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Structural insights into the 
Middle East respiratory syndrome 
coronavirus 4a protein and its 
dsRNA binding mechanism
Maria Batool, Masaud Shah, Mahesh Chandra Patra, Dhanusha Yesudhas & Sangdun Choi

Middle East respiratory syndrome coronavirus (MERS-CoV) has evolved to navigate through the 
sophisticated network of a host’s immune system. The immune evasion mechanism including type 1 
interferon and protein kinase R-mediated antiviral stress responses has been recently attributed to 
the involvement of MERS-CoV protein 4a (p4a) that masks the viral dsRNA. However, the structural 
mechanism of how p4a recognizes and establishes contacts with dsRNA is not well explained. In 
this study, we report a dynamic mechanism deployed by p4a to engage the viral dsRNA and make it 
unavailable to the host immune system. Multiple variants of p4a-dsRNA were created and investigated 
through extensive molecular dynamics procedures to highlight crucial interfacial residues that may be 
used as potential pharmacophores for future drug development. The structural analysis revealed that 
p4a exhibits a typical αβββα fold structure, as found in other dsRNA-binding proteins. The α1 helix 
and the β1-β2 loop play a crucial role in recognizing and establishing contacts with the minor grooves 
of dsRNA. Further, mutational and binding free energy analyses suggested that in addition to K63 and 
K67, two other residues, K27 and W45, might also be crucial for p4a-dsRNA stability.

The innate immunity of host cells is the first line of defense that initiates a protective response against pathogenic 
microorganisms and viruses1. Germline-encoded receptors of the innate immune system protect the host cells 
from infection by pathogenic intruders2, while pathogens constantly evolve various strategies to circumvent the 
host’s protective responses3. Host cells are equipped with counter mechanisms to detect virus-encoded molec-
ular patterns and propagate an antiviral response. Viral double-stranded RNA (dsRNA) is a well-characterized 
pathogen-associated molecular pattern recognized by cytosolic pattern recognition receptors retinoic acid induc-
ible gene-1 (RIG-1), melanoma differentiation-associated protein 5 (MDA5), and endosomal toll-like receptor 3 
(TLR3), resulting in type 1 interferon (IFN1) production4. Viruses employ a unique evasion mechanism by syn-
thesizing proteins that hinder the IFN1 production and secretion pathways. For instance, influenza A virus uses 
non-structural protein 1 to bind dsRNA5, inhibiting RIG-1-like receptors and TLR3-dependent IFN1 synthesis. 
Dengue virus, on the other hand, prevents IRF3 phosphorylation through the non-structural protein 2B3 pro-
tease complex6. Similarly, Middle East respiratory syndrome coronavirus (MERS-CoV) implements a mechanism 
to evade dsRNA sensors including RIG-1, MDA5, and endosomal TLR3 of the host immune system. Subsequent 
studies have found that MERS-CoV is much more sensitive to IFN1 treatment than severe acute respiratory 
syndrome coronavirus (SARS-CoV)7–10. This viral interference in the host innate immune pathway enhances 
virus-induced disease progression and elevates the mortality rate to 60%11, 12.

MERS-CoV is a major cause of chronic respiratory diseases and the first case was reported in Jeddah in 
201213. The natural habitat of the virus is not known; however, phylogenetic analyses show that bat coronaviruses 
bCoV-HKU4 and bCoV-HKU5 are the closest neighbors to MERS-CoV, suggesting that the virus can be spread 
by bats14. The genome organization of MERS-CoV is similar to SARS-CoV, in which non-structural proteins 
responsible for genome replication cover two-thirds of the genome. The remaining parts of the genome encode 
structural (membrane, spike, nucleocapsid, and envelope proteins) and accessory proteins15, 16. Once MERS-CoV 
enters the cells with the help of dipeptidyl peptidase–4 receptors17, it starts replicating by manipulating and mod-
ulating the host cells’ metabolism18, including antigen presentation, apoptosis, mitogen-activated protein kinase, 
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and innate immune response. MERS-CoV interrupts IFN1 response of the cell and may encode certain proteins 
that help the virus to escape from the host immune system. The accessory proteins 3, 4a, 4b, 5, and 8b, encoded by 
various open reading frames, inhibit IFN1 production in the infected cells, mainly in dendritic cells19.

Viral-dsRNA is the principal agent that triggers the host immune response mediated by RIG-1, MDA520, 21, 
and endosomal TLR3. RIG-1 recognizes dsRNA through its dsRNA-binding domain (dsRBD) and undergoes 
conformational changes to expose its caspase activation and recruitment domain. Activated RIG-1 initiates a 
downstream signaling cascade involving mitochondrial antiviral signaling adaptor protein and kinases TBK1 and 
IKKε, leading to the activation and nuclear translocation of transcription factors IRF3 and IRF7, which facilitate 
IFN1 promoter activity22.

MERS-CoV utilizes protein 4a (p4a) to ensure its replication without being detected by the RIG-1 and MDA5 
receptors23. Further, p4a contains a dsRNA-binding motif (DSRM), which binds directly to the viral dsRNA and 
masks its recognition by TLR3 and RIG-123. Mutational studies have shown that two amino acids, K63 and K67, 
in the p4a-DRSM play crucial role in RNA association and p4a-dsRNA complex stability22. Other studies also 
provided consistent results that p4a antagonizes IFN1 induction in host cells23. Thus, the inhibition of p4a would 
allow the host cells to restore anti-MERS-CoV immune response.

