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Background. Neural activity under cognitive reappraisal can be more accurately investigated using simultaneous EEG- (electroen-
cephalography) fMRI (functional magnetic resonance imaging) than using EEG or fMRI only. Complementary spatiotemporal
information can be found from simultaneous EEG-fMRI data to study brain function. Method. An effective EEG-fMRI fusion
framework is proposed in this work. EEG-fMRI data is simultaneously sampled on fifteen visually stimulated healthy adult
participants. Net-station toolbox and empirical mode decomposition are employed for EEG denoising. Sparse spectral clustering
is used to construct fMRI masks that are used to constrain fMRI activated regions. A kernel-based canonical correlation analysis is
utilized to fuse nonlinear EEG-fMRI data. Results. The experimental results show a distinct late positive potential (LPP, latency
200-700ms) from the correlated EEG components that are reconstructed from nonlinear EEG-fMRI data. Peak value of LPP
under reappraisal state is smaller than that under negative state, however, larger than that under neutral state. For correlated
fMRI components, obvious activation can be observed in cerebral regions, e.g., the amygdala, temporal lobe, cingulate gyrus,
hippocampus, and frontal lobe. Meanwhile, in these regions, activated intensity under reappraisal state is obviously smaller than
that under negative state and larger than that under neutral state. Conclusions. The proposed EEG-fMRI fusion approach provides
an effective way to study the neural activities of cognitive reappraisal with high spatiotemporal resolution. It is also suitable for
other neuroimaging technologies using simultaneous EEG-fMRI data.

1. Introduction

Emotional regulation is known as a unique ability of human
beings to control experience and expression of their emo-
tions. It has been the focus of many fields (e.g., cogni-
tive neuroscience, clinical medicine, and sociology) due to
its importance to human mental health [1, 2]. Two well-
established emotional regulation strategies are widely applied
to control emotional experiences, including expressive sup-
pression and cognitive reappraisal. The former is a way of
response modulation whereby individual voluntarily inhibits

emotional expressive behavior [3]. However, according to
the catharsis model, emotions are supposed to “pile up”
if not expressed [4]. Hence, expressive suppression may
enhance emotional experience which harms mental health.
Cognitive reappraisal, on the other hand, is an approach to
change the way people think about a potentially emotion
eliciting condition to decrease the emotional influence [5].
For instance, one’s representative reaction to a scene of a
person shooting at another one may be decreased by imaging
the scene as a film scene. On the contrary, the reaction
may be enhanced by imaging the person is shot by his/her
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close relative. By utilizing cognitive reappraisal, discomfort
to events (e.g., sick, horror, and self-abasement) can be
alleviated at an early stage. Despite recent studies show that
cognitive reappraisal is correlated to facial frown muscle
activities [6], heart rate, and skin conductance [3], studying
the essence of cognitive reappraisal is still urgent.

Recently, several neuroimaging technologies (e.g., EEG
(electroencephalography) and fMRI (functional magnetic
resonance imaging)) are utilized to explore the essence of
cognitive reappraisal. Submillisecond temporal resolution
of EEG makes it suitable to explore the subtle temporal
dynamics of neural activity, which is expressed by electric
potential fluctuations spread to the scalp. Event Related
Potential (ERP) is widely used to study the characteristics
of EEG signals under different emotional states due to its
high temporal resolution. An essential component of ERP,
Late Positive Potential (LPP), is found to indicate the ability
of cognitive reappraisal using emotional regulation. The
facilitated processing of emotional stimuli is indicated by
the LPP as a central-parietal slow positive deflection in
the ERP. The amplitude of LPP turns out to be increased
for emotionally eliciting compared with neutral stimuli,
beginningwith approximately 200ms after stimulus onset and
continuing several seconds [7]. Meanwhile, it is susceptible
to spontaneous emotional regulation. Hence, a decrease of
LPP amplitude can be found when participants are asked
to distract attention from the pictures which may arouse
unpleasant emotion via cognitive reappraisal [8]. Moreover,
LPP reduction can also be found from positive emotional
regulation by cognitive reappraisal [9, 10]. However, emo-
tional eliciting sources are hard to locate due to the poor
spatial resolution of EEG. FMRI is another widely used
technology to study the brain function. It can localize both
superficial and deep sources of activity with mm-scale spatial
resolution via detecting the variations of blood oxygenation
level-dependent (BOLD). Cerebral regions which participate
in emotional regulation can be found via fMRI due to its high
spatial resolution. Recent fMRI researches show that volun-
tary reappraisal can influence modulated neural activities in
the amygdala [11, 12]. It also indicates that the employment
of cognitive reappraisal influences the neural activities in the
dorsal parts of the anterior cingulate cortex, the ventromedial
prefrontal cortex, and the dorsolateral prefrontal cortex [13].
However, the low resolution temporal variations of these
regions are not suitable for studying the neural activity under
cognitive reappraisal.

