-LDL: oxidized low-density
lipoprotein; LDL-C: low-density lipoprotein cholesterol; FMD: flow-mediated dilatation. The down arrow
represents decrease; the right arrow represents no changes; the up arrow represents increase.

However, there are several studies indicating that RSV only altered a part of the lipid
profiles. In the healthy smokers’ study mentioned above, it is noted that the TC level in
plasma did not change. In the diabetes patients’ study mentioned above, the plasma TG and
HDL-C did not change. Another study enrolling 50 patients with nonalcoholic fatty liver
disease (NAFLD) showed that, although RSV supplementation (600 mg/day, 12 weeks)
could significantly reduce body weight and body mass index, there were no significant
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changes in oxidized-LDL, LDL-C/HDL-C and LDL-C/oxidized-LDL [69]. Moreover, in a
randomized double-blind study of 29 nonobese people with normal glucose tolerance (15 in
the RSV intervention group, 14 in the placebo group), RSV supplementation (75 mg/day,
12 weeks) did not alter glucose, insulin, plasma lipids, and markers of inflammation [70].
Then, the researchers performed hyperinsulinemic-euglycemic clamp experiments in dif-
ferent metabolic organs. The result showed that insulin sensitivity in the liver, skeletal
muscle, or adipose tissue did not change [70]. In accordance with this study, another study
enrolled 48 healthy and slightly overweight subjects who were treated with 30 days of
RSV (250 mg, twice a day) and caloric restriction (1000 cal/day), respectively. Compared
to caloric restriction, RSV intervention did not reduce lipid profile (HDL-C, LDL-C, TG)
but even increased total cholesterol subtly [71]. The authors concluded that 30 days of
RSV supplement had no effect on lipid metabolism. One of the possible reasons is that
RSV has little effect on the normal levels of glucose and lipid metabolism in relatively
healthy individuals. In a meta-analysis of seven randomized controlled trials, the author
concluded that RSV supplementation did not have effects on the lipid profile including
TC, LDL-C, HDL-C, and TG [77]. Another meta-analysis of 21 randomized clinical trials
published in 2018 showed that RSV could only significantly decrease TG (weighted mean
difference: 0.58 mmol/L) but had no effect on TC, LDL-C, and HDL-C [78]. In 2022, a
meta-analysis, consisting of 25 randomized controlled trials, demonstrated that RSV could
regulate plasma lipid profiles [79]. There were a total of 1171 participants in the selected
articles, which included 578 in the placebo group and 593 in the RSV intervention group.
There was a significant decrease in TC (standard mean difference: −0.15) and LDL-C
(standard mean difference: −0.42), and a significant increase in HDL-C (standard mean
difference: 0.16) following RSV administration. However, there was no significant effect of
RSV on TG. The results of these meta-analyses also indicated that RSV might have better
plasma lipid-regulating effects in hyperlipidemic patients than that in patients with normal
plasma lipids (might be lowered by statins or other drugs). Thus, it is important for the
researchers to exclude the interference of other lipid-lowering drugs in future studies.