Several research groups have been trying to formulate an effective anti-MERS-CoV vaccine or drug to 
prevent future epidemics24–29. Recently, a few drugs have been suggested to inhibit viral replication; however, 
these have not been tested in vivo30–33. In this study, we conducted computational studies and constructed a 
three-dimensional (3D) model of p4a to understand the structural aspects and its dsRNA recognition mech-
anism. Based on the experimental knowledge learned and our analyses, we created multiple variants of p4a 
through in silico mutagenesis and vetted them for their underlying effects on p4a-dsRNA binding stability. The 
results from this study may be useful as a guide for future studies on developing high-affinity p4a inhibitors 
through rational drug design approaches.

Results
Protein modeling and p4a-dsRNA interface analyses.  The high-resolution 3D structure of a protein 
and its interacting partners are of crucial concern when their interaction mechanisms need to be deciphered. In 
addition, only 3D atomic level structures can suggest plausible druggability of viral proteins. However, in this 
particular case, a high-resolution 3D structure of MERS-CoV p4a, alone or bound to dsRNA, is not available. 
Thus, p4a-DSRM, containing 72 amino acid residues, was modeled and investigated for its structural stability. 
1YYK34, the crystal structure of Aquifex aeolicus dsRNA binding protein, was used as a template, with a TM-score 
of 0.7577 suggested by Iterative Threading ASSEmbly Refinement (I-TASSER) modeling server, to build p4a 
model. The sequence alignment of p4a with 1YYK shows a satisfactory normalized Z score of 1.27 (a normalized 
Z score > 1 is considered as a good score). The pairwise sequence alignment obtained from the T-COFFEE server 
also showed a satisfactory score of 76 (Fig. 1a). After the validation of structures obtained from different servers 
and tools (Supplementary Table S1), the 3D structure obtained from I-TASSER was selected as the best model 
for further studies. The 3D structure validation and protein geometry results were found to be satisfactory, as 
provided by the ProSA web server. Thr19, Tyr22, and Ala50, located in loop regions, were found to be outside of 
the core region in the Ramachandran plot (Fig. 1b). However, an overall ERRAT quality factor and Z-score val-
ues, calculated using ProSA-web, were found to be satisfactory (Supplementary Table S1). The obtained structure 
of p4a-DSRM exhibited a typical dsRBD structure that adopts an αβββα fold (Fig. 1c). This particular folded 
structure has been endowed with the ability to recognize and bind to dsRNA35. To validate the arrangement of 
the secondary structural elements, the modeled protein was compared with the predicted secondary structure. 
MERS-CoV p4a consists of 33% helix, 33% strands, and 34% coils. In the model, the helices α1 and α2 span from 
residue positions 3 to 13 and 61 to 71, while β1, β2, and β3 span from residues 27 to 34, 42 to 48, and 53 to 58, 
respectively (Fig. 1d).

The optimized p4a model was selected and subjected to a structural similarity search. The TM-align36 web 
server was used to match the structural feature of the query model to all Protein Data Bank (PDB) structures. 
Interestingly, we found that all of the top ten structures having the highest structural similarity with p4a were 
dsRBD-containing proteins (Table 1). Based on the TM-score and high similarity in protein structures, as pre-
dicted through a global structure comparison, it is very likely that the target protein has the same function as the 
query. For a plausible functional annotation of p4a, a meta-server COACH37 was used. COACH also suggested 
the same top two structures suggested by TM-align.

Knowing the structural features and plausible dsRNA binding residues, we further investigated the RNA inter-
action mechanism of MERS-CoV p4a. A protein-RNA docking protocol was used to identify the binding inter-
face and crucial residues in p4a. Residues in the α1 helix and β1-β2 loop regions make contact with the minor 
grooves of the dsRNA. However, K63 and K67, present in the α2 helix, make dominant contacts with the major 
groove of RNA (Supplementary Fig. S1). To decipher the involvement of all interfacial residues in p4a-dsRNA 
interaction and stability, we extended our analysis to computational mutagenesis.

Computational mutageneses of p4a-dsRNA interfacial amino acids and their subsequent 
impact.  An in silico mutagenesis study was performed to identify the specific residues of p4a influencing 
dsRNA binding. The binding free energy difference between a given residue and an alanine substitution suggests 
the significance of that particular residue in complex stability. The involvement of a particular amino acid, in 
terms of energy, in the p4a-dsRNA complex can be calculated in the form of relative binding affinity (dAffinity) 
and relative thermostability (dStability) by the protein design tool of molecular operating environment (MOE) 
program (Table 2). Positive dAffinity values indicate that the RNA-binding affinity of p4a is reduced if a particular 
residue is mutated to alanine and vice versa. Similarly, mutants with positive dStability scores show less stable 
mutations. This suggests that native-to-alanine mutants with positive and high dAffinity and dStability values 
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are hotspots and play a vital role in p4a-dsRNA complex formation (Supplementary Table S2). To validate this, 
we used the I-Mutant 2.0 web server, which generated similar results (Table 2). The residues were labeled as hot, 
warm, and null based on the free energy value differences38. Residues with a change in free energy value (ΔΔG) 
less than 0.5 kcal/mol were assigned as null or unimportant residues. Those having values between 0.5 and 1.5 
kcal/mol were assigned as warm residues and those with values more than 1.5 kcal/mol were assigned as hotspot 
residues. ΔΔGbinding represents the difference between the binding energy of p4a mutants and wild type, at a 
particular position.