To resolve the abovementioned insufficient of mono-
modality neuroimaging technology, simultaneous EEG-fMRI
fusion is utilized to study the neural activity under cognitive
reappraisal due to its high spatiotemporal resolution. In
general, there are mainly three approaches for simultaneous
EEG-fMRI fusion, including fMRI aided EEG analysis, EEG
aided fMRI analysis, and symmetric EEG-fMRI analysis. For
fMRI aided EEG analysis, fMRI informationwith high spatial
resolution is used to support the inverse issue of EEG source
reconstruction. Kyathanahally et al. proposed a framework to
invest decision-making in the brain using simultaneous EEG-
fMRI data [14]. Thinh et al. developed a novel multimodal
EEG-fMRI fusion approach by employing the most probable

fMRI spatial subsets to guide EEG source localization in a
time-variant fashion [15]. For EEG informed fMRI analysis,
EEG features (e.g., ERP amplitude, the power spectrum, and
epileptic) are used to forecast the BOLD changes in fMRI. Liu
et al. proposed a general linearmodel (GLM)model for EEG-
fMRI fusion.The fusion results indicate that the intraparietal
sulcus and frontal executive areas are the primary sources of
biasing influences on task-related visual cortex, whereas task-
unrelated default mode network and sensorimotor cortex
are suppressive during visual attention [16]. Ahmad et al.
developed a framework to recognize different visual brain
activity patterns using simultaneous EEG-fMRI data. A GLM
model was utilized for EEG-fMRI fusion and the results
were further classified into different patterns by multilayer
perceptron [17]. For symmetric EEG-fMRI analysis, both data
are jointly processed by a generative model or changed into a
common feature/data space. Yu et al. developed a framework
to construct multimodal brain graphs using EEG-fMRI data
which were simultaneously sampled during eyes open and
eyes closed resting states [18]. FMRI data were decomposed
into independent components with associated time courses
by group independent component analysis (ICA) and EEG
time series were segmented into spectral power time courses
by superposed average of five frequency bands (alpha, theta,
beta, delta, and low gamma). However, ICA assumes that all
sources are independent.This strong assumption restricts the
power of ICA fusion approach in exploring the underlying
sources. Canonical correlation analysis (CCA) was employed
by Correa et al. to fuse simultaneous EEG-fMRI data with
weak assumption [19]. Dong et al. also proposed a CCA
based EEG-fMRI fusion approach to study familial cortical
myoclonic tremor and epilepsy [20]. The proposed local
multimodal serial analysis was specifically designed to handle
the change of hemodynamic response functions (HRFs).

Despite thewidely developed approaches to analyze EEG-
fMRI data, there is still no method that focuses on two
challenging issues of simultaneous EEG-fMRI fusion; one is
to handle the mutual interference between EEG and fMRI,
and the other is to handle the nonlinearity of EEG-fMRI
data. Aiming to resolve these challenges, we propose an
effective fusion framework based on CCA. Empirical mode
decomposition (EMD) is used to increase SNR of EEG
data that is polluted by MR scanning. FMRI masks are
constructed and are used to eliminate unwanted fMRI com-
ponents that are correlated with wanted EEG components.
RBF kernel is embedded into the CCA framework to handle
the nonlinearity of EEG-fMRI data. Participants are shown
with visual stimuli paradigm. Based on previous researches
that study EEG and fMRI, respectively [7], we expect (1)
the correlated ERP components and fMRI activated regions
related to cognitive reappraisal can be simultaneously be
extracted from the EEG-fMRI data, and (2) LPPs under three
emotional states can be observed from the correlated ERP
components and amplitudes of different LPPs coincided with
the existed studies, and (3) the correlated fMRI activated
regions coincided with the previous found regions (e.g.,
amygdala, dorsomedial PFC, dorsolateral prefrontal cortex
(PFC), anterior cingulate cortex, and orbitofrontal cortex).
There aremainly two contributions of our work: (1) providing
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Figure 1: Pipeline of the proposed EEG-fMRI fusion approach.

an effective framework for simultaneous EEG-fMRI fusion
and (2) exploring the neural activity under cognitive reap-
praisal in high spatiotemporal resolution.

2. Materials and Methods

2.1. The EEG-fMRI Fusion Framework. The framework of the
fusion approach is demonstrated in Figure 1. Simultaneous
EEG-fMRI data is preprocessed, respectively. EMD is further
used to eliminate noise of EEGdata. Sparse spectral clustering
(SSC) is employed to construct fMRI masks that indicate the
emotion-related cerebral regions. EEG feature to be fused is
defined as Y EEG (convolved trails × ERP time points), which
are obtained by convolving the ERP values at different time
points with a standard HRF. On the other hand, fMRI feature
to be fused is defined as Y fMRI (scans ×AALROIs), which are
obtained by calculating mean values in anatomical automatic
labeling (AAL) cerebral regions under the constraints of
fMRImasks.Then, Y EEG and Y fMRI are fused using a kernel-
based CCA (KCCA) framework. EEG and fMRI components
(C EEG and C fMRI) are finally reconstructed based on the
selected correlated components.