Some studies focused on patients diagnosed with atherosclerosis. In a randomized,
prospective, and double-blind study, 214 patients with carotid stenosis >70% and in a
surgical intervention request were randomly divided into two groups, including one group
treated with one tablet of Cardioaspirin® and one tablet of Aterofisiol® (a combination of
omega-3, vitamin K2, vitamin B6, vitamin B12, procyanidolic oligomers, and 20 mg RSV),
and another group treated with Cardioaspirin® and placebo. After being intervened for
25 days, patients underwent an endarterectomy to remove plaques for further investigation.
The dry weight of lipid and cholesterol in removed plaques was significantly reduced
(0.232 ± 0.018 vs. 0.356 ± 0.022; 0.036 ± 0.006 vs. 0.053 ± 0.007 mg/mg dry weight
in Cardioaspirin® and Aterofisiol® group vs. Cardioaspirin® and placebo group) after
Aterofisiol® treatment [72]. Furthermore, many studies reported the effects of RSV on
coronary artery diseases (CAD) [73–76]. In a cohort of patients with type 2 diabetes
mellitus and CAD, participants were treated with RSV (500 mg/day) or a placebo for
4 weeks. Compared to the placebo group, the plasma HDL-C was significantly increased
(difference in the mean outcome measures between RSV and placebo groups: 3.38 mg/dL)
in the RSV administration group, while the other lipids did not significantly alter between
the two groups [73]. In a double-blind, randomized study, RSV (10 mg/day, 3 months)
supplement reduced LDL-C significantly in patients with stable CAD. More importantly,
RSV could significantly improve endothelial function by measuring flow-mediated dilation
(FMD, a marker of endothelial function) [74]. However, in another triple-blind randomized
study, the researchers reported that one year of RSV-containing grape extract supplement
(grape phenolics plus 8 mg RSV for 6 months and 16 mg for the following 6 months) had no
effect on most of the plasma lipid profiles. However, the level of an anti-inflammatory factor,
plasma adiponectin, significantly increased. Thus, they proposed the therapeutic effects
of RSV on CAD via inhibiting inflammation rather than lipid lowering [75]. Interestingly,
some studies reported the acute supplementation of RSV could alleviate CAD [76]. A study
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reported that acute supplementation of a high dose of RSV (330 mg/day, 3 days) could
significantly improve FMD in older CAD patients undergoing coronary artery bypass
grafting but not in patients undergoing percutaneous coronary intervention [76]. The
authors ascribed the contradiction to the difference in endothelium intactness after these
two surgical revascularization methods.

Altogether, the effects of RSV on atherosclerosis patients included improving lipid
metabolism, inhibiting inflammation, and enhancing endothelial function. However, due
to the distinction of RSV dosage and metabolic disorder levels among different patient
populations, the efficacy of RSV in different clinical trials varied. Thus, it is important to
further optimize the dosage and the duration of RSV in large or multicenter clinical trials
to investigate the usage of RSV in different populations.

3.2. The Effect of RSV on Hypertension

Hypertension is considered as another life-threatening vascular metabolic disease
that is characterized by vascular dysfunction and injury. The antihypertensive effect of
RSV has been proven in different animal hypertension models, including Angiotensin
II-induced hypertension [80], partial nephrectomy hypertension model [81], DOCA-salt
hypertension model [82], and early weaning induced hypertension [83], which led to many
transformational studies in hypertension.

According to the preclinical results, many clinical studies were designed to explore
the benefits of acute or chronic supplementary RSV on hypertension subjects (Table 2). In a
cohort of cardiovascular disease patients and healthy individuals, arteries were isolated
from their subcutaneous fat biopsies, and wire myography experiments (an experiment
to test artery dilatory responses) were then performed. After treatment with RSV, rapid
vasorelaxation was observed in a NO-dependent manner [84]. A similar conclusion was
also obtained by a study group that used vascular rings derived from patients undergoing
coronary artery bypass operation [85]. In other studies, the authors showed that one hour
of RSV (30, 90, and 270 mg) treatment increased FMD response in a dose-dependent manner
for healthy obese individuals [86] and hypertension patients [87] without changing artery
diameter. In addition, long-term RSV administration also has benefits for controlling blood
pressure. The same group conducted a study to investigate the effects of chronic RSV
supplementation on FMD in healthy obese adults and found that RSV (75 mg/day, 6 weeks)
induced a 23% increase in FMD [88]. In hypertension subjects, using a combination of
isolated phytochemicals (containing 60 mg of RSV, 330 mg grape seed and skin extract,
100 mg green tea extract, and 60 mg a blend of quercetin, ginkgo biloba and bilberry) for
28 days reduced diastolic pressure significantly (reduced by 4.4 mm Hg), while diastolic
blood pressure was not significantly affected [89]. There are two meta-analyses about the
effects of RSV on blood pressure [90,91]. Both meta-analyses showed that the administration
of RSV affects neither systolic nor diastolic blood pressure. However, subgroup analyses of
one meta-analysis showed that RSV reduced systolic blood pressure at a high daily dosage
(≥300 mg/day) [90]. It is speculated that low bioavailability might be one of the reasons
explaining the positive effects of RSV at high concentrations. In the other meta-analysis,
RSV demonstrated favorable, though not significant, blood pressure-lowering effects on
systolic blood pressure, mean arterial pressure, and pulse pressure [91]. Moreover, the
blood pressure-lowering effect of RSV is stronger in those with diabetes. Interestingly, both
of the meta-analyses demonstrated that RSV had potential effects on systolic blood pressure
rather than diastolic blood pressure. The underlying mechanism remains elusive. Thus,
more clinical trials need to be conducted to clarify the effects of RSV on blood pressure.
Novel methods used to enhance the efficacy of RSV in treating hypertension, such as
combining RSV with other compounds [92] and using nanocarriers [93], are also worthy to
be further developed.
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Table 2. Summary of clinical trials involving the use of RSV in hypertension.