Figure 1.  Structural representation of the MERS-CoV protein 4a. (a) Alignment of MERS-CoV p4a and 
template sequences. The quality of the alignment is highlighted using different colors. The rose color represents 
good alignment and the yellow color highlights average alignment between p4a and template residues. (b) A 
Ramachandran plot, depicting backbone dihedral angles ψ against ϕ of amino acid residues in a 3D model of 
p4a. The red color in the X-Y plot represents the core region, while the brown color represents the generously 
allowed region. (c) The 3D structure of the dsRNA-binding domain (dsRBD) of MERS-CoV p4a adopts a 
distinctive topology (αβββα) found in other DSRM-containing proteins. (d) The predicted secondary structure 
of p4a was in agreement with the built 3D model.

Rank PDB TM-s RMSD1 IDEN2 Cov3

1 1di2A 0.81 0.77 0.161 0.861

2 3adlA 0.803 0.84 0.194 0.861

3 2ez6B 0.793 1.09 0.21 0.861

4 1uhzA 0.78 1.22 0.21 0.861

5 1rc7A2 0.78 1.18 0.21 0.861

6 2cpnA 0.727 1.38 0.21 0.861

7 3adgA 0.723 1.39 0.246 0.847

8 3llhA 0.72 0.91 0.161 0.778

9 1x49A 0.718 1.4 0.217 0.833

10 4dkkA 0.717 1.35 0.103 0.806

Table 1.  Proteins structurally and functionally close to MERS-CoV p4a. Ranking of similar proteins is based on 
the TM-score of the structural alignment between the query structure and known structures in the PDB library. 
1RMSD is the RMSD between residues that are structurally aligned by TM-align. 2IDEN is the percentage 
sequence identity in the structurally aligned region. 3Cov represents the coverage of the alignment by TM-align 
and is equal to the number of structurally aligned residues divided by the length of the query protein.
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∆∆ = ∆ − ∆G G binding G bindingbinding MUT WT

Our results showed that among the ten interfacial residues selected for mutation, two previously reported 
substitutions, K63A and K67A, were found to be comparatively less important in terms of change in stability and 
affinity as compared to N8, K27, and W45 (Table 2). However, K63 and K67 were among the top five hotspots. 
Three other residues N8, K27, and W45 were considered as hotspots and their ΔΔG were logged as −1.25, −1.18, 
and −2.90 (kcal/mol), respectively, whereas their dStability values were 3.35, 0.14, and 5.61 (kcal/mol), respec-
tively (Table 2). These results imply that W45 located in the β2 strand of p4a may have a significant impact on 
and could disrupt p4a-dsRNA interaction. However, the selected hotspots were further investigated by molecular 
dynamic (MD) simulations to highlight their direct or indirect impact on p4a-dsRNA stability.

Structural dynamics of the hotspot residues and their impact on p4a-dsRNA stability.  The 
wild type and mutant complexes were simulated three times in an explicit water environment for 200 ns each. 
The deviation of backbone atoms was examined by the root mean square deviation (RMSD). We observed that 
the RMSD of the wild type complex substantially increased in the beginning, up to 4 Å around 60 ns. However, 
this deviation then reduced gradually and oscillated around 3 Å after 60 ns MD simulations (Fig. 2a). In contrast, 
the mutant complexes showed dissimilar patterns of backbone deviation. The backbone RMSD of all complexes 
exhibited variable behavior during the 200 ns MD simulations (Fig. 2b–f). The K63A mutant had a stable RMSD 
(~2 Å) throughout the simulation and reached equilibrium in the end (Fig. 2c), whereas the N8A and W45A 

Mutation ΔΔG1 (kcal/mol) dAffinity2 dStability3

N8A −1.25 3.35 0.523

K27A −1.18 10.11 0.14

W45A −2.90 5.61 5.60

K63A −0.14 0.22 −0.70

K67A 0.11 0.57 −0.20

Table 2.  Alanine scanning mutagenesis. Mutational hotspot residues generated by the MOE program and 
I-Mutant server. ΔΔGbinding is the difference between the binding energy of a mutant (ΔGMUT) and the wild 
type (ΔGWT). A positive dAffinity value indicates reduced binding affinity of the complex and positive dStability 
means less stable mutations. 1Difference in binding energies of mutant and wild type residue obtained from 
I-Mutant server. 2The relative binding affinity of the mutation to the wild type protein. A more negative value 
indicates a mutation with better affinity. 3The relative thermostability of the mutation with respect to the wild 
type protein. A more negative value indicates a more stable mutation.

Figure 2.  Root mean square deviation (RMSD) of the wild type and alanine mutants of p4a. The RMSD graph 
shows the deviation of the backbone atoms (from the initial state) of the RNA-binding domain of p4a over the 
200 ns simulation (a) wild type, (b) K27A, (c) K63A, (d) K67A, (e) N8A, and (f) W45A.
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mutants exhibited high RMSD fluctuations throughout the MD run (Fig. 2e and f). The variations in the back-
bone fluctuation of the mutant complexes point to the involvement of these residues in p4a-dsRNA stability. The 
superimposed RMSD graphs of all complexes of each repeat are provided in Supplementary Fig. S2.