2.2. Subjects. A total of 15 healthy adults, 5 females and 10
males, aged from 19 to 24 years (M (mean value) =23, SD
(standard deviation) =1.48), are recruited from Changzhou
University to implement the experiments.
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Figure 2: Illustration of the visual stimuli paradigm.

Participants have regular or corrected regular visionwith-
out history of neurological, medical, or psychiatric disorders.
They have been tested for psychological profile to discard
some comorbid issues as depression or psychiatric symptoms
that can affect emotional evaluation. All participants provide
written informed consent to be part of the experiment,
which is approved by the local ethics committee (Changzhou
University, Changzhou, China). Each subject receives 42-
minute fMRI scan (structure: 5 min, resting state: 5 min, and
task state: 32 min).

2.3. Paradigm. The visual stimuli paradigm [21] is imple-
mented in a block fMRI design as shown in Figure 2. The
entire experiment for one participant contains 120 trials,
including 4 circulations in which 30 trials are implemented.
Three conditions, including watching neutral images (e.g.,
buildings, neutral faces, and food), watching negative images
(e.g., sadness, disasters, and violence), and watching nega-
tive images with cognitive reappraisal, are randomly imple-
mented in 40 trials, respectively. All the images used are
chosen from the international affective picture gallery. The
arousal for neutral images is M (mean) = 2.91 and SD
(standard deviation) = 1.93; meanwhile, for negative images
it is M = 5.71 and SD = 2.61. Procedure of a single trial
can last at most 16 seconds as proposed in [22]. Initially,
cue word “reduce” or “watch” is shown on the screen for 4
seconds in the cue period. After a 2-second blank period,
the stimulus period will last for 6 seconds. At this period,
neutral and negative images will randomly appear with cue
word “watch”, while only negative images will appear with
cueword “reduce”. Notably, cognitive reappraisal will be used
if the cue word “reduce” appears. Finally, the rest period will
last for 4 seconds.

2.4. Simultaneous EEG-fMRI Acquisition. EEG acquisition
system of EGI company (Eugene, the USA) is used in the
experiment. EEG is sampled continuously at 1000Hz. An
amplifier is placed inside the MR scanner room. Subjects are
fitted with an electrode cap containing 64 electrodes with
Cz as online reference. Later, the data are referenced to zero
by reference electrode standardization technique [23]. It is
recently confirmed being close to the idea of zero reference
[24, 25]. Impedances are kept low below 50kΩ. The helium
pump is turned off during experiments to avoid related
artifacts.

Functional imaging data are sampled with 3-Tesla super-
conducting type nuclear magnetic resonance imaging system
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Figure 3: The foam pads used to prevent head movement.

of Philips Company. Single excitation gradient echoes planar
sequence is utilized to acquire functional images. After a
whole paradigm finished, 960 BOLD sensitive echo planar
images (EPI) are gathered during four sessions. EPI volumes
are aligned with the anterior-posterior commissural line. It
contains 24 axial slices with 4mm thickness including flip
angle: 90 degree; TR (repetition time): 2s; TE (echo time):
35ms; FOV (field of view): 230mm∗182mm; matrix: 96×74.
Subjects are mandated to lie in the MRI scanning room,
staying awake, and blinking as little as possible. The foam
pads (Figure 3) are used to prevent head movement.

2.5. EEG Data Processing. Processing of EEG data contains
two parts, one is denoising and the other is extracting
EEG feature. In consideration of the influence caused by
MR scanning, denoising is achieved through two steps:
traditional denoising using net-station toolbox and further
increasing SNR using EMD.

For traditional denosing, noises such as gradient artifact,
ECG, and power interference are eliminated as follows: (1)
Gradient artifact is removed by template eliminationmethod.
The gradient artifact template is constructed in a weighted
average mean by labeling the timing that fMRI triggered
EEG.Then, an average artifact subtraction method is utilized
to eliminate the gradient artifact. (2) Band-pass filtering is
employed with the band 0.01-40Hz. (3) Optimal basis set
approach is used to eliminate ballistocardiogram artifacts
caused by the heartbeat. (4)The EEG data are segmented into
different fragments based on the stimulus time point. Each
fragment ranges from 200ms before stimulus and 1500ms
after it. (5) Artifacts such as head movements and blinking
are detected in all fragments of all electrodes. The electrode
with artifacts is labeled as bad electrode. (6)Thebad electrode
is replaced by the average of its 3 surrounding electrodes.
(7) The first 200ms of each fragment is used for baseline
correction.