Cohort (No.) Dose and Duration of RSV Main Outcome after RSV
Administration

First Author,
Year, Reference

Overweight/obese individuals with
untreated borderline hypertension
(n = 19) treated with 30, 90, and 270 mg
RSV doses and placebo

30, 90, and 270 mg, 1 h FMD ↑ in a dose-dependent
manner Wong, 2011 [86]

Hypertensive patients (n = 24) treated
with placebo and RSV

300 mg, acute
supplementation

FMD in women and
individuals with higher
LDL-C ↑.

Marques, 2018 [87]

Obese but otherwise healthy adults
(n = 28) treated with placebo and RSV 75 mg/day, 6 weeks FMD ↑; blood pressure→. Wong, 2013 [88]

Hypertensive individuals (n = 18)
treated with placebo and isolated
phytochemicals

containing ~60 mg RSV/day,
28 days

diastolic blood pressure ↓;
diastolic blood pressure→. Biesinger, 2016 [89]

FMD: flow-mediated dilatation. The up arrow represents increase; the right arrow represents no changes; the
down arrow represents decrease.

3.3. The Effect of RSV on Ischemia

The protective effects of RSV against ischemic diseases have been reported in many
preclinical studies including stroke [94], myocardial ischemia [95], and peripheral artery
disease [96]. The possible mechanism was that RSV could protect ECs and reduce the
damage and inflammation caused by ischemia in the blood vessel wall [97]. Accordingly,
clinical studies were conducted to investigate the effects of RSV on patients with the
ischemic disease (Table 3).

Until now, there have not been any clinical studies of RSV treatment alone for stroke
patients. Nevertheless, RSV was reported to serve as an adjuvant with the recombinant
tissue plasminogen activator (r-tPA) to improve patients’ outcomes. In this study, patients
suffering from an ischemic stroke were divided into two cohorts depending on the treatment
time interval after stroke onset (early onset-to-treatment time (OTT) group: treatment within
120 min after stroke onset; and delay OTT group: treatment between 120–240 min after
stroke onset). Then, each cohort was randomized to two groups treated with r-tPA and
r-tPA plus RSV, respectively. The results showed that co-administration of RSV and r-tPA
could prolong the clinical therapeutic window of r-tPA, which is a promising therapeutic
direction for patients receiving late stroke treatment [98]. Many clinical studies in healthy
adults and stroke-free diabetes patients also showed that RSV increased the blood flow
perfusion in cerebral vessels. In a double-blind crossover investigation, healthy adult
subjects received a placebo and RSV (250 mg and 500 mg) and then performed cognitive
tasks under the monitoring of near-infrared spectroscopy (a noninvasive brain imaging
technique). Interestingly, treatment with RSV increased cerebral blood flow during task
performance and the effect was dose-dependent [99].

The protective effects of RSV on myocardial infarction had mentioned above (in the
atherosclerosis section). These studies concluded that RSV supplementation improved
endothelial function and decreased the risk of secondary myocardial infarction [74,75].
Moreover, RSV also had protective effects on patients with stable angina pectoris [100]. This
double-blind randomized study consisted of three groups treated with RSV (20 mg/day,
60 days), calcium fructoborate (CF, a natural compound, 112 mg/day, 60 days), and RSV
plus CF, respectively. The results indicated that the level of high-sensitivity C reactive
protein and N-terminal prohormone of brain natriuretic peptide significantly decreased
(24.6% and 59.7% respectively) after RSV intervention, and the effects were enhanced by
using the combination of RSV and CF.
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Table 3. Summary of clinical trials involving the use of RSV in ischemia.