To understand the effect of individual amino acids of p4a-dsRNA wild type and mutant complexes, we ana-
lyzed the root mean square fluctuations (RMSF). The wild type complex showed greater fluctuations between 
residues 10 and 20 (part of the α1 helix region), while the rest of the residues were quite steady during the MD 
simulation (Fig. 3a). However, the mutant complexes displayed local fluctuations at various positions (Fig. 3b–f). 
A closer analysis revealed that all p4a-mutants (except K27A) had distinct RMSF peaks between residues 10 and 
20 and they contained few additional peaks that did not occur in the wild type complex. Therefore, the stability 
of specific residues during the MD simulation might be dependent on their interactions with the original resi-
dues that were mutated to alanine. Interestingly, the substitutions N8A, K27A, W45A, and K67A resulted in an 
increased fluctuation between residues 30 and 40 (the β1-β2 loop region), while K63A was relatively stable at 
this position (Fig. 3b–f), which is consistent with the RMSD observation. This β1-β2 loop plays a crucial role 
in identifying the minor groove in dsRNA. In N8A (Fig. 3e), the loop residues spanning from 13 to 26 and 31 
to 42 showed larger RMSF peaks, whereas, in W45A (Fig. 3f), the α1 helix residues spanning from 3 to 12 dis-
played high fluctuations. These findings suggest that mutating these residues might not have any direct effect 
on p4a-dsRNA binding; however, they may distantly affect the stability of other residues that are vital in the 
interaction.

After observing the backbone deviations and local fluctuations of the complexes, we calculated the radius 
of gyration (Rg) to understand the overall compactness of the wild type and mutant p4a complexes. All of the 
mutant complexes showed discrete patterns for Rg values throughout the MD simulation. In particular, the 
mutants K27A, W45A, and K63A were distinct as compared to the wild type in terms of Rg values, likely due 
to the point mutations (Supplementary Fig. S3). To investigate the correlated residue motions, contact maps 
were plotted as a function of residue number. The residue contact maps showed a few structural deviations from 
positions 20 to 30 and 50 to 60 in all mutants as compared to the wild type. However, in W45A, these internal 
structural changes were found to be minor (Supplementary Fig. S4).

Intermolecular interactions between dsRNA and p4a variants.  The MD simulations were used to 
optimize and understand the possible binding mechanism of dsRNA with p4a as well as its alanine-variants. 
In order to understand the effect of alanine mutations on the interaction of p4a with dsRNA, we performed a 
comparative analysis of intermolecular hydrogen bond (h-bond) patterns before and after the 200 ns MD simu-
lations (Fig. 4). Analysis of h-bonds formed between dsRNA and wild type p4a revealed that the hotspot residues 
K27, K63, K67, N8, and W45 make h-bonds with dsRNA. Time-dependent calculations of interaction distances 
revealed that K67, K63, K27, and W45 had consistent interactions with dsRNA during the MD simulations 
(Supplementary Fig. S5a). Mutating these residues substantially affected the intermolecular h-bond numbers 

Figure 3.  Root mean square fluctuation (RMSF) of the wild type and alanine mutants of MERS-CoV p4a. 
Residue fluctuations, monitored for the Cα atoms of the protein over the entire trajectory, are shown. Each 
panel represents variants of p4a and navy blue pointers highlight the most fluctuating elements and positions of 
mutants. Blue arrows in (a) highlight the residues in the wild type before mutation and red arrows indicate the 
mutant residue in (b) K27A, (c) K63A, (d) K67A, (e) N8A, and (f) W45A.
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between p4a and dsRNA. The N8A and W45A variants surprisingly reduced this number from 12 (wild type) 
to ~7 (mutants) (Fig. 4f and g; Supplementary Fig. S5b). The K67A variant also exhibited a reduction trend in 
h-bond numbers, similar to that observed in the N8A and W45A variants. The decrease in the h-bond number in 
the mutants W45A and N8A highlight the importance of these residues in the binding of dsRNA and p4a. Both 
h-bond numbers and RMSF values indicate that mutations at these three positions have a distant effect on loop 2 
located between β1 and β2 strands.

Molecular dynamic motions of p4a variants.  In order to identify the dominant motions in p4a-dsRNA 
wild type and mutant complexes, a principal component analysis (PCA) was performed, in which most of the 
combined dominant motions were captured by the first 10 eigenvectors. The amplitude of the corresponding 

Figure 4.  Hydrogen bonds calculated between the wild type and mutant p4a-dsRNA complexes before and 
after simulations. Changes in the number of hydrogen bonds were calculated for the wild type and mutant 
p4a-dsRNA complexes before and after the 200 ns MD simulations. (a) The type of residues and nucleotides 
involved in h-bonding are shown for the wild type p4a before simulation, while the change in the number 
and type of residues involved in h-bonding after the MD simulation are shown as follows: (b) wild type, (c) 
K27A, (d) K63A, (e) K67A, (f) N8A, and (g) W45A. Blue and red colors show the amino acids and RNA bases, 
respectively.
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eigenvalues gradually dropped and attained constrained and more localized fluctuations. The first 10 eigenvec-
tors were generated from the trajectory and inspected for their contribution to the total fluctuation of p4a var-
iants. PCA for wild type p4a indicated that the first five eigenvectors accounted for ~80% of the variance in the 
motion observed in the MD trajectory. A similar pattern was exhibited by the N8A, W45A, and K63A variants. 
However, in the case of K27A and K67A, the first eigenvector accounted for three-fourths of the total variance of 
the first five eigenvectors (Supplementary Fig. S6). The first three eigenvectors were plotted against each other and 
two-dimensional plots were generated to compare the conceivable attributed motions (Supplementary Fig. S6). 
These plots display the variance in the conformational distribution of the p4a-dsRNA complex indicated by each 
dot in the respective plot. The continuous color representation (from blue to white to red) highlights the periodic 
jumps between these conformations.