After traditional denoising, EMD is employed to further
increase SNR of EEG data that is affected by MR scanning
[26]. EMD tries to find functions which form a complete
and nearly orthogonal basis of the original signal. These

functions are termed as Intrinsic Mode Functions (IMFs).
Then, increasing SNR can be achieved through removing
IMFs that are taken as disturbance. Details of increasing SNR
through EMD can be found in our former work [27].

After denoising, emotion-related ERP extracted from
EEG is used to study the neural activity under cognitive reap-
praisal [7]. Amplitudes of ERP (extracted from Poz channel)
at different time points are termed as EEG feature. At each
time point, the trial-to-trial dynamics are convolved with a
standardHRF to coincide with fMRI (5 volumes in each trial)
due to the BOLDdelay.We restrict the analysis to 900ms (225
uniform and consecutive time points) after stimulus onset
because the most emotion-related components in the EEG
are considered to appear during the first 200-700ms after
stimulus onset. Finally, the dimension of the extracted EEG
feature is 600 (convolved trails) × 225 (ERP time points).

2.6. FMRI Data Processing. FMRI data are processed using
reference electrode standardization technique and statistical
parametric mapping (SPM) to correct slice time and exclude
head motion. Then the data are normalized and further
registered to the Montreal Neurological Institute (MNI)
space. Finally, a Gaussian filter (full-width at half-maximum
of 8 mm) is used for smoothing filtering and only five fMRI
activation regions (three in stimulus period and two in rest
period) after stimulus presentation are selected in each trial.
Each fMRI activation region is represented by its mean values
in different AAL ROIs [28]. Finally, the dimension of the
extracted fMRI feature is 600 (scans) × 90 (AAL ROIs).

Notably, some fMRI regions irrelevant to emotion pro-
cessing are also activated. These undesired activation regions
should be removed to guarantee the accuracy of EEG-fMRI
fusion. Otherwise, they may correlate with the wanted EEG
components. In this work, an fMRI mask is constructed
through spatiotemporal clustering of all fMRI activation.
SSC is used to cluster the fMRI activation because SSC is
insensitive to the number of features and, thus, can avoid
dimension disaster [29]. Then, there is no undesired fMRI
activation in the fMRI mask because undesired activation
mostly sustain for a short period in certain cerebral regions.
Finally, for each row of the fMRI feature, an “and” operation
with fMRI mask will be performed to restrain the influence
of undesired fMRI activation.

2.7. Simultaneous EEG-fMRI Data Fusion Using KCCA. CCA
searches for a pair of linear transformations of the variable
set in the manner of one for each. It is commonly used for
symmetric EEG-fMRI analysis. Given two data X (Y EEG) and
Y (Y fMRI), their generative models are given by

𝑋 = 𝐴𝑋𝐶𝑋
𝑌 = 𝐴𝑌𝐶𝑌

(1)

where AX and AY are canonical variate matrices and CX and
CY are associated EEG and fMRI components. Let aXk and
aYk represent the kth column of AX and AY (the kth pair of
canonical variate); then their relational degree is defined as
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Table 1: Correlated components of EEG-fMRI with high relational degrees (> 0.55) under three emotional states.

correlated
components

relational degrees (KCCA approach / CCA approach)
neutral state negative state reappraisal state

component 1 0.951 / 0. 944 0.971 / 0.966 0.932 / 0.913
component 2 0.892 / 0.888 0.952 / 0.947 0.834 / 0.801
component 3 0.833 / 0.841 0.863 / 0.877 0.805 / 0.731
component 4 0.765 / 0.741 0.821 / 0.816 0.704 / 0.716
component 5 0.643 / 0.681 0.753 / 0.765 0.613 / 0.606
component 6 0.586 / N/A 0.712 / 0.660 0.551 / 0.537
component 7 N/A / N/A 0.605 / 0.584 N/A / N/A

𝜌𝑘 = 𝑎𝑋𝑘𝑇𝑆𝑋𝑌𝑎𝑌𝑘
√𝑎𝑋𝑘𝑇𝑆𝑋𝑋𝑎𝑋𝑘 × √𝑎𝑌𝑘𝑇𝑆𝑌𝑌𝑎𝑌𝑘 (2)

𝑆 = 𝑆 (𝑋, 𝑌) = [𝑆𝑋𝑋 𝑆𝑋𝑌𝑆𝑌𝑋 𝑆𝑌𝑌] (3)

where 𝜌k indicates the relational degree of the kth pair of
associated components. The total covariance matrix S is
represented as a block matrix. The within-sets covariance
matrices are SXX and SYY. The between-sets covariance
matrices are 𝑆XY= SYX

T. Then, those associated components
whose relational degrees are larger than a given threshold
(0.55) are used to reconstruct the wanted EEG component𝐶𝑋
and fMRI component 𝐶𝑌, which are defined as follows:

𝐶𝑋 = (𝐴𝑇𝑋𝐴𝑋)−1 𝐴𝑇𝑋𝑋
𝐶𝑌 = (𝐴𝑇𝑌𝐴𝑌)−1 𝐴𝑇𝑌𝑌

(4)

where𝐴𝑋 and𝐴𝑌 only contain the selected pairs of canonical
variate. Details of solving a CCA problem can be referred to
[19].