Cohort (No.) Dose and Duration
of RSV

Main Outcome after RSV
Administration

First Author,
Year, Reference

Ischemic stroke patients with a clearly
defined time of onset randomized to
r-tPA plus placebo (early
onset-to-treatment time, n = 78; delayed
onset-to-treatment time, n = 80) and
r-tPA plus RSV (early
onset-to-treatment time, n = 77; delayed
onset-to-treatment time, n = 77) groups

2.5 mg RSV/kg of body
weight (maximum
250 mg), simultaneously
with r-tPA

treatment outcomes in patients
receiving delayed r-tPA treatment ↑;
plasma matrix metalloproteinase-2
and matrix metalloproteinase-9 in
patients receiving early or delayed
r-tPA treatment ↓.

Chen, 2016 [98]

Healthy individuals (n = 22) treated
with placebo and 2 doses of RSV

250 and 500 mg/day,
45 min

cerebral blood flow during task
performance ↑ in a
dose-dependent manner

Kennedy, 2010 [99]

Patients with stable angina pectoris
randomized to RSV (n = 29), calcium
fructoborate (n = 29) and RSV plus
calcium fructoborate (n = 29) groups

20 mg/day, 60 days

plasma high-sensitivity C reactive
protein, n-terminal prohormone of
brain natriuretic peptide, TC, TG
and LDL-C ↓; plasma HDL-C ↑.

Militaru, 2013 [100]

Older people with peripheral artery
disease randomized to placebo (n = 22),
125 mg of RSV (n = 21) and 500 mg of
RSV (n = 23) groups

125 and 500 mg/day,
6 months 6-min walk distance→. McDermott,

2017 [101]

Patients with peripheral artery disease
randomized to plain old balloon
angioplasty (n = 75) and RSV
drug-coated balloon (n = 78) groups

containing 0.9 µg/mm2,
6 and 12 months

in-lesion late lumen loss at
6 months and target lesion
revascularization at 12 months
compared to plain old balloon
angioplasty group ↓; censored
walking distance ↑.

Tepe, 2017 [102]

Patients with peripheral artery disease
randomized to plain old balloon
angioplasty (n = 75) and RSV
drug-coated balloon (n = 78) groups

containing 0.9 µg/mm2,
24 months

target lesion revascularization ↓ and
walking distance ↑ compared to
plain old balloon angioplasty group

Albrecht, 2018 [103]

r-tPA: recombinant tissue-type plasminogen activator; TC: total cholesterol; TG: triglyceride; LDL-C: low-density
lipoprotein cholesterol; HDL-C: high-density lipoprotein cholesterol. The up arrow represents increase; the down
arrow represents decrease; the right arrow represents no changes.

The main causes of peripheral artery diseases are atherosclerosis and diabetes. Several
clinical studies focus on the protective efficiency of RSV on peripheral artery diseases. In the
RESTORE study, researchers determined a six-min walk distance as the primary outcome
to evaluate blood perfusion of lower extremities in older patients with peripheral artery
disease [101]. After 6 months of RSV (125 mg and 500 mg) supplementation, they drew a
passive conclusion that RSV could not improve the walking performance in these patients,
even after they decrease the statistical power (p < 0.1). Subsequently, some novel techniques
provided promising prospects for the use of RSV to improve peripheral vessel lesions. The
paclitaxel-RSV-matrix-coated peripheral balloon had been proven to benefit patients in the
CONSEQUENT trial [102,103]. This trial allocated patients with femoropopliteal lesions
into the paclitaxel-RSV-drug-coated balloon (DCB) group and plain old balloon angioplasty
(POBA) group randomly. The researchers collected endpoint outcomes from the patients
at 6 months, 1 year, and 2 years, and found that compared with POBA, DCB significantly
reduced in-lesion late lumen loss at 6 months and target lesion revascularization at three
periods. They also observed a significant increase in walking distance in the DCB group
which indicates the beneficial effects of RSV on peripheral artery diseases. In conclusion,
RSV is a potent regent for treating ischemia diseases. More large-scale clinical trials are
needed to further verify the effects of RSV on patients with different ischemic diseases.
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3.4. The Effect of RSV on Vascular Complications of Metabolic Disease