Porcupine plots were constructed to visualize the movements graphically using the structural coordinates 
of the first eigenvector for each variant, as shown in Fig. 5. In the wild type, helix α1 had the highest motion 
parallel to the axis of the dsRNA; however, loop 2 exhibited a dormant behavior. As shown in Fig. 5b and f, 
substituting K27 and W45 with alanine greatly affected the stability of loop 2. The amplitude of the eigenvectors 
was substantially high in these two mutants, indicating a moving tendency away from the dsRNA (Fig. 5b, f, and 
Supplementary Fig. S7). Other mutants N8A and K67A also exhibited considerable fluctuations in loop 1; how-
ever, this loop was relatively less important for p4a-dsRNA stability, as we could not observe any considerable 
contribution to p4a-dsRNA interaction from this loop. Overall, the domain motions showed that the mutations 
in the β1 or β2 strands or the loop between these two strands could greatly influence the dynamics of dsRNA 
binding to p4a.

To investigate the functional displacements of p4a atoms as a function of time, we constructed and analyzed a 
dynamics cross correlation matrix (DCCM). Different patterns of correlated motions were observed in all mutant 
complexes compared to wild type complexes. However, the difference in the correlation of atomic displacements 
was prominent in K27A, while K63A presented a smaller number of correlated motions. Wild type and K63A 
showed a similar behavior for correlated displacements, while N8A and K67A showed negatively correlated dis-
placements (Fig. 6). W45A displayed weak, negatively correlated motions at residues 35 to 72; however, it showed 
partial correlations among the residues before 35. In the wild type complex, helix α1 of K67A and N8A had 
highly correlated movements. The movement of loop 2 varied among different complexes, which agrees with 
the corresponding RMSF (Fig. 3) and porcupine plot data (Fig. 5). In the wild type, the atomic displacement was 
not correlated initially, but later it indicated slightly negatively correlated motions as the simulation progressed. 
In all other complexes, loop 2 revealed negatively correlated movements except for a few residues having minor 
correlated displacements. Helix α2 depicted similar correlated movements in all complexes except for the wild 
type complex. In short, all mutants exhibited different correlated motions than did the wild type complex, where 
most of the residues showed negative correlations except for those of helix α2.

Figure 5.  Principal component analysis (PCA) of p4a. Porcupine plots are drawn using PyMOL to visualize 
the movements of the first eigenvector obtained from the PCA analysis. In (a) wild type, (b) K27A, (c) K63A, 
(d) K67A, (e) N8A, and (f) W45A, red cones depict the direction of movements of protein subdomains and the 
length of a cone represents the magnitude of the movement.
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Exploring the transition pathway from metastable to native states.  The first two eigenvectors 
were used to plot and calculate the free energy landscape (FEL) and to determine the dominant native and meta-
stable states of p4a and its variants during the 200 ns trajectory time. Structural coordinates were extracted from 
the low energy states to understand structural evolution. In Fig. 7, black color represents the lowest Gibbs energy 
states, while the numbers represent the positions of the structural coordinates sampled from that locus on the FEL 
plot. The occurrence time of these coordinates was then tracked and marked on the RMSD plots of the respective 
variants (Fig. 2). The FEL plot showed that the wild type attained three different energy states (two metastable 
and one native) separated by high-energy barriers; however, it remained in one energy state for most of the time 
(Fig. 7a). The experimentally reported mutant K63A remained in one dominant native state and did not show a 
transition to any other native or metastable state during the entire simulation (Fig. 7c). This was also recorded 
in the backbone RMSD plot, where K63A remained stable throughout its MD trajectory (Fig. 2c). The PDB 
coordinates, obtained from four different points at the lowest energy state of the FEL plot, corresponded to mul-
tiple points between 116–200 ns on the RMSD plot. Other variants, however, exhibited different behavior on the 
FEL plots and different Gibbs energies. N8A and K27A visited multiple metastable states during their structural 
evolution in MD simulations and were separated by low- and high-energy barriers, respectively (Fig. 7b, and e). 
The K27A variant, however, exhibited a clear transition from one state to another energy state. Interestingly, the 
same transition trend was observed in its backbone RMSD plot, where the K27A complex remained stable until 
~130 ns of the MD run; its RMSD then suddenly increased and started fluctuating relatively high, as compared to 
the first 130 ns, for the last 50 ns (Fig. 2b). The W45A and N8A variants exhibited similar behavior; however, the 
W45A plot was less diffused and the states were separated by lower-energy barriers compared to N8A. The FEL 
map depicted that the second experimentally reported variant K67A stayed at one native state during the entire 
simulation; nonetheless, this energy state was more diffused and broader than the K63A variant (Fig. 7d).

Monitoring RNA-binding affinity of p4a variants in terms of binding free energy.  The energetic 
parameters that describe the binding interaction between dsRNA and p4a in both wild type and mutant com-
plexes were analyzed by the Molecular Mechanics Poisson−Boltzmann Surface Area (MMPBSA) approach. For 
this purpose, we extracted 500 snapshots from the trajectory of the last 10 ns of the MD simulation. Partitioning 
of the binding free energy into its individual components; i.e. van der Waals (vdW), electrostatic, polar solvation, 
and solvent accessible surface area (SASA) energies, revealed important factors to analyze the affinity of the p4a 
wild type and its mutants with dsRNA (Table 3).