However, CCA cannot process nonlinear data. Thus,
kernel is used to resolve such problem throughmapping data
into a high dimensional feature space. A kernel 𝜅 for all X, Y∈ R is defined as follows:

𝜅 (𝑋, 𝑌) = ⟨𝜑 (𝑋) , 𝜑 (𝑌)⟩ (5)

where 𝜑 is a mapping from the original data space R to a new
feature space F (𝜑: R->F). Great flexibility can be achieved
by applying different kernels such as linear kernel, Gaussian
kernel, and RBF. Based on kernel, the directions aXk and aYk
can be represented as follows:

𝑎𝑋𝑘 = 𝑋𝛼
𝑎𝑌𝑘 = 𝑌𝛽 (6)

where𝛼 and𝛽 indicate the transformations fromoriginal data
to their canonical variate. Then, (2) can be represented as
follows:

𝜌𝑘 = 𝛼󸀠𝑋󸀠𝑋𝑌󸀠𝑌𝛽󸀠
√𝛼󸀠𝑋󸀠𝑋𝑋󸀠𝑋𝛼 ∙ 𝛽󸀠𝑌󸀠𝑌𝑌󸀠𝑌𝛽 (7)

Notable, linear transformations X’X and Y’Y cannot
process nonlinear data very well. Hence, RBF kernel is used
to replace the linear transformations due to its superiority
in processing nonlinear data. Then, (2) can be rewritten as
follows:

𝜌𝑘 = 𝛼󸀠𝐾𝑋𝐾𝑌𝛽
√𝛼󸀠𝐾𝑋2𝛼 ∙ 𝛽󸀠𝐾𝑌2𝛽 (8)

where KX and KY represent the RBF kernel matrices.
Relational degrees calculated using (8) is more suitable to
nonlinear EEG-fMRI data than that calculated using (2).

3. Experimental Results

3.1. Comparisons betweenKCCAandCCA. Thiswork focuses
on the highly correlated components between EEG temporal
evolution and fMRI spatial activation. Ninety correlated
components are obtained usingKCCA fusion. Table 1 demon-
strates the correlated components whose relational degrees
are larger than 0.55. As shown in the table, there are six
pairs of correlated components under neutral and reappraisal
states, and seven pairs of correlated components under
negative state. Our former work using CCA fusion is used as
comparison [27]. It is obvious that relational degrees obtained
using KCCA is larger than that obtained using CCA.

Figures 4–6 illustrate the fifteen subjects’ superposed
average results of the correlated EEG-fMRI components.
Correlated components whose relational degrees are larger
than 0.55 are used for superposed average. For each figure,
subfigure (a) indicates the superposed average result of
correlated EEG component extracted from Poz electrode.
Furthermore, x-axis represents time (ms) and y-axis repre-
sents normalized amplitude (dimensionless). Subfigure (b)
illustrates the correlated fMRI activation under the same
state, while the color-bar indicates the normalized activated
intensity. Then, neural activities caused by the same stimuli
can be observed in both high temporal (correlated EEG com-
ponent) and spatial resolutions (correlated fMRI activation).

Aside from the differences in relational degrees, dif-
ferences in EEG components are also evaluated between
CCA [27] and KCCA. Figure 7(a) illustrates the fifteen
subjects’ superposed average results of reconstructed EEG
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Figure 4: Fifteen subjects’ superposed average result of correlated EEG-fMRI under neutral state. (a) Correlated EEG component and (b)
correlated fMRI activation.
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Figure 5: Fifteen subjects’ superposed average result of correlated EEG-fMRI under negative state. (a) Correlated EEG component and (b)
correlated fMRI activation.
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Figure 6: Fifteen subjects’ superposed average result of correlated EEG-fMRI under reappraisal state. (a) Correlated EEG component and
(b) correlated fMRI activation.

components that are calculated by KCCA fusion. All the
EEG components are extracted from Poz electrode. Obvious
differences can be observed among their LPP components.
The amplitude of LPP component under reappraisal state
is smaller than that under negative state and is obviously
larger than that under neutral state. Figure 7(b) illustrates the
fifteen subjects’ superposed average results of reconstructed

EEG components that are calculated by CCA fusion. Similar
results can be observed. However, amplitudes of LPP com-
ponent under negative state and that under reappraisal state
aremore or less intersecting at the reported emotion arousing
period (200-700ms by [7]) as illustrated in Figure 7(b). The
intersection may be caused by nonlinearity of simultaneous
EEG-fMRI data.
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Table 2: Fifteen subjects’ superposed average results of correlated fMRI activations under neutral state, negative state, and reappraisal state
(using KCCA).