Metabolic diseases, including obesity, NAFLD, and diabetes, are independent risk
factors for vascular metabolic disease. In previous preclinical studies, it was reported that
RSV could modify the metabolic function and further protect blood vessels via regulating
multiple pathways, including AMPK phosphorylation, SIRT1 activation, and decreas-
ing ROS [104–107]. However, similar to the clinical studies mentioned above, although
researchers had obtained promising results in in vivo and in vitro experiments, we can-
not get a consistent conclusion about RSV efficiency from the existing clinical research
(Table 4). Some clinical studies reported that RSV supplementation could improve glu-
colipid metabolism and reduce inflammation [108–111], while some studies found that
these metabolic parameters did not change after intervention [112–114], as mentioned
above. One study even reported that RSV had adverse effects on the subjects at a high
concentration for overweight older adults (mentioned below).

Table 4. Summary of clinical trials involving the use of RSV in vascular complications of metabolic disease.

Cohort (No.) Dose and Duration
of RSV

Main Outcome after RSV
Administration

First Author,
Year, Reference

Obese but otherwise healthy men
(n = 10) treated with placebo and RSV 150 mg/day, 30 days

postprandial plasma glucagon
responses ↓; fasting plasma glucagon,
glucagon-like peptide-1 and
glucose-dependent insulinotropic
polypeptide levels→.

Knop, 2013 [108]

Patients with non-alcoholic fatty liver
disease randomized into placebo
(n = 30) and RSV (n = 30) groups

600 mg/day,
3 months

plasma TC, LDL-C, glucose, aspartate
aminotransferase and alanine
aminotransferase ↓; plasma insulin, TG
and HDL-C→.

Chen, 2015 [109]

Patients with type 2 diabetes
randomized into placebo (n = 38) and
RSV (n = 38) groups

1000 mg/day,
8 weeks

plasma glucose ↓; plasma HDL-C ↑; TG,
TC and LDL-C→. Abdollahi, 2019 [110]

Individuals at high risk of
cardiovascular disease randomized into
placebo (n = 25), RSV-rich grape
supplement (n = 25) and grape
supplement lacking RSV
(n = 25) groups

8 mg/day for
6 months;
16 mg/day for
following 6 months

high-sensitivity C-reactive protein,
tumor necrosis factor-α, plasminogen
activator inhibitor type 1 and
interleukin-6/interleukin-10 ratio ↓;
anti-inflammatory interleukin-10 ↑.

To-mé-Carneiro,
2012 [111]

Obese individuals with nonalcoholic
fatty liver disease randomized into
placebo (n = 8) and RSV (n = 8) groups

1500 mg/day,
6 months

basal and insulin-mediated very
low-density lipoprotein-TG secretion,
oxidation and clearance rates→.

Poulsen, 2018 [112]

Patients with well-controlled type 2
diabetes (n = 17) treated with placebo
and RSV

150 mg/day, 30 days
hepatic and peripheral insulin
sensitivity and intrahepatic lipid
content→.

Timmers, 2016 [113]

Patients with type 2 diabetes (n = 14)
treated with placebo and RSV

1000 mg/day,
5 weeks

glucagon-like peptide 1 secretion and
glycemic control→. Thazhath, 2016 [114]

Older glucose-intolerant individuals
(n = 30) treated with placebo and RSV 2–3 g/day, 6 weeks reactive hyperemia index ↑, plasma

lipid profiles and blood pressure→. Pollack, 2017 [115]

Patients with fatty acid oxidation (n = 9)
treated with placebo and RSV

1000 mg/day,
4 weeks

fatty acid oxidation and exercise
capacity→. Storgaard, 2022 [116]

Patients at risk of developing type 2
diabetes mellitus (n = 8) treated with
placebo and RSV

150 mg/day, 34 days arterial 18F-fluoroxyglucose uptake and
arterial inflammation→.