The wild type complex showed the highest cumulative binding energy (−6,092.3 kJ/mol), contributed to 
by high individual energy terms as compared to the mutant complexes. Interestingly, the total binding energy 

Figure 6.  Dynamic cross correlation map (DCCM). The DCCM map for (a) wild type, (b) K27A, (c) K63A, 
(d) K67A, (e) N8A, and (f) W45A shows the correlated motions of protein residues in wild type and mutant 
complexes. The cyan color represents positive correlation and the pink color represents negative correlation. 
The color gradients represent a gradual decrease in the correlation.



www.nature.com/scientificreports/

9Scientific REPOrTS | 7: 11362  | DOI:10.1038/s41598-017-11736-6

(−5,952.0 kJ/mol), including electrostatic energy (−7,365.1 kJ/mol) and polar solvation energy (1,828.1 kJ/mol), 
of W45A was very close to the wild type complex. However, the vdW energy was considerably increased (−373.8 
(43.5) kJ/mol). This is because the hydrophobic indole sidechain of W45 establishes two contacts (one hydrogen 
bond donor and one π-C) with ribose sugars of the RNA. W45A has less influence on the total electrostatic state 
of the p4a-dsRNA complex but considerably affects the vdW energy. This might be the reason why N8A and 
W45A showed insignificant changes in binding free energy but considerably influenced the overall stability of 
the complexes (Table 2).

Among the mutant complexes, K63A and K67A showed the lowest cumulative binding energies (−4,544.9 
and −4,753.0 kJ/mol, respectively), suggesting that these positions could be essential for binding dsRNA pre-
dominantly through electrostatic interactions, given that positively charged K63 and K67 are complementary to 
the negatively charged dsRNA. However, this decreasing trend in the binding affinity was not witnessed for the 
K27A mutant, although comparatively lower total binding energy (5,871.0 kJ/mol), vdW energy (−305.6 kJ/mol), 
and SASA energy (−34.4 kJ/mol) scores were recorded than for the wild type. In all complexes, a positive polar 
solvation energy opposed complex formation, but strong electrostatic, vdW, and SASA energies favored complex 
formation. Taken together, the order of dsRNA binding affinities could be summarized as wild type > N8A > 

Figure 7.  Free energy landscape (FEL) of the p4a and its variants. (a) Wild type, (b) K27A, (c) K63A, (d) K67A, 
(e) N8A, and (f) W45A represent the FEL obtained from the first two eigenvectors. The black color represents 
the lowest energy state while a continuous change from purple to yellow color highlights an increase in the 
Gibbs energy of the respective complexes. The numbers on each FEL plot correspond to the coordinates 
extracted from a specific time frame and analyzed for structural evolution.

Mutants 1ΔvdW
2Δelec

3Δps
4Δsasa

5ΔGtot

Wild type −503.7 (24.6) −7359.1 (153.8) 1819.7 (144.8) −49.2 (2.3) −6092.3 (155.8)

K27A −305.6 (30.1) −7212.5 (200.0) 1681.5 (184.8) −34.4 (2.8) −5871.0 (103.7)

K63A −459.5 (26.1) −5547.1 (143.4) 1508.3 (123.8) −46.5 (2.1) −4544.9 (139.3)

K67A −406.8 (24.8) −5860.4 (108.5) 1555.2 (75.1) −40.9 (2.4) −4753.0 (104.3)

N8A −373.2 (27.4) −6875.2 (135.8) 1280.5 (100.5) −38.9 (2.5) −6006.8 (121.7)

W45A −373.8 (43.5) −7365.1 (138.3) 1828.1 (104.7) −41.2 (4.8) −5952.0 (132.0)

Table 3.  MMPBSA binding free energy (kJ/mol) partitioning of wild type and mutant 4a-dsRNA complexes. 
1Van der Waals energy, 2Electrostatic energy, 3Polar solvation energy, 4Solvent accessible surface area energy, 
5Total binding energy, Standard errors are shown in brackets.
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W45A > K27A > K67A > K63A. The positively charged residues K27, K63, and K67 on the surface seem to be 
highly crucial for dsRNA recognition. These sites could be further investigated through site-directed mutagenesis 
to unveil their cumulative and individual roles in dsRNA recognition that helps the virus to escape the immune 
response. Small molecules or peptides having active electrostatic surfaces could possibly hinder the interaction 
between p4a and dsRNA and restore the cellular antiviral response.