under neutral state under negative state under reappraisal state
AAL ROIs (No) Z-score AAL ROIs (No) Z-score AAL ROIs (No) Z-score
Calcarine L (43) 0.355 Hippocampus R (38) 2.711 Heschl L (79) 0.887
Hippocampus R (38) 0.208 Heschl L (79) 2.485 Hippocampus L (37) 0.870
Heschl L (79) 0.178 Hippocampus L (37) 2.317 Hippocampus R (38) 0.776
Caudate R (72) 0.068 Caudate R (72) 1.990 Caudate R (72) 0.550
N / A N / A Temporal Sup R (82) 1.383 Amygdala R (42) 0.043
N / A N / A Cingulum Post L (35) 1.249 Temporal Sup R (82) 0.038
N / A N / A Amygdala R (42) 1.233 Amygdala L (41) 0.031
N / A N / A Cingulum Mid R (34) 0.672 Cingulum Post L (35) 0.006
N / A N / A Cingulum Mid L (33) 0.627 N / A N / A
N / A N / A Amygdala L (41) 0.567 N / A N / A
N / A N / A Fusiform L (55) 0.223 N / A N / A
N / A N / A Thalamus R (78) 0.220 N / A N / A
N / A N / A Cingulum Post R (36) 0.121 N / A) N / A
N / A N / A ParaHippocampal R (40) 0.090 N / A N / A
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Figure 7: Fifteen subjects’ superposed average results of EEG correlation components under three emotional states using (a) KCCA fusion
and (b) CCA fusion.

A quantitative comparison is performed on the average
correlated EEG components of fifteen subjects under three
emotional states. 225 samples are uniformly sampled from
700ms EEG component and their amplitudes are used as
input. F-test is used for evaluation and different emotional
states are used as the factors of ANOVA. The result shows
distinct differences in EEG components of different emo-
tional states. The mean of the differences (MOD) between
conditions under negative and neutral states is 23, with F (1,
224) = 262.65(P < 0.01).TheMOD between conditions under
reappraisal and negative states is 11, with F (1, 224) = 70.49(P< 0.01). The MOD between conditions under reappraisal
and neutral states is 13, when F (1, 224) = 83.04(P < 0.01).

Obviously, the quantitative result is confirmed to the result
of Figure 7.

3.2. Comparisons between KCCA and GLM. Comparisons
between KCCA and GLM are performed to verify the superi-
ority of symmetric EEG-fMRI analysis in studying the neu-
ral activities of cognitive reappraisal. Table 2 demonstrates
fifteen subjects’ superposed average results of correlated
fMRI activation under three emotional states using KCCA.
Intensities of fMRI activation are measured by the Z-score
values in different AAL ROIs. A big Z-score value indicates
a strong fMRI activation. Notably, only AAL ROIs whose
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Table 3: Fifteen subjects’ superposed average results of correlated fMRI activations under neutral state, negative state, and reappraisal state
(using GLM).

under neutral state under negative state under reappraisal state
AAL ROIs (No) Z-score AAL ROIs (No) Z-score AAL ROIs (No) Z-score
Parietal Sup L (59) 0.516 Heschl L (79) 1.587 Parietal Inf R (62) 0.887
Paracentral Lobule R (70) 0.366 Parietal Sup L (59) 1.466 Parietal Sup L (59) 0.870
Parietal Sup R (60) 0.159 Parietal Sup R (60) 1.039 Occipital Mid R (52) 0.776
Occipital Mid L (51) 0.020 Precuneus L (67) 0.922 ParaHippocampal L (39) 0.350
N / A N / A Paracentral Lobule L (69) 0.790 Angular R (66) 0.006
N / A N / A Paracentral Lobule R (70) 0.725 N / A N / A
N / A N / A Occipital Mid R (52) 0.569 N / A N / A
N / A N / A Occipital Mid L (51) 0.507 N / A N / A
N / A N / A Occipital Sup R (50) 0.478 N / A N / A
N / A N / A Parietal Inf L (61) 0.292 N / A N / A
N / A N / A Temporal Pole Mid L (87) 0.159 N / A N / A
N / A N / A SupraMarginal L (63) 0.126 N / A N / A
N / A N / A Precuneus R (68) 0.116 N / A N / A
N / A N / A SupraMarginal R (64) 0.114 N / A N / A
N / A N / A Heschl R (80) 0.108 N / A N / A
N / A N / A Cingulum Mid L (33) 0.084 N / A N / A
N / A N / A ParaHippocampal L (39) 0.080 N / A N / A
N / A N / A Cingulum Ant L (31) 0.022 N / A N / A

Z-score values are larger than 0 (a negative Z-score value
in certain AAL ROI indicates that this ROI is irrelevant to
emotion processing) are preserved in this table. Meanwhile,
no EEG component is evaluated because GLM is mainly
used for analyzing fMRI activation. Table 3 demonstrates
fifteen subjects’ superposed average results of correlated
fMRI activation under three emotional states using GLM.
Differences between KCCA and GLM exist in both activated
regions and intensities. Discussions of their differences will
be given in Section 4 in detail.