Boswijk, 2022 [117]

Overweight and obese pediatric
subjects randomized to placebo (n = 11)
and antioxidant supplementation
(n = 16) groups

containing 20 mg
RSV/day, 6 months

post-occlusive release hyperemic delta
flow at 6 months ↑. Pecoraro, 2022 [118]
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Table 4. Cont.

Cohort (No.) Dose and Duration
of RSV

Main Outcome after RSV
Administration

First Author,
Year, Reference

Older adults with abdominal obesity
(n = 22) treated with placebo and RSV
plus curcumin

containing 200 mg
RSV, 30 min before
consuming the
high-fat meal

cumulative postprandial response of
soluble vascular cell adhesion
molecule-1 ↓; circulating inflammatory
markers and adhesion molecules→.

Vors, 2018 [119]

Overweight and slightly obese
individuals (n = 45) treated with
placebo and RSV

150 mg/day, 4 weeks
plasma lipid profiles, glucose, insulin,
and markers for inflammation and
endothelial function→.

van der Made,
2015 [120]

Overweight and slightly obese
individuals (n = 45) treated with
placebo and RSV

150 mg/day, 4 weeks

plasma lipid profiles, glucose, insulin,
and markers for inflammation and
endothelial function in the fasting state
or postprandial phase→.

van der Made,
2017 [121]

Overweight older individuals
randomized into placebo (n = 10),
300 mg RSV (n = 10), and 1000 mg RSV
(n = 9) groups

300 and
1000 mg/day,
90 days

soluble vascular cell adhesion
molecule-1 and total plasminogen
activator inhibitor ↑ in the 1000 mg RSV
vs. 300 mg RSV and placebo groups

Mankowski,
2020 [122]

TC: total cholesterol; LDL-C: low-density lipoprotein cholesterol; TG: triglyceride; HDL-C: high-density lipopro-
tein cholesterol. The down arrow represents decrease; the right arrow represents no changes; the up arrow
represents increase.

In older patients with glucose intolerance, RSV was administrated at 2–3 g daily for
6 weeks. The reactive hyperemia peripheral arterial tonometry was used to determine
vascular function. The results showed that RSV supplementation could significantly
increase the reactive hyperemia index which indicated its potential to improve vascular
function [115]. However, they failed to observe the alteration of gene expression related
to glucose metabolism [115]. Similarly, in a double-blind randomized crossover trial,
the fatty acid oxidation capacity did not alter after the RSV supplement (1000 mg/day,
4 weeks) in patients with very long-chain acyl-CoA dehydrogenase deficiency or carnitine
palmitoyl transferase II deficiency [116]. In another double-blind randomized crossover
trial, RSV (150 mg/day, 34 days) could not reduce arterial inflammation as measured with
18F-fluorodeoxyglucose PET in subjects at risk of developing type 2 diabetes mellitus [117].
Unfortunately, although the beneficial effects of RSV on CAD patients with potential
dyslipidemia (mentioned in the previous section) and pediatric obese subjects [118] had
been reported in some studies, some clinical studies about the effects of RSV on NAFLD
or obese subjects’ vascular function showed passive results. These studies indicated that
RSV supplementation had no effect on the levels of plasm-soluble adhesion molecules,
inflammatory markers, and biomarkers of endothelial function [119–121]. However, the
concentrations used in these trials were relatively low. Surprisingly, in a study, it was
reported that RSV even significantly increased cardiovascular disease risk factors (such as
intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and oxidized-LDL) at
a high concentration (1000 mg/day, 90 days) in overweight older adults [122]. The possible
reason might be that the tissues were in the repair process during which pro-inflammatory
processes and free radical formation are present [123]. The specific mechanism needs to be
further explored.

4. Conclusions

RSV might have great potential for the treatment of vascular metabolic diseases from
numerous preclinical studies. Although the results from different clinical trials remain
controversial, we proposed that RSV had better therapeutic effects at high concentrations
and for patients with metabolic disorders. Thus, it is still very important and urgent to
identify the molecular mechanism of RSV in vessels wall, and perform larger and higher
levels of clinical studies to further confirm the effects of RSV in patients with vascular
metabolic diseases.
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