Discussion
We adopted an extensive computational procedure to unveil the molecular mechanisms for recognition of dsRNA 
by p4a and establishment of interactions with dsRNA to bypass the host antiviral response. As mentioned earlier, 
p4a contains a dsRBD23. Our protein model also suggested that p4a exhibited a well-folded structure acquiring 
a typical αβββα pattern (Fig. 1c) and docking analysis showed that p4a recognizes dsRNA in a shape-specific 
manner by establishing contacts with its major and minor grooves. Similar results have also been reported previ-
ously, where adenosine deaminase RNA specific 2 (ADAR2) recognizes stem loop mRNA39. ADAR2 is an RNA 
transcript-editing enzyme that uses a reaction known as hydrolytic deamination. Previous studies reported that 
two conserved lysine residues at positions 63 and 67 are vital for the p4a-dsRNA interaction. Mutating these resi-
dues render p4a incapable of blocking IFN production in MERS-CoV-infected cells22. Interestingly, we found that 
these residues retained their contacts with dsRNA after subjecting the p4a-dsRNA wild type complex to 200 ns 
MD simulations. These preliminary findings support the results of previous studies and further suggest that other 
amino acid residues play a crucial role in p4a-dsRNA interaction and could be helpful in blocking p4a activity. To 
examine the role of each residue present at the interface of p4a and dsRNA, computational alanine scanning was 
used. In addition to the previously reported residues, K63 and K67, we found three more residues, N8, K27, and 
W45, that could disrupt the p4a-dsRNA interaction. A rigorous computational analysis was performed to pin-
point the role of these newly identified hotspot residues, using MD simulations and free energy calculations. An 
overall trajectory analysis through RMSD, RMSF, and essential dynamics revealed that the newly created variants 
displayed few variations in the 3D structure that might affect their affinity toward dsRNA. Interestingly, of the 
two experimentally reported variants, K63A showed a lower structural instability than did K67A when compared 
to the others (Figs 2 and 4). This indicates that the loss of the dsRNA binding strength in this mutant may require 
a different explanation. However, K67A showed marked deviations in RMSD, RMSF, and domain motions. All 
of the newly constructed alanine variants demonstrated a discrete pattern of structural dynamics, which is inter-
esting because all of them had the same starting 3D configurations except for a single residue substitution. This 
is because the substitution of a single amino acid with alanine is sufficient to cause differential protein dynamics 
affecting ligand-binding capability in simulated or natural conditions.

The binding free energy calculations revealed that p4a had a decreased affinity toward dsRNA in K67A, K63A, 
and K27A mutants, while W45A and N8A possessed similar affinity to the wild type. This implies that among 
the newly identified computational point mutations, K27 might play a similar role to the other positively charged 
experimental mutations, K63A and K67A. The reduced affinity of K27A may be attributed to its positively 
charged side chain that provides increased stability to the negatively charged dsRNA by means of strong electro-
static interactions. The substitution of lysine at position 27 with alanine disrupts the binding affinity of K27A and 
dsRNA. However, the structural instability in p4a caused by W45A and N8 substitutions cannot be overlooked.

Hydrogen bonding in p4a-dsRNA wild type complex is strong. The strength of the p4a-dsRNA interaction 
was lost in the W45A mutant, which showed that residue W45 might play an important role in the binding of p4a 
to dsRNA. Further computational analysis showed that mutants W45A and K27A, other than the experimentally 
reported mutants, led to an excess loss of binding affinity. In this work, MD simulations were performed to under-
stand the dsRNA-p4a binding mechanism and to reveal the important residues, which play a key role in binding. 
The wild type and mutant structures were stable during the 200 ns of the simulations but the average RMSD of 
mutant W45A was above 3 Å. Similarly, in W45A, the number of h-bonds constantly decreased with the MD tra-
jectory over 200 ns. A significant decrease in the binding affinity calculations suggests that W45A and K27A are 
important for dsRNA and p4a binding, which can be targeted to block their interaction. These structural insights 
suggest that MERS-CoV p4a acquires a defined DSRM fold and recognizes dsRNA in a shape-dependent manner. 
The α1 helix and loop 2 are crucial for dsRNA recognition and establishing contacts with the minor grooves of 
dsRNA. However, fluctuation of loop 2 in the variants during MD simulations indicated a loss of binding strength 
between p4a and dsRNA.

The overall surface analysis suggested that p4a did not possess any defined ligand-binding hydrophobic 
pocket, which could make this protein an unpromising drug target. However, understanding of the surface 
electrostatics can lead to the design of electrostatically active small molecules that could hinder p4a-dsRNA 
interaction.

Methods
Molecular Modeling.  The importance of p4a in viral pathogenesis and host immune evasion has been 
extensively investigated through in vitro assays; however, no structural studies have been conducted to unveil its 
RNA binding mechanism. MERS-CoV p4a is 109 amino acids long and contains an approximately 70–72 amino 
acid-long DSRM. To model the p4a DSRM, a template structure was searched against a PDB40, 41 by BLAST and 
through the threading-based modeling server, I-TASSER. The template structures selected by BLAST and the 
I-TASSER server included the dsRNA binding proteins, 1YYK, 2L3J, and 1DI2. Most of these structures were 
resolved through NMR or X-ray diffraction studies in the presence of RNA duplexes or hairpins (synthetic or 
natural). T-COFFEE version 11.0 was used for pairwise alignment of 1YYK (template) and the p4a sequence. 
Initially, Modeller42, 43 was used to build the protein model. Also, four other online tools including I-TASSER44, 
PHYRE45, Swiss model46, and CPH model47 were used for comparative analysis and validation of the protein 
models. The best model was selected based on the minimum violation of atomic contacts and maximum score 
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criteria. The quality and accuracy of the built model was further evaluated and validated using a Ramachandran 
plot48, QMEAN49, and ProSA50. Energy minimization was performed for model refinement and quality improve-
ment using UCSF Chimera51. To add charges on standard amino acids, AMBER ff99SB force field was used while 
AM1BCC force field was applied to other residues. The steepest descent minimization steps were set to 100, 
whereas the conjugate gradient was set to 10 with a step size of 0.02 Å. The secondary structure of the modeled 
protein was validated using Protein Structure Validation Suite (PSVS)52 and Protein Structure Evaluation Suite 
and Server (ProSESS)53. The secondary structure elements of the 3D model were compared with those of the pre-
dicted ones in order to measure the structural reliability. The selected p4a model was subjected to MD simulations 
to obtain a fully optimized and stable structure for further analysis (further discussed in the molecular dynamics 
section).