3.3. Evaluation of the fMRI Masks. FMRI masks are used to
restrain the activated fMRI regions due to their ability to
eliminate the regions uncorrelated to emotion processing.
The clustering results of all subjects under three emotional
states are illustrated in Figure 8. As shown in the figure,
activated regions under neutral state are the smallest while
activated regions under negative state are the biggest.

KCCA fusion without fMRI masks is performed to
evaluate the effectiveness of fMRI masks. For fMRI, fifteen
subjects’ superposed average results of correlated fMRI acti-
vation obtained through KCCA but without fMRI masks
are illustrated in Figure 9. Correlated fMRI activation varies
a lot due to whether fMRI masks are used, especially
under negative and reappraisal states. For example, there is
obvious activation in cerebral regions such as hippocampus,
amygdala, and temporal lobe that are directly related to
emotion processing in Figure 5(b). However, no activation
can be found in these cerebral regions in Figure 9(a). Same
phenomena can be observed in Figures 6(b) and 9(b). There
is no activation in emotion-related cerebral regions such as

hippocampus and temporal lobe in Figure 9(b), while obvious
activation can be observed in these regions in Figure 6(b).
There is no obvious difference in activated fMRI regions
between Figures 4(b) and 9(c) because fMRI masks do not
focus on cerebral regions unrelated to emotion processing.

For EEG, fifteen subjects’ superposed average results of
EEG correlated components under three emotional states but
without clustering mask are shown in Figure 10. Compared
with the results in Figure 7, no obvious decrease can be
observed in ERP amplitude from negative state to reappraisal
state. Meanwhile, EEG evolutions under different emotional
states are hard to separate.

4. Discussion and Conclusion

The aim of cognitive reappraisal is to regulate human
experience under negative emotion such as depression, fear,
and disappointment. Simultaneous EEG-fMRI analysis is
used to study the neural activity under cognitive reappraisal
due to its complementarity in both spatial and temporal
domains. In this work, these neural activities are studied
using a KCCA fusion framework. Meanwhile, EMD is used
to further increase SNR of EEG data that is sampled under
MR scanning. FMRI masks are calculated using SSC and
are used to eliminate the activation unrelated to emotion
processing. With all these processing, both EEG and fMRI
components can be reconstructed based on the selected
correlated components (Figures 4, 5, and 6). Results of
these figures are very important to study the mechanism of
cognitive reappraisal that is useful for human to regulate
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(a) (b) (c)

Figure 8: fMRI clustering results of all subjects (a) under neutral state; (b) under negative state; and (c) under reappraisal state (color-bar
indicates the activated intensity).

(a) (b) (c)

Figure 9: Fifteen subjects’ superposed average results of correlated fMRI activation using the proposed method without fMRI masks (a)
under negative state, (b) under reappraisal state, and (c) under neutral state.
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Figure 10: Fifteen subjects’ superposed average results of EEG
correlated components under three emotional states using the
proposed method but without clustering mask.

his/her emotion. For spatial analysis, activation in emotion-
related cerebral regions (e.g., amygdala, hippocampus, and

temporal lobe) under reappraisal state is obviously weaker
than that under negative state through introducing the cogni-
tive reappraisal strategy. It reveals that negative emotion can
be effectively restricted in emotion-related cerebral regions
after applying cognitive reappraisal strategy. For temporal
analysis, obvious differences can be observed among different
LPP componentswhich are considered to be highly correlated
to emotion processing. Peak value of LPP component under
reappraisal state is smaller than that under negative state,
and obviously larger than that under neutral state. Both
the shrunken fMRI activated regions and decreased peak
value of LPP component verify the assumptions that negative
emotions, e.g., sorrow, fear, and disappointment, can be
restrained by using cognitive reappraisal.

Effectiveness of kernel strategy can be observed through
the comparisons between KCCA and CCA. CCA fusion is
widely used for symmetric EEG-fMRI analysis. However,
nonlinearity of the EEG-fMRI data may decrease the fusion
accuracy. Thus, we improve the CCA fusion with a kernel
strategy. It is not very novel but is effective. KCCA fusion is
specially designed to process nonlinear EEG-fMRI data. As
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shown in Table 1, relational degrees of correlated components
derived using KCCA fusion are mainly larger than that
derived by CCA fusion. Notably, a larger relational degree
indicates a stronger relationship between two components.
Thus, the results in Table 1 may indicate the superiority of
KCCA fusion to traditional CCA fusion.