To get the desired p4a-dsRNA complex, a 21-base pair long hairpin (dsRNA)54 was selected from PDB and 
docked with the fully optimized p4a using the HEX docking server55. While predicting the functional annotation 
of the query protein, the same dsRNA structure (reported in PDB structure 2LK2) was suggested by I-TASSER, 
among the other top three suggested structures (1YYO, 2LK2, and 1DI2). The HEX docking method is based on 
the rigid body docking algorithm that explicitly considers the electrostatic potential, steric shape, and charge 
density of the protein55. Parameters used for docking were set to default except that the correlation type was set to 
shape and electrostatics. Intermolecular interactions were checked using UCSF Chimera51.

Alanine Scanning Mutagenesis.  In silico mutagenesis was performed using the MOE that calculates 
the dAffinity for a particular amino acid residue. The detailed mechanism of this alanine scanning mutagenesis 
approach has been discussed previously56. The MOE program also calculates dStability of a mutant complex 
with respect to a wild type amino acid residue. I-Mutant server57 was also used to predict the changes in protein 
stability due to the mutations. It is a support vector machine-based server, which predicts the stability of a given 
protein after point mutations in terms of ΔΔG at the following physiological conditions: pH of 7.0 and temper-
ature of 25 °C.

Molecular Dynamic Simulations.  The modeled 4a protein, p4a-dsRNA wild type complex, and 
p4a-dsRNA mutant complexes, suggested by the experimental mutational analysis and our in silico alanine scan-
ning, were subjected to MD simulations. Six systems, including p4a-dsRNA wild type and mutants N8A, K27A, 
W45A, K63A, and K67A, were prepared and investigated for structural dynamics. Each system was simulated for 
200 ns using Gromacs 5.058 with the Amber99SB-ILDN force field59. Periodic boundary conditions were applied 
to mimic the infinite system with an octahedron box by keeping a 10 Å distance between the protein’s surface and 
box boundary. The total charge of each system was neutralized by adding counter ions at the physiological con-
centration of 0.15 M salt. The long-range electrostatic interactions were computed using the particle mesh Ewald 
algorithm60. The LINCS algorithm61 was applied to constrain bond lengths. The systems were energy-minimized 
using the steepest descent algorithm to remove steric clashes between atoms. The energy-minimized systems were 
simulated with NVT ensemble for 100 ps followed by NPT ensemble for 100 ps in order to equilibrate temperature 
and pressure, respectively. The temperature and pressure were coupled with V-rescale62 and Parrinello-Rahman 
barostat methods62, respectively. The production run was carried out for 200 ns without backbone restraints 
with a time step of 0.002 ns under the NPT condition. The trajectory data was visualized and analyzed through 
PyMOL63, Chimera, and MOE. All plots were drawn using the XMgrace program [http://plasma-gate.weizmann.
ac.il/Grace/].

Essential dynamics and Gibbs energy calculation.  The trajectory files obtained from MD simulations 
were used to explore the dominant motions in wild type and mutant complexes through PCA or essential dynam-
ics64, 65. The rotational and translational motions of the coordinates were eliminated and subsequently superim-
posed onto a reference structure. Afterward, we calculated the positional covariance matrix of atomic coordinates 
and its eigenvectors. The matrix was diagonalized by an orthogonal coordinate transformation matrix yielding 
the diagonal matrix of eigenvalues. The first eigenvector and its corresponding eigenvalue usually indicate the 
principal component of the trajectory, which contains the principal dominant global motion of the structures. 
The extent and direction of the most dominant motions of all complexes were visualized through porcupine plots 
using the ‘modevectors.py’ script (written by Sean M. Law) in PyMOL.

FELs were obtained by plotting the first two principal components (PC1 and PC2) against each other, obtained 
from the PCA of the last 100 ns MD trajectories of each system. The corresponding Gibbs energy represents 
conformations of molecules obtained through the trajectory. The deep valleys represent stable and dominant 
conformations and boundaries represent intermediate conformations of the molecules66. The g_sham function 
distributed in GROMACS was used for the Gibbs energy calculations and the trial version of Mathematica67 was 
used to obtain 3D images of the plots. Coordinates on 3D images were used to find exact time frames and snap-
shots of molecules at a particular time and state.

The DCCM was constructed to identify correlated motions of residues. The matrix (Cij) depicts the 
time-correlated information between the i and j atoms of a protein68, 69. To construct the matrix, only Cα atoms 
from the last 500 snapshots were selected at 0.002 ns time intervals. The positive values indicate motions in 
the same direction or correlated motions whereas negative values mean atomic displacement in the opposite 
direction.

Binding Free Energy Calculations.  The MMPBSA method was used to calculate the free energy of bind-
ing between wild type and mutant complexes. A total of 500 conformations extracted at 0.2 ns time intervals from 
the last 10 ns trajectories were subjected to calculation using the ‘g_mmpbsa’ tool70. A detailed description of 
methods used in the calculation can be found in previous studies71–73.

http://plasma-gate.weizmann.ac.il/Grace/
http://plasma-gate.weizmann.ac.il/Grace/
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