The superiority of KCCA fusion to CCA fusion can
be also observed from the reconstructed EEG and fMRI
components. For fMRI that concentrates on spatial activa-
tion, no obvious activation can be observed in hippocampus
which is emotion-related under negative or reappraisal states
using CCA fusion. It may be caused by the fact that CCA
cannot process nonlinear EEG-fMRI data. However, obvious
activation can be observed in these regions under the same
emotional states using KCCA fusion. It reveals the ability of
KCCA in mining effective fMRI activation from nonlinear
EEG-fMRI data. For EEG that concentrates on temporal
evolutions, amplitude of LPP component under reappraisal
state is obviously weaker than that under negative state
at the same period using KCCA fusion. The decrease in
amplitude indicates the ability of cognitive reappraisal to
restrain sorrowful emotion, as pointed out by [4]. However,
no obvious decrease can be observed in amplitude of LPP
component fromnegative state to reappraisal state usingCCA
fusion. Thus, the larger relational degrees, the more fMRI
activation, and the obvious decrease in amplitude of LPP
component between negative and reappraisal states reveal the
superiority of KCCA fusion to CCA fusion. Such superiority
is obtained due to the effect of kernel strategy in processing
nonlinear EEG-fMRI data.

The superiority of symmetric EEG-fMRI analysis to
EEG informed fMRI analysis can be observed through the
comparisons betweenKCCA andGLM (Tables 2 and 3). Only
fMRI activation is compared because GLM cannot be used to
study the EEG evolutions.Then, for KCCA (Table 2), obvious
activation can be observed under negative state in cerebral
regions such as the temporal lobe, the hippocampus, the
amygdala, and the cingulate gyrus.Meanwhile, activation can
be observed under reappraisal state in cerebral regions such
as the amygdala, the temporal lobe, the cingulate gyrus, the
hippocampus, and the frontal lobe. These activation regions
indicate the important role of these cerebral regions in emo-
tional regulation. In the perspective of activated intensity (Z-
score), activation in cerebral regions under reappraisal state,
especially the regions (e.g., the amygdala, the hippocampus,
and the temporal lobe) directly related to emotion processing,
is obviously weaker than activation in those regions under
negative state through using cognitive reappraisal. Activation
in these cerebral regions under neutral state is much weaker
than activation in the same regions under the other two
states. All these results are basically consistent with the
conclusions proposed by [28]. Compared with the fusion
results obtained using GLM (Table 3), two results can be
concluded: (1) by utilizing KCCA approach, more regions
are found to be activated under negative and reappraisal
states, and (2) activated intensities of these regions calculated
using KCCA fusion are larger than those calculated using
GLM fusion. Both results indicate the superiority of KCCA

fusion (symmetric EEG-fMRI analysis) in studying the neural
activity of cognitive reappraisal.

As a special preprocessing, fMRI masks are useful due to
the assumption that strong fMRI activation uncorrelatedwith
emotion processingmay be correlatedwithEEGcomponents,
thus leading to omitting the fMRI activation which we are
truly interested in. As shown in Figures 4(b), 5(b), and 6(b),
obvious fMRI activation can be observed in emotion-related
cerebral regions such as the hippocampus and the temporal
lobe under negative and reappraisal states. However, no acti-
vation can be observed in these regions if fMRImasks are not
used as preprocessing. Meanwhile, obvious decrease can be
observed in EEG amplitude from negative state to reappraisal
state using our fusion approach (Figure 7(a)), while little
decrease can be observed under the same condition without
fMRI masks (Figure 10).

Based on the above discussions, our fusion approach
may provide a fine solution for analyzing simultaneous EEG-
fMRI data in high resolution spatiotemporal domains. It
can synchronously tell when and where the neural activ-
ities related to certain tasks such as cognitive reappraisal
occur. It may also provide a useful technological means
for fusion-based cerebral area positioning, ERP-induction
time determination, and brain imaging feature extraction
in the area of brain-human interface. Our fusion approach
can be also used in paradigms which can cause LPP
with further study on cognitive researches and clinical
trials.

There are still some limitations in the proposed fusion
approach: (1) for the data to be fused, activation in AAL
ROIs is employed instead of original fMRI voxels, aiming at
reducing computational complexity. As a result, one cannot
study the activation of reconstructed fMRI components at
voxel level. (2) Prior knowledge is necessary for our KCCA
fusion approach. It is hard to choose suitable parameters
that are significant for satisfactory fusion results. There is
also no certain criterion in determining the threshold of
relational degrees. (3) The number of enrolled subjects is
far from enough; thus, the evaluations may lack persuasion.
Our future work focuses on implementing EEG-fMRI fusion
at voxel level instead of AAL ROIs. Thus, the spatial res-
olution of reconstructed fMRI components can be greatly
boosted.
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